CN216536323U - 一种新型肠道柔性吻合支架 - Google Patents
一种新型肠道柔性吻合支架 Download PDFInfo
- Publication number
- CN216536323U CN216536323U CN202122462556.0U CN202122462556U CN216536323U CN 216536323 U CN216536323 U CN 216536323U CN 202122462556 U CN202122462556 U CN 202122462556U CN 216536323 U CN216536323 U CN 216536323U
- Authority
- CN
- China
- Prior art keywords
- hole
- intestinal tract
- bracket body
- stent
- flexible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
Abstract
一种新型肠道柔性吻合支架,通过设置的牛角形的通孔,将肠道内壁及缝合处的分泌物吸入牛角形的孔道内,由于每个通孔的进液孔靠近支架本体的进口端一侧,出液孔出口端一侧,经过肠道内容物挤压,将孔道内的分泌物经进液孔排至支架本体内部,从而减少肠道内壁的缝合处受感染的风险,且支架本体的出口端的下缘为凹多边形结构,凹多边形结构的下缘的每一个优角在支架本体的侧壁上均形成有一个向内折叠的褶皱结构,褶皱结构也可容纳肠道内壁及缝合处的分泌物,凹多边形结构的下缘经肠道内容物受力形变使优角的角度变小,从而将褶皱结构内的分泌物沿褶皱方向向下排出,明显降低肠道吻合口瘘及其它并发症发生的概率。
Description
技术领域
本实用新型涉及胃肠道重建吻合术器械技术领域,具体涉及一种新型肠道柔性吻合支架。
背景技术
胃肠道重建吻合术是腹部外科中最常见的手术操作之一,在消化道外科发展的近一个世纪来,吻合口瘘的发生率并未明显下降,一直成为困扰胃肠外科手术成功率的世界性难题之一。消化道良恶性肿瘤、消化道穿孔、消化道梗阻、出血、缺血等肠道病变,往往需要切除部分病变肠道后再进行吻合,传统方法多以手工缝合吻合,近几十年来多以管状吻合器进行端端或端侧吻合、或直线切割闭合器进行侧侧吻合。无论何种吻合方式,均无法防治吻合口瘘这一致死性并发症。
目前,国内外结直肠外科医师普遍接受和实践的,是暂时性改道转流手术,诸如暂时性回肠造口或结肠造口,此类附加手术可确切地避免因为吻合口瘘所导致的并发症,但尚无文献支持是否可以减少吻合口瘘的发生概率。然而,改道手术需要计划性二次手术回纳,再次回纳也意味着再次的消化道重建与吻合,同样存在着吻合口瘘、吻合口狭窄等相关并发症的发生概率,但发生相比首次手术概率较低。在吻合口两端血供良好、对合无张力的情况下,实现肠道内容物,尤其是粪性内容物的在吻合口区域的隔离,实现相对隔绝、清洁的局部环境,是预防吻合口瘘以及诸如腹膜炎,腹腔脓肿等并发症的有效策略。其策略实现的关键技术瓶颈是理想辅助吻合材料的突破。肠道吻合的目的是为了恢复吻合口两端肠道的物理学、组织学和生理学功能。目前,传统的吻合器存在的主要问题包括:(1)金属吻合器不可生物降解,导致体内永久性滞留;(2)可降解高分子材料吻合器,缺乏与创面组织之间的力学匹配性;(3)吻合器不具有组织修复调控功能,无法对肠道正常功能的恢复进行合理调控。
临床上,所有肠道吻合术的实施都由以下几个环节组成:良好的术前准备、合适的手术时机、科学的吻合(手术)方式和细致的术后管理。其中,以科学的吻合方式最为核心,因其直接关系到手术的成败[9]。理论上,科学的吻合方式应具备以下特点:(1)吻合效果可靠,吻合后的肠道愈合过程符合其在生理条件下的损伤修复过程,既不愈合不足(吻合口漏),又不过度愈合(瘢痕纤维化,吻合口狭窄);(2)操作本身对吻合口两端的肠壁组织破坏小,操作需要的吻合口早期连接物(缝线,金属钉等)引起机体的异物反应轻微,且在愈合完成后自行消失(排出体外或在体内降解);(3)操作简便易行,可推广性强,学习曲线短暂;(4)操作通用性强,可以在多种外科条件,如不同手术部位(小肠、结直肠等)、不同吻合方式(端端、端侧等)和不同手术时机(急诊或择期手术) 下应用,甚至在腹腔感染、化疗状态,营养不良等复杂全身或腹腔局部状态下也可以使用。
