CN214412605U - 一种复合式高可靠性三电平双降压式逆变器 - Google Patents

一种复合式高可靠性三电平双降压式逆变器 Download PDF

Info

Publication number
CN214412605U
CN214412605U CN202120486341.XU CN202120486341U CN214412605U CN 214412605 U CN214412605 U CN 214412605U CN 202120486341 U CN202120486341 U CN 202120486341U CN 214412605 U CN214412605 U CN 214412605U
Authority
CN
China
Prior art keywords
switch tube
power switch
power
diode
power diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202120486341.XU
Other languages
English (en)
Inventor
代云中
罗钟雨
梅清洪
陈启强
屈珣
李泓廷
张鑫坤
鲁庆东
刘健洋
冷云松
彭宇峰
程健钊
曹竞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yibin Vocational and Technical College
Original Assignee
Yibin Vocational and Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yibin Vocational and Technical College filed Critical Yibin Vocational and Technical College
Priority to CN202120486341.XU priority Critical patent/CN214412605U/zh
Application granted granted Critical
Publication of CN214412605U publication Critical patent/CN214412605U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

本实用新型公开了一种复合式高可靠性三电平双降压式逆变器,包括直流电压源Vcc、支撑电容C1、支撑电容C2、功率开关管S1、功率开关管S2、功率开关管S3、功率开关管S4、功率开关管S5、功率开关管S6、功率二极管D1、功率二极管D2、功率二极管D3、功率二极管D4、功率二极管D5、功率二极管D6、滤波电感La1、滤波电感La2、滤波电感L和滤波电容Cf以及负载电阻R。本实用新型的目的在于提供一种复合式高可靠性三电平双降压式逆变器,解决现有技术中复合式三电平桥式逆变器同桥臂开关管需要设置死区时间,会增加并网电流谐波含量,降低逆变器的电能质量以及反向恢复损耗高,可靠性较低的问题。