国内外多个研究中心都在进行各类胃肠道“腔内支撑法”吻合术的研究,其中起支撑作用的载体主要是各种人工合成的新型高分子生物可降解材料,如 Detweiler MB等使用一种滑动的可降解支架SAINT(sliding absorbableintraluminal nontoxic stent)完成肠道吻合;Buch N等在常规单层手术结肠吻合的基础上应用快速降解(<2小时)的高分子支架假体 (Polyglycols@Hoechst SBStube),可以提高吻合口粘膜层的对合(mucosalepithelial covering)及组织氧分压;Tsereteli Z等将聚酯材料的PolyflexTM支架用于结肠术后吻合口漏的动物模型,证明了PolynexTM支架可以起到降低术后并发症并促进吻合口漏愈合的作用;荷兰Polyganics BV公司实用新型了“C-sealTM”,也是一种生物可降解的高分子材料,联合吻合器操作,可以减少低位结直肠手术中吻合口瘘的发生率。
“腔内支撑法”不仅在外科肠道吻合领域获得成功,在消化内镜下的应用同样表现优秀。自膨胀金属支架(Self-expandingmetallic stent,SEMS)就是最常见的内镜下“腔内支撑法”的代表,人们不仅可以利用其内支撑作用来治疗消化道狭窄(或梗阻)性疾病,SEMS还被反复证明可以用于治疗消化道穿孔和吻合口瘘等原本需要手术处理的外科疾病,尽管目前多限于有选择的病例。 2009年,AmraniL等提出了“内支架引导的消化道愈合和再上皮化” (stent-Guidedregenerationand re-epithelialization)的概念,他指出内支架可以使消化道内容物转流并与之隔离,从而使得待愈合部位(吻合或损伤部位) 处于“无打扰”的环境中愈合,而且内支架还可以在愈合过程中提供一个供上皮细胞爬行的平台,促进“再上皮化”。近年来,内镜学中还提出了“腔内真空疗法”(Endoluminal vacuumtherapy,EVT),其理念与腔内支架有相似之处,即使用一可外部连接负压引流的“海绵样”腔内植入物,将待愈合部位周围的肠内容物引出体外,使吻合口在较低压力和相对干燥的条件下完成愈合。
国内相关肠道修复器械方面的专利情况如下:专利CN 111449707A 提出一种肛肠吻合器,包括手柄座、传动组件、击发组件和吻切组件;传动组件包括设置于手柄座内部的丝杆以及设置于手柄座尾端并与所述丝杆尾端相连的调节机构;丝杆前端固定安装有抵钉座;击发组件包括设置于手柄座上的活动手柄以及套设于丝杆上的直推杆;吻切组件包括推钉片、钉仓套、钉仓和环形刀。该实用新型中推钉片、钉仓套和钉仓均采用金属材质制成,零件无法在体内降解,只能选择永久性滞留体内或者二次手术取出。专利CN109480943A 由可降解材料制成,采用钉体穿孔固定的方式,并在钉体后端设计了支撑架,但是吻合环硬度大、无弹性,不能很好地适应肠道蠕动,异物感明显。类似的还有专利CN103239265A,其选用了可降解材料聚乙交酯、聚丙交酯为原料,应用于胃肠道吻合。该吻合器具有易碎解的功能,但是同样缺乏与肠道组织的力学匹配性。理想的吻合器应具备以下特点:(1)有效隔离肠道内容物; (2)吻合器植入操作对吻合口肠壁破坏小;(3)操作简便易行。目前市场上的吻合装置均无法同时满足上述要求。
根据上述所有内镜下及外科实践中应用问题,我们可以得出:腔内隔离和腔内减压可以促进肠道愈合,以至于可以在消化道穿孔、吻合口瘘等高风险情况下安全地实现较理想的愈合。其实,外科医生应该对这一结论并不陌生,如临床工作中常见的胃肠减压及肠道造口转流术就是“腔内隔离和腔内减压”的应用体现。“腔内支撑法”类似于利用某些高分子材料将传统的消化道“减压+ 外引流”转变成了“支撑+内引流”,极大的提高了病人的生活质量;而且植入物在完成其功能后可以自行降解,不在体内存留。
发明内容
为了解决现有技术存在的技术缺陷,本实用新型提供了一种新型肠道柔性吻合支架。
本实用新型采用的技术解决方案是:一种新型肠道柔性吻合支架,包括管状的支架本体,所述的支架本体包括侧壁,所述的支架本体的上下两端分别为进口端和出口端,所述的支架本体的侧壁上设有若干异形的通孔,所述的通孔为牛角形,所述的牛角形的通孔的大口为进液孔在支架本体的外侧,小口为出液孔在支架本体的内侧,每个所述的通孔的进液孔靠近支架本体的进口端一侧,出液孔靠近支架本体的出口端一侧,所述的支架本体采用柔性材料制成,所述的侧壁上的牛角形的通孔受挤压形变将通孔内的分泌物经进液孔排至支架本体内部。
所述的进口端的环形的上缘上设有凸台,所述的出口端的下缘为凹多边形结构,所述的凹多边形结构的下缘的每一个优角在支架本体的侧壁上均形成有一个向内折叠的褶皱结构,所述的凹多边形结构的下缘受力形变使优角的角度变小,
所述的支架本体上包括有缝合部,所述的缝合部包括进口端的环形的上缘和出口端的凹多边形结构的下缘的非优角边。
所述的褶皱结构的长度为1/2-2/3的支架本体的高度。
所述的支架本体的内壁的厚度为0.20-0.6mm。
所述的肠吻合支架的褶皱结构处的侧壁的厚度小于褶皱结构上方的侧壁的厚度。
所述的牛角形的通孔的深度大于肠吻合支架的侧壁。
所述的牛角形的通孔的深度1-2mm。
所述的支架本体采用生物柔性弹性体制成,所述的生物柔性弹性体基于 PTMC-b-PEG-b-PTMC共聚物和PLA、PCL、PBS中的至少一种共混而成,所述的 PTMC-b-PEG-b-PTMC共聚物中PEG含量为10%~20%,所述的PLA、PCL、PBS 中至少一种的共混比例为5~30%。
所述的肠道柔性吻合支架通过以下步骤制备:
(1)PTMC-b-PEG-b-PTMC共聚物的合成:合成过程需要在无水无氧的环境下进行操作,将95~80wt%TMC单体、5~20wt%PEG5000以及1~5wt%催化剂 Sn(Oct)2溶液加到反应管中,反应管中放入磁子,保证反应管内无水无氧之后,管口密封,最后再用封口膜将管口密封确保不会有氧气和水分进入,将反应管放入油浴中进行反应,温度为120~150℃,反应时间24~48h,反应结束后,取出待用;
(2)PTMC-b-PEG-b-PTMC的溶解:按1:5的固液比,将PTMC-b-PEG-b-PTMC 共聚物用CHCl3或DMF或THF来溶解,先用CHCl3或DMF或THF清洗几遍内壁,洗去硅脂和未反应的单体,然后加入过量CHCl3或DMF或THF,置于摇床,摇床温度设定为37℃,等待溶液完全溶解;
(3)PTMC-b-PEG-b-PTMC的提纯:将溶解好的溶液缓慢倒入装有正己烷或乙醇的烧杯中进行提纯,缓慢倒入并且不断搅拌,将得到的絮状物PTMC-b- PEG-b-PTMC进行抽滤,之后放置于真空干燥箱内干燥48h;
(4)静电纺丝溶液的配制:将PTMC-b-PEG-b-PTMC共聚物和PLA、PCL、 PBS中的至少一种进行复配,加入到溶剂DMF/THF中,DMF:THF=1:1,该溶液质量分数为5~10wt%,并放置在37℃恒温摇床24h直至完全溶解,待溶解完全后进行静电纺丝操作;
(5)静电纺丝制备吻合管:在静电纺丝设备上进行静电纺丝得到所述的肠道柔性吻合支架,所述的静电纺丝参数为:电压(-5,30)V;针头推速V=1.0~5.0ml/h;辊轮转速V=100~500RMP;温度T=25~35℃;湿度WET=20~40%。
本实用新型的有益效果是:本实用新型提供了一种新型肠道柔性吻合支架,具有与肠道弹性相匹配的、具有三维网状微纳结构,通过设置的牛角形的通孔,将肠道内壁及缝合处的分泌物吸入牛角形的孔道内,由于每个通孔的进液孔靠近支架本体的进口端一侧,出液孔出口端一侧,经过肠道内容物挤压,将孔道内的分泌物经进液孔排至支架本体内部,从而减少肠道内壁的缝合处受感染的风险,且支架本体的出口端的下缘为凹多边形结构,凹多边形结构的下缘的每一个优角在支架本体的侧壁上均形成有一个向内折叠的褶皱结构,褶皱结构也可容纳肠道内壁及缝合处的分泌物,凹多边形结构的下缘经肠道内容物受力形变使优角的角度变小,从而将褶皱结构内的分泌物沿褶皱方向向下排出,明显降低肠道吻合口瘘及其它并发症发生的概率。
附图说明
图1为本实用新型结构示意图。
图2为本实用新型牛角形通孔结构剖视图。
图3为本实用新型支架本体的出口端的下缘结构示意图。
图4为本实用新型PTMC-b-PEG-b-PTMC三嵌段共聚物反应机理图。
图5为本实用新型不同PEG含量的PTMC-b-PEG-b-PTMC共聚物电纺支架的 SEM照片
其中1-支架本体,2-通孔,3-凸台,4-优角,11-进口端,12-出口端,21-进液孔,22-出液孔,41-褶皱结构。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获的的所有其他实施例,都属于本实用新型保护的范围。
材料组成:
一种基于PTMC-b-PEG-b-PTMC共聚物和PLA、PCL、PBS中的至少一种共混而成的生物柔性弹性体肠吻合支架。所述的肠吻合支架整体采用PTMC-b-PEG-b -PTMC共聚物材料制成,并复配PLA、PCL、PBS中的至少一种共混而成。所述的PTMC-b-PEG-b-PTMC共聚物为高分子医用材料TMC和PEG采用开环聚合的方法合成的三嵌段PTMC-b-PEG-b-PTMC共聚物,所述的PTMC-b-PEG-b-PTMC共聚物中PEG含量为10%~20%,所述的PLA、PCL、PBS中至少一种的共混比例为5~30%,所述的肠吻合支架的厚度为0.2-0.6mm。