Description

一种复合式高可靠性三电平双降压式逆变器
技术领域
本实用新型涉及逆变器技术领域,尤其涉及一种复合式高可靠性三电平双降压式逆变器。
背景技术
现有技术中的复合式三电平桥式逆变器如图1所示,它是由1个三电平桥臂和1个两电平桥臂组合而成的,比起两个桥臂都采用三电平而言,其控制简单,容易实现,适合于中小功率场合的单相逆变器。
然而,由于该复合式三电平桥式逆变器是桥式结构,同桥臂的开关管均存在桥臂直通的问题,需设置死区时间,而死区的引入会增加并网电流谐波含量,降低逆变器的电能质量,此外,由于桥式逆变器开关管体二极管参与了续流,反向恢复损耗高,可靠性较低。
实用新型内容
本实用新型的目的在于提供一种复合式高可靠性三电平双降压式逆变器,解决现有技术中复合式三电平桥式逆变器会增加并网电流谐波含量,降低逆变器的电能质量以及反向恢复损耗高,可靠性较低的问题。
本实用新型通过下述技术方案实现:
一种复合式高可靠性三电平双降压式逆变器,包括直流电压源Vcc、支撑电容C1、支撑电容C2、功率开关管S1、功率开关管S2、功率开关管S3、功率开关管S4、功率开关管S5、功率开关管S6、功率二极管D1、功率二极管D2、功率二极管D3、功率二极管D4、功率二极管D5、功率二极管D6、滤波电感La1、滤波电感La2、滤波电感L和滤波电容Cf以及负载电阻R;
其中,所述支撑电容C1的一端与所述直流电压源Vcc的正极连接,所述支撑电容C1的另一端与所述支撑电容C2的一端连接,所述支撑电容C2的另一端与所述直流电压源Vcc的负极连接;
所述功率开关管S1的集电极与所述直流电压源Vcc的正极连接,所述功率开关管S1的发射极与所述功率二极管D1的阳极连接,所述功率二极管D1的阴极与所述滤波电感La1的一端连接,所述滤波电感La1的另一端与所述功率开关管S2的集电极连接,所述功率开关管S2的发射极与所述功率开关管S3的集电极连接,所述功率开关管S3的发射极与所述功率开关管S4的集电极连接,所述功率开关管S4的发射极与所述直流电压源Vcc的负极连接;
所述功率二极管D6的阳极与所述功率二极管D1的阴极连接,所述功率二极管D6的阴极与所述功率开关管S1的集电极连接;所述功率二极管D5的阳极与功率开关管S3的发射极连接,所述功率二极管D5的阴极与所述功率二极管D4的阳极连接,所述功率二极管D4的阴极与所述功率开关管S2的集电极连接;
所述功率开关管S5的集电极与所述功率开关管S1的集电极连接,所述功率开关管S5的发射极与所述功率二极管D2的阳极连接,所述功率二极管D2的阴极与所述滤波电感La2的一端连接,所述滤波电感La2的另一端与所述功率开关管S6的集电极连接,所述功率开关管S6的发射极与所述功率开关管S4的发射极连接;
所述滤波电感L的一端与所述功率开关管S2的发射极连接,所述滤波电感L的另一端与所述负载电阻R的一端连接,所述负载电阻R的另一端与所述功率二极管D2的阴极连接;
所述滤波电容Cf的一端与所述功率开关管S2的发射极连接,所述滤波电容Cf的另一端与所述功率二极管D2的阴极连接;
所述功率二极管D3的阳极与所述功率开关管S6的集电极连接,所述功率二极管D3的阴极与所述功率开关管S5的集电极连接。
优选地,当所述逆变器工作在模态1时,所述直流电压源Vcc、所述支撑电容C1和所述支撑电容C2形成正向充电回路,对所述支撑电容C1和所述支撑电容C2充电;所述功率开关管S1、所述功率二极管D1、所述滤波电感La1、所述功率开关管S2、所述滤波电感Cf、所述滤波电感La2、所述功率开关管S6、所述支撑电容C1以及所述支撑电容C2形成正向充电回路,对所述滤波电容Cf充电,此时,桥臂输出电流i上升;同时,所述滤波电容Cf对所述滤波电感L和所述负载电阻R供电;
其中,所述模态1为:桥臂输出电流ig>0,所述功率开关管S1、所述功率开关管S2以及所述功率开关管S6导通,所述功率开关管S3、所述功率开关管S4以及所述功率开关管S5关断。
优选地,当所述逆变器工作在模态2时,所述滤波电容Cf、所述滤波电感La2、所述功率开关管S6、所述支撑电容C2、所述功率二极管D4以及所述功率开关管S2形成正向放电回路,此时输出端向所述支撑电容C2回馈能量,桥臂输出电流i下降;同时所述滤波电容Cf向所述负载电阻R和滤波电感L供电;
其中,所述模态2为:桥臂输出电流ig>0,所述功率开关管S2、所述功率开关管S3以及所述功率开关管S6导通,所述功率开关管S1、所述功率开关管S4以及所述功率开关管S5关断。
优选地,当所述逆变器工作在模态3时,所述直流电压源Vcc对所述支撑电容C1与所述支撑电容C2充电,所述滤波电容Cf、所述滤波电感La2、所述功率开关管S6、所述功率开关管S4以及所述功率开关管S3形成正向续流回路,此时,桥臂输出电流i下降;同时所述滤波电容Cf、所述滤波电感L和所述负载电阻R构成正向放电,所述滤波电容Cf向所述滤波电感L和所述负载电阻R供电;