制造工艺:
静电纺丝:静电纺丝溶液的配制:溶液质量分数为5~10%,溶剂为 DMF/THF=1/1(V/V)。将PTMC-b-PEG-b-PTMC共聚物和PLA、PCL、PBS中的至少一种进行复配,加入到溶剂中,并放置在37℃恒温摇床24h直至完全溶解。将溶解好的电纺溶液进行静电纺丝。静电纺丝条件:电压(-5,30)V;针头推速 V=1.0~5.0ml/h;辊轮转速V=100~500RMP;温度T=25~35℃;湿度WET=20~40%。
具体制备方法如下:
1.PTMC-b-PEG-b-PTMC共聚物的合成:合成过程需要在无水无氧的环境下进行操作,将95~80wt%TMC单体、5~20wt%PEG5000以及1~5wt%催化剂Sn(Oct)2溶液加到反应管中,反应管中放入磁子,保证反应管内无水无氧之后,管口用硅脂密封,最后再用封口膜将管口密封确保不会有氧气和水分进入。将反应管放入油浴锅中进行反应,温度为120~150℃,反应时间24~48h,反应结束后,取出待用。
2.PTMC-b-PEG-b-PTMC的溶解:按1:5的固液比,将合成材料用CHCl3或 DMF或THF来溶解。先用CHCl3或DMF或THF清洗几遍内壁,洗去硅脂和未反应的单体,然后加入过量CHCl3或DMF或THF,置于摇床,摇床温度设定为37℃,等待溶液完全溶解。
3.PTMC-b-PEG-b-PTMC的提纯:将溶解好的溶液缓慢倒入装有正己烷或乙醇的烧杯中进行提纯,缓慢倒入并且用玻璃棒不断搅拌。将得到的絮状物PTMC -b-PEG-b-PTMC进行抽滤,之后放置于真空干燥箱内干燥48h。
4.静电纺丝溶液的配制:所用物质溶于溶剂DMF/THF(DMF:THF=1:1),该溶液质量分数为5~10wt%。其中,将PTMC-b-PEG-b-PTMC共聚物和PLA、PCL、 PBS中的至少一种进行复配,加入到溶剂DMF/THF(DMF:THF=1:1)中,并放置在37℃恒温摇床24h直至完全溶解。待溶解完全后进行静电纺丝操作。
5.静电纺丝制备吻合管:在型号为TL-Pro-BM的静电纺丝上进行纺丝。参数设置范围如下:电压(-5,30)V;针头推速V=1.0~5.0ml/h;辊轮转速 V=100~500RMP;温度T=25~35℃;湿度WET=20~40%。
表1.静电纺丝条件
通过聚乙二醇羟基引发的三亚甲基碳酸酯开环聚合,合成了 PTMC-b-PEG-b-PTMC三嵌段共聚物(图4)。在Sn(Oct)2催化下,TMC与PEG共聚合成了PTMC-b-PEG-b-PTMC嵌段共聚物。不同PEG嵌段比例的共聚反应以及产物部分物理性质如表2所示。
表2 PTMC-b-PEG-b-PTMC共聚物的组成和物理性质
不同分子量的嵌段共聚物其降解速率和力学性能差异很大,而不同投料比对嵌段共聚物的分子量影响显著,植入肠道中要求产品具有合适的降解速度和优异的力学性能,因而本实验重点探讨了原料中TMC单体与PEG的不同比例对嵌段共聚物PTMC-b-PEG-b-PTMC分子量以及性能的影响。研究了原料中TMC单体与PEG不同质量比这一因素,控制反应时间为24h,结果见表2。数据表明,随着原料中PEG比例的减少,PTMC-b-PEG-b-PTMC的特性粘度增大,分子量提高。
表3不同PEG含量的PTMC-b-PEG-b-PTMC共聚物的亲疏水性和力学性能
材料良好的亲水性使其具有更好的生物相容性,因此为了评估 PTMC-b-PEG-b-PTMC的亲疏水性,通过动态接触角实验测量样品表面的水接触角,并在表3中列出。结果清楚地表明,随着共聚物中PEG含量的减少,动态接触角增大,这说明共聚物的亲水性与共聚物中PEG的含量成正比。每隔五分钟测量样品表面的水接触角,所有样品随着时间增加接触角变小,包括疏水的样品,说明静电纺丝的疏松多孔结构使材料有好的吸水性,且PEG含量的增高,接触角变化速率增大。
PEG嵌段的比例不同,对材料的机械性能也有很大的影响。用 PTMC-b-PEG-b-PTMC静电纺丝制备的吻合支架的机械性能列于表3。随着PEG 嵌段比例的减少,共聚物的拉伸强度分别从6.38MPa增加到12.75MPa。这是因为PEG为半结晶微相状态,对支架有塑化和硬化的效果,随着PEG的增加,材料的结晶度增大,拉伸强度减小。
基于亲水性、力学性能等综合因素,结合目的,我们认为PEG含量在10%~20%时,其力学性能与亲水性符合植入的要求。该范围内,吻合支架具备一定的亲水性,且在干湿态下机械性能都很稳定,保持一定力学强度且还具有优异的柔顺性,这保证它满足强度的同时不会有异物感和不适感,在肠道创伤时可以作为一种很好地承载修复组织。因此,以PTMC-b-PEG-b-PTMC共聚物为主基材,通过添加刚性可生物降解聚合物进行调配,可以使吻合支架具备较好的韧性,在植入体内后两周内能保持一定的力学强度,且发生体型降解的同时,其型腔变形度最小。
本专利后续选取PEG含量为15%的样品作为吻合支架的主基材,与和PLA、 PCL、PBS中的至少一种进行复配并电纺成型,制备出特殊结构和形貌的肠道吻合支架。
表4 PTMC-b-PEG-b-PTMC共聚物和PLA、PCL、PBS的不同共混比例以及其纺丝后的力学性能
各位技术人员须知:虽然本实用新型已按照上述具体实施方式做了描述,但是本实用新型的实用新型思想并不仅限于此实用新型,任何运用本实用新型思想的改装,都将纳入本专利专利权保护范围内。
以上所述仅是本实用新型的优选实施方式,本实用新型的保护范围并不仅局限于上述实施例,凡属于本实用新型思路下的技术方案均属于本实用新型的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理前提下的若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。
Claims (8)
1.一种新型肠道柔性吻合支架,包括管状的支架本体(1),所述的支架本体(1)包括侧壁,其特征在于, 所述的支架本体(1)的上下两端分别为进口端(11)和出口端(12),所述的支架本体(1)的侧壁上设有若干异形的通孔(2),所述的通孔(2)为牛角形,所述的牛角形的通孔(2)的大口为进液孔(21)在支架本体(1)的外侧,小口为出液孔(22)在支架本体(1)的内侧,每个所述的通孔(2)的进液孔(21)靠近支架本体(1)的进口端(11)一侧,出液孔(22)靠近支架本体(1)的出口端(12)一侧,所述的支架本体(1)采用柔性材料制成,所述的侧壁上的牛角形的通孔(2)受挤压形变将通孔(2)内的分泌物经进液孔(21)排至支架本体(1)内部。
2.根据权利要求1所述的一种新型肠道柔性吻合支架,其特征在于,所述的进口端(11)的环形的上缘上设有凸台(3),所述的出口端(12)的下缘为凹多边形结构,所述的凹多边形结构的下缘的每一个优角(4)在支架本体(1)的侧壁上均形成有一个向内折叠的褶皱结构(41),所述的凹多边形结构的下缘受力形变使优角(4)的角度变小。
3.根据权利要求1所述的一种新型肠道柔性吻合支架,其特征在于,所述的支架本体(1)上包括有缝合部,所述的缝合部包括进口端(11)的环形的上缘和出口端(12)的凹多边形结构的下缘的非优角(4)边。
4.根据权利要求2所述的一种新型肠道柔性吻合支架,其特征在于,所述的褶皱结构(41)的长度为1/2-2/3的支架本体(1)的高度。
5.根据权利要求4所述的一种新型肠道柔性吻合支架,其特征在于,所述的支架本体(1)的内壁的厚度为0.20-0.6mm。
6.根据权利要求5所述的一种新型肠道柔性吻合支架,其特征在于,所述的褶皱结构(41)处的侧壁的厚度小于褶皱结构(41)上方的侧壁的厚度。
7.根据权利要求1所述的一种新型肠道柔性吻合支架,其特征在于,所述的牛角形的通孔(2)的深度大于肠吻合支架的侧壁。
8.根据权利要求1所述的一种新型肠道柔性吻合支架,其特征在于,所述的牛角形的通孔(2)的深度1-2mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122462556.0U CN216536323U (zh) | 2021-10-12 | 2021-10-12 | 一种新型肠道柔性吻合支架 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122462556.0U CN216536323U (zh) | 2021-10-12 | 2021-10-12 | 一种新型肠道柔性吻合支架 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216536323U true CN216536323U (zh) | 2022-05-17 |
Family