其中,所述模态3为:桥臂输出电流ig>0,所述功率开关管S3、所述功率开关管S4以及所述功率开关管S6导通,所述功率开关管S1、所述功率开关管S2以及所述功率开关管S5关断。
优选地,当所述逆变器工作在模态4时,所述直流电压源Vcc对所述支撑电容C1与所述支撑电容C2充电,所述滤波电容Cf、所述功率开关管S3、所述功率开关管S4、所述支撑电容C2、所述支撑电容C1、所述功率开关管S5以及所述功率二极管D2形成反向充电回路,桥臂输出电流i反向上升;同时所述滤波电容Cf、所述滤波电感L和所述负载电阻R构成反向放电,为所述滤波电感L和所述负载电阻R供电;所述功率开关管S5、所述功率二极管D2、所述滤波电感La2和所述功率二极管D3形成所述滤波电感La2的续流通路;
其中,所述模态4为:桥臂输出电流i<0,所述功率开关管S3、所述功率开关管S4以及所述功率开关管S5导通,所述功率开关管S1、所述功率开关管S2以及所述功率开关管S6关断。
优选地,当所述逆变器工作在模态5时,所述滤波电容Cf、所述功率开关管S3、所述功率二极管D5、所述支撑电容C1、所述功率开关管S5以及所述功率二极管D2形成反向放电回路,此时输出端向所述支撑电容C1回馈能量,桥臂输出电流i反向下降;同时所述滤波电容Cf向所述负载电阻R和所述滤波电感L供电;所述功率开关管S5、所述功率二极管D2、所述滤波电感La2和所述功率二极管D3形成所述滤波电感La2的续流通路;
其中,所述模态5为:桥臂输出电流i<0,所述功率开关管S2、所述功率开关管S3以及所述功率开关管S5导通,所述功率开关管S1、所述功率开关管S4以及所述功率开关管S6关断。
优选地,当所述逆变器工作在模态6时,所述直流电压源Vcc对所述支撑电容C1与所述支撑电容C2充电,所述滤波电容Cf、所述功率开关管S2、所述滤波电感La1、所述功率二极管D6、所述功率开关管S5以及所述功率二极管D2形成正向续流回路,桥臂输出电流i反向下降;同时所述滤波电容Cf、所述滤波电感L和所述负载电阻R构成反向放电,所述滤波电容Cf向所述滤波电感L和所述负载电阻R供电;所述功率开关管S5、所述功率二极管D2、所述滤波电感La2和所述功率二极管D3形成所述滤波电感La2的续流通路;
其中,所述模态6为:桥臂输出电流i<0,所述功率开关管S1、所述功率开关管S2以及所述功率开关管S5导通,所述功率开关管S3、所述功率开关管S4以及所述功率开关管S6关断。
本实用新型与现有技术相比,具有如下的优点和有益效果:
1、与现有复合桥式三电平逆变器相比,由于可防止发生桥臂直通的滤波电感La1、La2的引入,因此在实际工程中复合式高可靠性三电平双降压式逆变器同桥臂开关管无需设置死区时间,可进一步提高逆变器的电能质量;
2、与现有复合桥式三电平逆变器相比,由于高性能二极管D1、D2、D3以及D6的引入,复合式高可靠性三电平双降压式逆变器续流回路负载电流不经过性能较差的开关管体二极管,可有效降低逆变器的反向恢复损耗,因此复合式高可靠性三电平双降压式逆变器具有高效率和高可靠性的优点。
附图说明
此处所说明的附图用来提供对本实用新型实施例的进一步理解,构成本申请的一部分,并不构成对本实用新型实施例的限定。在附图中:
图1为现有技术中复合式三电平桥式逆变器的电路结构示意图;
图2为本实用新型复合式高可靠性三电平双降压式逆变器的电路结构示意图;
图3为本实用新型复合式高可靠性三电平双降压式逆变器模态1的电路结构示意图;
图4为本实用新型复合式高可靠性三电平双降压式逆变器模态2的电路结构示意图;
图5为本实用新型复合式高可靠性三电平双降压式逆变器模态3的电路结构示意图;
图6为本实用新型复合式高可靠性三电平双降压式逆变器模态4的电路结构示意图;
图7为本实用新型复合式高可靠性三电平双降压式逆变器模态5的电路结构示意图;
图8为本实用新型复合式高可靠性三电平双降压式逆变器模态6的电路结构示意图;
图9为本实用新型逆变器的单极性双载波SPWM调制方法;
图10为本实用新型功率开关的逻辑控制框图;
图11为本实用新型输出电流iL波形及其FFT分析波形图;
图12为本实用新型输出电压uL和输出电流iL波形图;
图13为本实用新型桥臂输出电压UAB的波形;
图14为本实用新型续流二极管D3的电流波形。
具体实施方式
为使本实用新型的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本实用新型作进一步的详细说明,本实用新型的示意性实施方式及其说明仅用于解释本实用新型,并不作为对本实用新型的限定。
实施例
一种复合式高可靠性三电平双降压式逆变器,如图2所示,包括直流电压源Vcc、支撑电容C1、支撑电容C2、功率开关管S1、功率开关管S2、功率开关管S3、功率开关管S4、功率开关管S5、功率开关管S6、功率二极管D1、功率二极管D2、功率二极管D3、功率二极管D4、功率二极管D5、功率二极管D6、滤波电感La1、滤波电感La2、滤波电感L和滤波电容Cf以及负载电阻R;
其中,支撑电容C1的一端与直流电压源Vcc的正极连接,支撑电容C1的另一端与支撑电容C2的一端连接,支撑电容C2的另一端与直流电压源Vcc的负极连接;
功率开关管S1的集电极与直流电压源Vcc的正极连接,功率开关管S1的发射极与功率二极管D1的阳极连接,功率二极管D1的阴极与滤波电感La1的一端连接,滤波电感La1的另一端与功率开关管S2的集电极连接,功率开关管S2的发射极与功率开关管S3的集电极连接,功率开关管S3的发射极与功率开关管S4的集电极连接,功率开关管S4的发射极与直流电压源Vcc的负极连接;
功率二极管D6的阳极与功率二极管D1的阴极连接,功率二极管D6的阴极与功率开关管S1的集电极连接;功率二极管D5的阳极与功率开关管S3的发射极连接,功率二极管D5的阴极与功率二极管D4的阳极连接,功率二极管D4的阴极与功率开关管S2的集电极连接;
功率开关管S5的集电极与功率开关管S1的集电极连接,功率开关管S5的发射极与功率二极管D2的阳极连接,功率二极管D2的阴极与滤波电感La2的一端连接,滤波电感La2的另一端与功率开关管S6的集电极连接,功率开关管S6的发射极与功率开关管S4的发射极连接;
滤波电感L的一端与功率开关管S2的发射极连接,滤波电感L的另一端与负载电阻R的一端连接,负载电阻R的另一端与功率二极管D2的阴极连接;
滤波电容Cf的一端与功率开关管S2的发射极连接,滤波电容Cf的另一端与功率二极管D2的阴极连接;
功率二极管D3的阳极与功率开关管S6的集电极连接,功率二极管D3的阴极与功率开关管S5的集电极连接。
在本实施例中,S1~S6为功率开关管IGBT;D1~D6为独立的高性能二极管,Vcc为直流侧电压,A和B分别为桥臂中点,i为桥臂输出电流,iL为负载电流;C1和C2为直流侧支撑电容;La1、La2为可防止发生桥臂直通的滤波电感;L,Cf为输出侧滤波电感和电容,R为负载电阻。
设桥臂输出电流i从桥臂中点A流向桥臂中点B为正,A、B之间的桥臂输出电压为UAB。则UAB输出包括+Vcc、、-Vcc、+Vcc/2、-Vcc/2以及0五种电平,为分析方便,把0电平分为+0和-0两种。根据UAB的6种输出状态和流过电感电流的方向,可以得到6个开关模态,如图3-图8所示,以下为对这6种开关模态的进行分析:
模态1:
当桥臂输出电流i>0,S1、S2、S6导通,S3、S4、S5关断,复合式高性能三电平双降压式逆变器工作在模态1,其等效电路如图3所示。从图3可以看出,Vcc、C1和C2形成正向充电回路,对电容C1和C2充电。i经S1、D1、La1、S2、Cf、La2、S6和C1和C2形成正向充电回路,对Cf充电,i上升。同时,Cf对负载L和R供电。同桥臂的开关管S1、S2、S3、S4之间的滤波电感La1可防止开关管同时导通时,开关管电流的快速变化,因此同桥臂的开关管S1、S2、S3、S4之间无需设置死区时间。同理可知,同桥臂的开关管S5、S6之间由于滤波电感La2的引入,因此S5、S6也无需设置死区时间。进一步从图3可以看出,桥臂输出电压UAB=Vcc,S3和S4的电压应力为Vcc/2。
模态2:
当i>0,S2、S3、S6导通,S1、S4、S5关断,复合式高性能三电平双降压式逆变器工作在模态2,其等效电路如图4所示。从图4可以看出,i流经Cf、La2、S6、C2、D4和S2形成正向放电回路,此时输出端向C2回馈能量,i下降。同时Cf向负载R和L供电,UAB=Vcc/2,S1的电压应力为Vcc/2。
模态3:
当i>0,S3、S4、S6导通,S1、S2、S5关断,复合式高性能三电平双降压式逆变器工作在模态3,其等效电路如图5所示。从图5可以看出,Vcc对C1与C2充电。i流经Cf、La2、S6、S4、S3形成正向续流回路,i下降,UAB=+0,S1和S2的电压应力为Vcc/2。同时Cf、L和R构成正向放电,Cf向负载供电,且续流通路不通过性能较差的IGBT体二极管。
模态4:
当i<0,S3、S4、S5导通,S1、S2、S6关断,复合式高性能三电平双降压式逆变器工作在模态4,其等效电路如图6所示。从图6可以看出,Vcc对C1与C2充电。i流经Cf、S3、S4、C2、C1、S5、D2形成反向充电回路,i反向上升,UAB=-Vcc,S1和S2的电压应力为Vcc/2。同时Cf、L和R构成反向为负载供电;S5、D2、La2和D3形成滤波电感La2的续流通路,续流通路不通过IGBT的体二极管。
模态5:
当i<0,S2、S3、S5导通,S1、S4、S6关断,复合式高性能三电平双降压式逆变器工作在模态5,其等效电路如图7所示。从图7可以看出,i流经Cf、S3、D5、C1、S5和D2形成反向放电回路,此时输出端向C1回馈能量,i反向下降。同时Cf向负载R和L供电,UAB=-Vcc/2,S1和S4的电压应力为Vcc/2。S5、D2、La2和D3形成滤波电感La2的续流通路,续流通路不通过IGBT的体二极管。
模态6:
当i<0,S1、S2、S5导通,S3、S4、S6关断,复合式高性能三电平双降压式逆变器工作在模态6,其等效电路如图8所示。从图8可以看出,Vcc对C1与C2充电。i流经Cf、S2、La1、D6、S5、D2形成正向续流回路,i进一步反向下降,UAB=-0,S3和S4的电压应力为Vcc/2。同时Cf、L和R构成反向放电,Cf向负载供电;S5、D2、La2和D3形成滤波电感La2的续流通路,不通过性能较差的IGBT体二极管。
综上,从上述可得复合式高性能三电平双降压式逆变器的开关状态及其输出电压如表1所示。
表1 复合式高性能三电平双降压式逆变器开关管状态与输出电压
Figure BDA0002965207180000071
从表1可以看出,复合式高性能三电平双降压式逆变器的桥臂输出电压为Vcc、Vcc/2、0、-0、-Vcc/2以及-Vcc。其中0和-0输出表现为一个0电平,因此复合式高性能三电平双降压式逆变器输出电压为三电平。逆变器续流通路不通过性能较差的IGBT体二极管,减小了反向恢复损耗,可提高复合式高性能三电平双降压式逆变器可靠性和效率。
具体实施时,可采用图9所示的调制方法和图10所示的逻辑控制图实现功率开关管S1、功率开关管S2、功率开关管S3、功率开关管S4、功率开关管S5以及功率开关管S6的导通或关断。现有SPWM控制原理是用一个基准正弦波和一个三角载波进行交接,得到一个脉冲信号,通过这个脉冲信号来控制功率开关管的开关。而本申请的五电平逆变器需要将调制信号uc整流后与两个频率、幅值相等的三角载波VC1和VC2进行比较,从而得到两个脉冲信号A1和B1。同时用调制信号uc与零电压比较得到脉冲信号C1,如图9所示,然后用这3个脉冲信号A1、B1以及C1经过如图10所示的逻辑控制框图得到S1~S6的开关信号。
具体地,由表1可知,S1是在UAB=+Vcc或UAB=-0时导通,即:
Figure BDA0002965207180000072
Figure BDA0002965207180000073
同理,可知S4是在UAB=-Vcc或UAB=+0时导通,即
Figure BDA0002965207180000081
Figure BDA0002965207180000082
根据单极性调制特点可得:
S6=C1 (5)
Figure BDA0002965207180000083
根据上述分析,由A1、B1以及C1可得S1~S6的逻辑控制框图如图10所示。
进一步地,在本实施例中,为了验证复合式高性能三电平双降压式逆变器的正确性,搭建了基于MATLAB/simulink的电路仿真模型,Pw为输出功率,其它电路参数如表2所示。
表2 电路仿真参数
Figure BDA0002965207180000084
图11为输出电流iL及其FFT分析,从图中可以看出,iL为稳定正弦波形,总谐波畸变率THD为2.13%;图12为负载电压uL和iL的波形,从图中可以看出,uL和iL保持同相位,uL的幅值约为200V,iL的幅值约为5A。因此,本申请提出的复合式高性能三电平双降压式逆变器能实现稳定的逆变,且系统具有较高的功率因数和较低的THD。
复合式高性能三电平双降压式逆变器桥臂输出电压UAB的波形如图13所示,从图中可以看出,UAB为稳定的五电平,输出电压分别为200V,100V,0V,-100V,-200V。复合式高性能三电平双降压式逆变器续流二极管D3的仿真波形如图14所示,从图中可以看出,续流二极管的电流峰值达到了20A。若该电流通过性能较差的IGBT体二极管,会损坏IGBT。复合式高性能三电平双降压式逆变器续流回路不通过IGBT体二极管,续流二极管可通过选择高性能的二极管,这样即可提高逆变器的可靠性。
以上所述的具体实施方式,对本实用新型的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本实用新型的具体实施方式而已,并不用于限定本实用新型的保护范围,凡在本实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (1)

1.一种复合式高可靠性三电平双降压式逆变器,其特征在于,包括直流电压源Vcc、支撑电容C1、支撑电容C2、功率开关管S1、功率开关管S2、功率开关管S3、功率开关管S4、功率开关管S5、功率开关管S6、功率二极管D1、功率二极管D2、功率二极管D3、功率二极管D4、功率二极管D5、功率二极管D6、滤波电感La1、滤波电感La2、滤波电感L和滤波电容Cf以及负载电阻R;
其中,所述支撑电容C1的一端与所述直流电压源Vcc的正极连接,所述支撑电容C1的另一端与所述支撑电容C2的一端连接,所述支撑电容C2的另一端与所述直流电压源Vcc的负极连接;
所述功率开关管S1的集电极与所述直流电压源Vcc的正极连接,所述功率开关管S1的发射极与所述功率二极管D1的阳极连接,所述功率二极管D1的阴极与所述滤波电感La1的一端连接,所述滤波电感La1的另一端与所述功率开关管S2的集电极连接,所述功率开关管S2的发射极与所述功率开关管S3的集电极连接,所述功率开关管S3的发射极与所述功率开关管S4的集电极连接,所述功率开关管S4的发射极与所述直流电压源Vcc的负极连接;
所述功率二极管D6的阳极与所述功率二极管D1的阴极连接,所述功率二极管D6的阴极与所述功率开关管S1的集电极连接;所述功率二极管D5的阳极与所述功率开关管S3的发射极连接,所述功率二极管D5的阴极与所述功率二极管D4的阳极连接,所述功率二极管D4的阴极与所述功率开关管S2的集电极连接;
所述功率开关管S5的集电极与所述功率开关管S1的集电极连接,所述功率开关管S5的发射极与所述功率二极管D2的阳极连接,所述功率二极管D2的阴极与所述滤波电感La2的一端连接,所述滤波电感La2的另一端与所述功率开关管S6的集电极连接,所述功率开关管S6的发射极与所述功率开关管S4的发射极连接;
所述滤波电感L的一端与所述功率开关管S2的发射极连接,所述滤波电感L的另一端与所述负载电阻R的一端连接,所述负载电阻R的另一端与所述功率二极管D2的阴极连接;
所述滤波电容Cf的一端与所述功率开关管S2的发射极连接,所述滤波电容Cf的另一端与所述功率二极管D2的阴极连接;
所述功率二极管D3的阳极与所述功率开关管S6的集电极连接,所述功率二极管D3的阴极与所述功率开关管S5的集电极连接。
CN202120486341.XU 2021-03-08 2021-03-08 一种复合式高可靠性三电平双降压式逆变器 Expired - Fee Related CN214412605U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202120486341.XU CN214412605U (zh) 2021-03-08 2021-03-08 一种复合式高可靠性三电平双降压式逆变器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120486341.XU CN214412605U (zh) 2021-03-08 2021-03-08 一种复合式高可靠性三电平双降压式逆变器

Publications (1)

Publication Number Publication Date
CN214412605U true CN214412605U (zh) 2021-10-15

Family

ID=78028369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120486341.XU Expired - Fee Related CN214412605U (zh) 2021-03-08 2021-03-08 一种复合式高可靠性三电平双降压式逆变器

Country Status (1)

Country Link
CN (1) CN214412605U (zh)

Similar Documents

Publication Publication Date Title
CN110149065B (zh) 一种升降压开关电容多电平逆变器及其调制方法
CN214480329U (zh) 一种两级式三相双降压并网逆变器
CN111740625B (zh) 扩展多电平升压逆变拓扑及调制方法
CN110048629B (zh) 一种单输入开关电容多电平逆变器及其调制方法
CN108390584B (zh) 一种十开关箝位型三相非隔离光伏逆变器的控制方法
CN112290817B (zh) 扩展t型多电平变流拓扑及调制方法
CN110572063B (zh) 不对称输入多电平变流装置及控制方法
CN110572061B (zh) 一种混合t型多电平逆变装置及其控制方法
CN111740626A (zh) X型模块化扩展多电平变换器及其控制方法
CN113507228B (zh) 一种少开关、无漏电流单级升压dc/ac变换器及其控制方法
CN111740627B (zh) 非桥式多电平变换装置及其控制方法
CN112152489B (zh) 一种高低压直流双输出集成型三相pwm整流变换器及控制方法
CN111740734B (zh) 扩展型多输入多电平变换电路与控制方法
CN111740624B (zh) 高增益多电平dc/ac变流拓扑及方法
CN114268104A (zh) 一种新型无变压器三桥臂串联有源电压质量调节器及控制方法
CN112803821B (zh) 两级式三电平双降压光伏并网逆变器、控制方法及系统
CN117200602A (zh) 一种双模无漏电流非隔离型五电平单级升压并网逆变器
CN214412605U (zh) 一种复合式高可靠性三电平双降压式逆变器
CN111277160A (zh) 一种六开关功率解耦电路及其控制方法
CN112865580A (zh) 无重叠时间单电感电流逆变器及其控制方法和系统
CN112803811A (zh) 复合式三电平双降压式逆变器及其控制方法和系统
CN214544150U (zh) 一种三相高可靠性双降压式逆变器
CN213783159U (zh) 一种无重叠时间非隔离单电感电流型并网逆变器
CN105553316A (zh) 双功率通路三相交直流变换器
CN214707568U (zh) 一种六开关升压共地五电平逆变器装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211015

CF01 Termination of patent right due to non-payment of annual fee