ID=81565851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202122462556.0U Active CN216536323U (zh) | 2021-10-12 | 2021-10-12 | 一种新型肠道柔性吻合支架 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216536323U (zh) |
-
2021
- 2021-10-12 CN CN202122462556.0U patent/CN216536323U/zh active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4422028B2 (ja) | 医療用の生分解性ドレイン | |
AU2005235161B2 (en) | Devices and methods for anastomosis | |
WO2013089493A1 (ko) | 유착방지용 조성물, 이를 포함하는 유착방지기능을 갖는 수술용 메쉬 복합체 및 이의 제조 방법 | |
CN113413491B (zh) | 基于PTMC-b-PEG-b-PTMC共聚物的生物柔性弹性体肠吻合支架及制备方法 | |
GB2141435A (en) | Modification of polyglycolic structural surgical elements to achieve variable in-vivo physical properties | |
US12048620B2 (en) | Flexible intestinal anastomosis stent | |
US20240261124A1 (en) | Ptmc-based intestinal anastomosis stent of bioabsorbable flexible elastomer and preparation method therefor | |
CN216536323U (zh) | 一种新型肠道柔性吻合支架 | |
JP6502342B2 (ja) | 埋植後中期的な強度維持性を有する吸収性ポリ(p−ジオキサノン−コ−グリコリド)モノフィラメント繊維 | |
CN216495452U (zh) | 一种肠道柔性吻合支架 | |
RU2045233C1 (ru) | Способ хирургического лечения патологического ожирения | |
CN113855134A (zh) | 一种肠道柔性吻合支架 | |
CN114948037A (zh) | 一种可吸收胰肠吻合器及可降解吸收的聚氨酯弹性体 | |
EP2583642A1 (en) | Implantable stoma ring | |
KR101054457B1 (ko) | 유착방지필름 및 그의 제조방법 | |
RU2180528C2 (ru) | Способ пластики десерозированных участков кишки | |
CN219896547U (zh) | 一种抗炎症防结石的脱细胞基质复合膜 | |
CN215739664U (zh) | 一种疝气补片 | |
CN115645609A (zh) | 一种三维多孔生物可降解聚合物人工食管支架及其制备方法 | |
RU2210327C1 (ru) | Способ тотального замещения мочеточника с илеокаликостомией | |
RU1792655C (ru) | Способ гепатикоеюностомии | |
RU2472457C1 (ru) | Способ хирургического лечения внутреннего отверстия свища при сложных формах парапроктита | |
RU52697U1 (ru) | Устройство для хирургического лечения грыж пищеводного отверстия диафрагмы | |
CN118161670A (zh) | 一种抗炎症的脱细胞基质复合膜及其用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |