CN207457889U - 基准电压发生器电路和电路系统 - Google Patents

基准电压发生器电路和电路系统 Download PDF

Info

Publication number
CN207457889U
CN207457889U CN201720805222.XU CN201720805222U CN207457889U CN 207457889 U CN207457889 U CN 207457889U CN 201720805222 U CN201720805222 U CN 201720805222U CN 207457889 U CN207457889 U CN 207457889U
Authority
CN
China
Prior art keywords
circuit
voltage
current
ptat
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201720805222.XU
Other languages
English (en)
Inventor
A·拉希里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics International NV
Original Assignee
STMicroelectronics International NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics International NV filed Critical STMicroelectronics International NV
Application granted granted Critical
Publication of CN207457889U publication Critical patent/CN207457889U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本申请涉及基准电压发生器电路和电路系统。一种基准电压发生器电路,包括:电路,该电路生成与绝对温度互补的(CTAT)电压以及绝对温度成比例型(PTAT)电流。输出电流电路从该PTAT电流中生成从第一节点灌入的灌PTAT电流以及被拉至第二节点的拉PTAT电流,其中,该灌PTAT电流与该拉PTAT电流是相等的。电阻器直接连接在该第一节点与该第二节点之间。分压器电路对该CTAT电压进行分压以生成施加到该第一节点的经分压的CTAT电压。该第二节点处的电压为分数带隙基准电压,该分数带隙基准电压等于该经分压的CTAT电压与该电阻器两端的与电阻器电流成比例的电压降之和,该电阻器电流等于该灌PTAT电流和该拉PTAT电流。

Description

基准电压发生器电路和电路系统
技术领域
本实用新型涉及一种用于在集成电路器件中生成基准电压的电路并且更具体地涉及一种用于生成小于带隙电压的基准电压的电路。
背景技术
带隙基准电压发生器电路在本领域中是众所周知的。这类电路被配置成用于生成约等于硅的带隙电压(Vbg)(即,零度开氏温度下1.205伏特)的基准电压。例如,从超过1.8伏特的电源电压生成这类电压是没有意义的。然而,现在,集成电路器件配备有远低于1.8伏特的电源电压。实际上,一些集成电路器件或集成电路器件中的电路部分可以用低至0.5伏特的输入电源电压进行供电。以这类低输入电源电压水平来操作模拟电路系统(比如带隙基准电压发生器电路)是一种挑战。
在本领域中进一步意识到的是,所需要的基准电压可以小于带隙电压(即,次带隙电压)并且具体地可以是带隙电压的整分数。例如,对于以低电源电压进行操作的模拟电路,基准电压必须低于电源电压。例如,以1.0伏特的低片上电源电压进行操作的模拟电路可以要求0.6伏特的基准电压,该基准电压可以作为带隙电压的整分数(1.205/2)被获得。
分数带隙基准电压发生器电路的示例为如在图1中所示出的所谓的Banba带隙基准电压发生器电路10。亦参见Banba等人,“CMOS Bandgap Reference Circuit with Sub-1-V Operation(利用Sub-1-V操作的CMOS带隙基准电路)”,IEEE固态电路期刊,第34卷,第670-674页,1999年5月。晶体管Q1的发射极区域比晶体管Q2的发射极区域大n倍。在常见配置中,n=8。晶体管Q1和晶体管Q2均被配置成二极管接法器件。运算放大器驱动晶体管M1和M2的栅极以促使运算放大器的反相输入端处的电压等于运算放大器的非反相输入端处的电压。在这些电压相等的情况下,电阻器R2中的电流I2与晶体管Q2的基极-发射极电压(Vbe)成比例(即,I2=Vbe/R2)。流过每个晶体管Q1和Q2的电流I1通过I1=VTln(n)/R1给出。因此,流过每个晶体管M1和M2的电流Im为Im=(VTln(n)/R1)+(Vbe/R2)。电流Im的第一分量与绝对温度成比例(PTAT)并且第二分量与绝对温度互补(CTAT)。因此,可以使电流Im与温度无关(即,具有零或近零温度系数)。使用由晶体管M3形成的电流镜电路来镜像此电流Im以生成温度无关的输出电流Io。输出电流Io流过电阻器R3以形成输出基准电压Vref(其中,Vref=(R3/R2)(VT(R2/R1)ln(n)+Vbe)。如果R3=R2/N,则生成分数带隙基准电压Vref=Vbg/N。更确切地,电阻比R2/R1被选择成使得PTAT电压与温度的斜率抵消CTAT电压Vbe与温度的斜率。通常,如果n=8,则R2/R1约等于9-10,以便平衡斜率并且获得补偿电压。这在数学上可以表示为:R2*log(n)/R1=-(dVbe/dT)/(dVT/dT),其中,d/dT是关于温度求导。
对于低功率应用,重要的是,基准电压发生器电路10中的电流较小。这需要使用占用相应地大量的集成电路芯片区域的大电阻值电阻器。因而本领域中需要支持低电流的低供电操作(即,低功率操作)和减少的集成电路区域占用的分数带隙基准电压发生器电路。
实用新型内容
本申请的目的就在于实现支持低电流的低供电操作和减少的集成电路区域占用的分数带隙基准电压发生器电路以及相应系统。
在实施例中,一种基准电压发生器电路包括:电流发生器电路,该电流发生器电路被配置成用于生成与绝对温度成比例的PTAT电流和与绝对温度互补的CTAT电压;分压器电路,该分压器电路被配置成用于对该CTAT电压进行分压以在第一节点处生成经分压的CTAT电压;电阻器,该电阻器连接在第二节点与该第一节点之间;以及输出电流电路,该输出电流电路被配置成用于从该PTAT电流中生成拉PTAT电流和灌PTAT电流,其中,该拉PTAT电流与该灌PTAT电流是相等的,并且其中,该拉PTAT电流被施加到该第二节点并且该灌PTAT电流被施加到该第一节点;其中,该第二节点处的电压为分数带隙基准电压,该分数带隙基准电压等于该经分压的CTAT电压与该电阻器两端的与该PTAT电流成比例的电压降之和。
在一个实施例中,所述分压器电路将所述CTAT电压除以整数值N,并且其中,所述分数带隙基准电压等于带隙电压除以N。
在一个实施例中,所述电阻器的电阻值被设置为所述整数值N的函数。
在一个实施例中,所述电流发生器电路包括具有第一电阻值的第一电阻器并且所述PTAT电流的幅值被设置为所述第一电阻值的函数,并且其中,所述电阻器具有第二电阻值,并且在所述电阻器两端出现PTAT电压降以被加到所述经分压的CTAT电压上从而形成所述分数带隙基准电压。
在一个实施例中,所述输出电流电路包括:第一电流镜电路,所述第一电流镜电路被配置成用于镜像所述PTAT电流以生成所述拉PTAT电流和输出电流;以及第二电流镜电路,所述第二电流镜电路被配置成用于镜像所述输出电流以生成所述灌PTAT电流。
在一个实施例中,所述分压器电路包括:输入晶体管,所述输入晶体管具有被耦合成用于接收所述CTAT电压的栅极端子;以及二极管接法晶体管,所述二极管接法晶体管的源极-漏极路径与所述输入晶体管的源极-漏极路径串联耦合,其中,所述经分压的CTAT电压在所述二极管接法晶体管的栅极端子处生成。
在一个实施例中,所述分压器电路进一步包括至少一个另外的二极管接法晶体管,所述至少一个另外的二极管接法晶体管的源极-漏极路径串联耦合在所述输入晶体管与所述二极管接法晶体管之间。
在一个实施例中,所述分压器电路将所述CTAT电压除以整数值N,并且其中,N等于串联耦合在所述输入晶体管与所述二极管接法晶体管之间的另外的二极管接法晶体管数量加一。
在实施例中,一种基准电压发生器电路包括:电路,该电路被配置成用于生成与绝对温度互补的CTAT电压以及绝对温度成比例型PTAT电流;输出电流电路,该输出电流电路被配置成用于从该PTAT电流中生成从第一节点灌入的灌PTAT电流以及被拉至第二节点的拉PTAT电流,其中,该灌PTAT电流与该拉PTAT电流是相等的;电阻器,该电阻器直接连接在该第一节点与该第二节点之间;以及分压器电路,该分压器电路被配置成用于对该CTAT电压进行分压以生成施加到该第一节点的经分压的CTAT电压;其中,该第二节点处的电压为次带隙基准电压,该次带隙基准电压等于该经分压的CTAT电压与该电阻器两端的与电阻器电流成比例的电压降之和,该电阻器电流等于该灌PTAT电流和该拉PTAT电流。
在一个实施例中,所述分压器电路将所述CTAT电压除以整数值N,并且其中,所述次带隙基准电压等于带隙电压除以N。
在一个实施例中,所述电阻器的电阻值被设置为所述整数值N的函数。
在一个实施例中,所述电路包括与第一双极晶体管串联耦合的具有第一电阻值的第一电阻器,并且其中,所述CTAT电压为耦合至所述第一双极晶体管的第二双极晶体管基极的基极-发射极电压,并且其中,所述电阻器具有第二电阻值并且在所述电阻器两端出现PTAT电压降以被加到所述经分压的CTAT电压上从而形成所述次带隙基准电压。
在一个实施例中,所述输出电流电路包括:第一电流镜电路,所述第一电流镜电路被配置成用于镜像所述PTAT电流以生成所述拉PTAT电流和输出电流;以及第二电流镜电路,所述第二电流镜电路被配置成用于镜像所述输出电流以生成所述灌PTAT电流。
在一个实施例中,所述分压器电路包括:输入晶体管,所述输入晶体管具有被耦合成用于接收所述CTAT电压的栅极端子;以及二极管接法晶体管,所述二极管接法晶体管的源极-漏极路径与所述输入晶体管的源极-漏极路径串联耦合,其中,所述经分压的CTAT电压在所述二极管接法晶体管的栅极端子处生成。
在实施例中,一种电路系统,包括:输入端,该输入端被配置成用于接收小于带隙电压的输入电源电压;时钟电路,该时钟电路由该输入电源电压供电并且被配置成用于生成时钟信号;电荷泵电路,该电荷泵电路被配置成用于接收该输入电源电压和该时钟信号并且生成小于该带隙电压的低电源电压;以及基准电压发生器电路,该基准电压发生器电路由该低电源电压供电并且被配置成用于生成基准电压,该基准电压超过该输入电源电压并且小于该低电源电压。该基准电压发生器电路包括:电路,该电路被配置成用于生成与绝对温度互补的CTAT电压以及绝对温度成比例型PTAT电流;输出电流电路,该输出电流电路被配置成用于从该PTAT电流中生成从第一节点灌入的灌PTAT电流以及被拉至第二节点的拉PTAT电流,其中,该灌PTAT电流与该拉PTAT电流是相等的;电阻器,该电阻器直接连接在该第一节点与该第二节点之间;以及分压器电路,该分压器电路被配置成用于对该CTAT电压进行分压以生成施加到该第一节点的经分压的CTAT电压;其中,该基准电压在该第二节点处输出并且等于该经分压的CTAT电压与该电阻器两端的与该PTAT电流成比例的电压降之和。
根据本申请的方案,可以实现支持低电流的低供电操作和减少的集成电路区域占用的分数带隙基准电压发生器电路和相应系统。
附图说明
为了更好地理解这些实施例,现在将仅通过举例的方式参照附图,在附图中:
图1是现有技术中的分数带隙基准电压发生器电路的电路图;
图2和图3是低功率低区域分数带隙基准电压发生器电路的电路图;以及
图4是包括图2或图3的低功率低区域分数带隙基准电压发生器电路的集成电路器件的电路图。
具体实施方式
现在参照示出了低功率低区域分数带隙基准电压发生器电路20的电路图的图2。
电路20包括绝对温度成比例型(PTAT)电流发生器电路22。电路22包括两个双极晶体管Q1和Q2。晶体管Q2的发射极区域比晶体管Q1的发射极区域大n倍。在实现方式中,n=4或n=8,例如,其中,优选相对较小的n值。晶体管Q1和晶体管Q2均被配置成二极管接法器件,其基极端子和集电极端子耦合至地(Gnd)。运算放大器包括连接至晶体管Q1的发射极端子的反相输入端(-)和通过电阻器R1耦合至晶体管Q2的发射极端子的非反相输入端(+)。p沟道MOSFET器件对(晶体管M1和M2)通过公共栅极端子连接至彼此并且进一步地使其源极端子连接至电源电压(Vdd)节点。晶体管M1的漏极端子在运算放大器的反相输入端处连接至晶体管Q1的发射极端子。晶体管M2的漏极端子在运算放大器的非反相输入端处连接至电阻器R1。运算放大器的输出端驱动晶体管M1和M2的栅极端子以促使运算放大器的反相输入端处的电压等于运算放大器的非反相输入端处的电压。在此条件下,这些相等的输入电压进一步等于晶体管Q1的基极-发射极电压(Vbe),并且因此Vbe电压存在于来自电路22的电压输出处在节点24处。流过电阻器R1的电流通过VTln(n)/R1给出并且等于流过晶体管M2的电流Im。此电流Im是PTAT电流。然而,节点24处的电压(V24)源自Vbe电压并且因此是与绝对温度互补的(CTAT)。
电路20进一步包括被配置成用于将节点24处的电压除以整数值N的电压分压器电路26。电路26包括与(N-1)个二极管接法n沟道MOSFET器件(晶体管M8(1)-M8(N-1))串联耦合的输入n沟道MOSFET器件(晶体管M7)。晶体管M7-M8(N-1)的大小相等并且其源极-漏极路径在电源节点与地之间彼此串联连接。每个二极管接法晶体管的栅极端子耦合至其漏极端子。电压分压器电路26用于将节点24处的电压(V24=Vbe)除以N并且输出节点26处的经分压的电压(V26=V24/N=Vbe/N)。作为示例,通过使输入晶体管M7与仅一个二极管接法晶体管M8串联连接,电压分压器电路26可以被配置成用于按照N=2来进行分压(参见,图3)。按照N=3进行分压的实现方式将会利用输入晶体管M7和串联连接的两个二极管接法晶体管M8(1)和M8(2)。因为节点24处的输入电压(V24=Vbe)是CTAT,所以节点26处的电压(V26=Vbe/N)也是CTAT。
还包括输出电流电路。通过输出电流电路的电流镜电路30提供从PTAT电流发生器电路22输出的PTAT电流,该输出电流电路包括第一p沟道MOSFET器件(晶体管M3),该第一p沟道MOSFET器件具有耦合至电压供应节点的源极端子以及耦合至PTAT电流发生器电路22的晶体管M1和M2的栅极端子的栅极端子。晶体管M3镜像电流Im以从其漏极端子中拉出第一输出电流Io1。
电流镜电路30进一步包括第二p沟道MOSFET器件(晶体管M4),该第二p沟道MOSFET器件具有耦合至电压供应节点的源极端子以及耦合至PTAT电流发生器电路22的晶体管M1和M2的栅极端子的栅极端子。晶体管M4也镜像电流Im以从其漏极端子中拉出第二输出电流Io2。
晶体管M3和M4是优选地匹配的器件,并且因此输出电流Io1和Io2彼此相等(Io1=Io2)。
电路20的输出电流电路进一步包括由第一n沟道MOSFET器件(晶体管M5)和第二n沟道MOSFET器件(晶体管M6)形成的电流镜电路40。晶体管M5具有耦合至地的源极端子以及耦合至其漏极端子并且进一步耦合至晶体管M4的漏极端子的栅极端子。晶体管M6具有耦合至地的源极端子以及耦合至晶体管M5的栅极端子的栅极端子。电流镜电路40在晶体管M5的漏极处的输入端接收第二输出电流Io2并且电流镜电路40在晶体管M6的漏极处的输出端生成灌电流Is。晶体管M5和M6是优选地匹配的器件,并且因此灌电流Is等于接收到的输出电流Io2(Io2=Is=Io1=Im)。晶体管M6的漏极端子在电压分压器电路26的输出端处连接至节点26。
电阻器R2具有在节点34处连接至晶体管M3的漏极端子的第一端子以及连接至节点26的第二端子(在电压分压器电路26和电流镜电路40的公共输出端处)。电流镜电路30和40进行操作以确保将相同的幅值电流施加到所应用的电阻器R2的两个端子(即,在节点34处将为输出电流Io1的源极电流施加到电阻器R2的第一端子并且在节点24处将灌电流Is施加到电阻器R2的第二端子,其中Io1=Is=Im)。在此操作的情况下,PTAT电流Im流过电阻器R2以生成电阻器R2两端的等于R2*Im的PTAT电压降。相等的源极电流Io1和灌电流Is分别进一步确保了节点26处的经分压的电压(V26)维持如通过分压器电路26的操作设置的Vbe电压的一小部分。
因此在节点34处在晶体管M3的漏极处生成了输出基准电压Vref。此输出基准电压Vref等于电阻器R2两端的电压降与节点26处的经分压的电压(V26)之和:Vref=Im*R2+V26。因为电流Im是PTAT,所以电阻器R2两端的电压降也是PTAT。然而,节点26处的经分压的电压(V26)是CTAT。因此,可以使输出基准电压Vref与温度无关(即,具有零或近零温度系数)并且优选地是次带隙(即,<Vbg)电压。在适当地选择了R1和R2的情况下,Vref=Vbg/N。更确切地,电阻比R2/R1被选择成使得电阻器R2两端的PTAT电压与温度的斜率抵消Vbe/N的CTAT电压与温度的斜率以获得节点34处的分数带隙电压。这在数学上可以表示为:R2*log(n)/R1=-(dVbe/dT)/(N*dVT/dT),其中,d/dT关于温度求导。
在Vref=(R2*Io1)+V26的情况下,其中,Io1=Im;
V26=V24/N=Vbe/N
因此,Vref=(R2*Im)+Vbe/N。
Im=VTln(n)/R1
因此,Vref=((R2/R1)VTln(n))+Vbe/N。
在如上文所讨论的那样相对于N适当地选择了R1和R2的情况下,Vref=Vbg/N。
将注意的是,图2的电路20包括仅两个电阻器并且因此将比图1的电路10占用更小的集成电路区域。
为了针对电路20中的电流镜电路系统的操作确保适当的净空,电源电压Vdd应优选地等于或超过1.0伏特。在一些集成电路器件和系统中,非常低的输入电源电压(Vin)(大约0.5伏特)被施加到集成电路芯片上。在这类情况下,集成电路芯片可以包括电压升压电路(比如电荷泵电路),以接收非常低的输入电源电压Vin并且响应于时钟电路所生成的时钟信号生成电路20的电源电压Vdd。这类配置示出在图4中。
前面的描述已经通过示例性和非限定性的示例提供了对本实用新型的示例性实施例的全面且信息性的描述。然而,当结合附图和所附权利要求书进行阅读时,鉴于前面的描述,各种修改和适配对于相关领域技术人员而言可以变得显而易见。然而,本实用新型的教导的所有这样和相似的修改仍将落入如在所附权利要求书中限定的本实用新型的范围之内。

Claims (15)

1.一种基准电压发生器电路,其特征在于,包括:
电流发生器电路,所述电流发生器电路被配置成用于生成与绝对温度成比例的PTAT电流以及与绝对温度互补的CTAT电压;
分压器电路,所述分压器电路被配置成用于对所述CTAT电压进行分压以在第一节点处生成经分压的CTAT电压;
电阻器,所述电阻器连接在第二节点与所述第一节点之间;以及
输出电流电路,所述输出电流电路被配置成用于从所述PTAT电流中生成拉PTAT电流和灌PTAT电流,其中,所述拉PTAT电流与所述灌PTAT电流是相等的,并且其中,所述拉PTAT电流被施加到所述第二节点并且所述灌PTAT电流被施加到所述第一节点;
其中,所述第二节点处的电压为分数带隙基准电压,所述分数带隙基准电压等于所述经分压的CTAT电压与所述电阻器两端的与所述PTAT电流成比例的电压降之和。
2.如权利要求1所述的基准电压发生器电路,其特征在于,所述分压器电路将所述CTAT电压除以整数值N,并且其中,所述分数带隙基准电压等于带隙电压除以N。
3.如权利要求2所述的基准电压发生器电路,其特征在于,所述电阻器的电阻值被设置为所述整数值N的函数。
4.如权利要求3所述的基准电压发生器电路,其特征在于,所述电流发生器电路包括具有第一电阻值的第一电阻器并且所述PTAT电流的幅值被设置为所述第一电阻值的函数,并且其中,所述电阻器具有第二电阻值,并且在所述电阻器两端出现PTAT电压降以被加到所述经分压的CTAT电压上从而形成所述分数带隙基准电压。
5.如权利要求1所述的基准电压发生器电路,其特征在于,所述输出电流电路包括:
第一电流镜电路,所述第一电流镜电路被配置成用于镜像所述PTAT电流以生成所述拉PTAT电流和输出电流;以及
第二电流镜电路,所述第二电流镜电路被配置成用于镜像所述输出电流以生成所述灌PTAT电流。
6.如权利要求1所述的基准电压发生器电路,其特征在于,所述分压器电路包括:
输入晶体管,所述输入晶体管具有被耦合成用于接收所述CTAT电压的栅极端子;以及
二极管接法晶体管,所述二极管接法晶体管的源极-漏极路径与所述输入晶体管的源极-漏极路径串联耦合,其中,所述经分压的CTAT电压在所述二极管接法晶体管的栅极端子处生成。
7.如权利要求6所述的基准电压发生器电路,其特征在于,所述分压器电路进一步包括至少一个另外的二极管接法晶体管,所述至少一个另外的二极管接法晶体管的源极-漏极路径串联耦合在所述输入晶体管与所述二极管接法晶体管之间。
8.如权利要求7所述的基准电压发生器电路,其特征在于,所述分压器电路将所述CTAT电压除以整数值N,并且其中,N等于串联耦合在所述输入晶体管与所述二极管接法晶体管之间的另外的二极管接法晶体管数量加一。
9.一种基准电压发生器电路,其特征在于,包括:
电路,所述电路被配置成用于生成与绝对温度互补的CTAT电压以及绝对温度成比例型PTAT电流;
输出电流电路,所述输出电流电路被配置成用于从所述PTAT电流中生成从第一节点灌入的灌PTAT电流以及被拉至第二节点的拉PTAT电流,其中,所述灌PTAT电流与所述拉PTAT电流是相等的;
电阻器,所述电阻器直接连接在所述第一节点与所述第二节点之间;以及
分压器电路,所述分压器电路被配置成用于对所述CTAT电压进行分压以生成施加到所述第一节点的经分压的CTAT电压;
其中,所述第二节点处的电压为次带隙基准电压,所述次带隙基准电压等于所述经分压的CTAT电压与所述电阻器两端的与电阻器电流成比例的电压降之和,所述电阻器电流等于所述灌PTAT电流和所述拉PTAT电流。
10.如权利要求9所述的基准电压发生器电路,其特征在于,所述分压器电路将所述CTAT电压除以整数值N,并且其中,所述次带隙基准电压等于带隙电压除以N。
11.如权利要求10所述的基准电压发生器电路,其特征在于,所述电阻器的电阻值被设置为所述整数值N的函数。
12.如权利要求10所述的基准电压发生器电路,其特征在于,所述电路包括与第一双极晶体管串联耦合的具有第一电阻值的第一电阻器,并且其中,所述CTAT电压为耦合至所述第一双极晶体管的第二双极晶体管基极的基极-发射极电压,并且其中,所述电阻器具有第二电阻值并且在所述电阻器两端出现PTAT电压降以被加到所述经分压的CTAT电压上从而形成所述次带隙基准电压。
13.如权利要求9所述的基准电压发生器电路,其特征在于,所述输出电流电路包括:
第一电流镜电路,所述第一电流镜电路被配置成用于镜像所述PTAT电流以生成所述拉PTAT电流和输出电流;以及
第二电流镜电路,所述第二电流镜电路被配置成用于镜像所述输出电流以生成所述灌PTAT电流。
14.如权利要求9所述的基准电压发生器电路,其特征在于,所述分压器电路包括:
输入晶体管,所述输入晶体管具有被耦合成用于接收所述CTAT电压的栅极端子;以及
二极管接法晶体管,所述二极管接法晶体管的源极-漏极路径与所述输入晶体管的源极-漏极路径串联耦合,其中,所述经分压的CTAT电压在所述二极管接法晶体管的栅极端子处生成。
15.一种电路系统,其特征在于,包括:
输入端,所述输入端被配置成用于接收小于带隙电压的输入电源电压;
时钟电路,所述时钟电路由所述输入电源电压供电并且被配置成用于生成时钟信号;
电荷泵电路,所述电荷泵电路被配置成用于接收所述输入电源电压和所述时钟信号并且生成小于所述带隙电压的低电源电压;以及
基准电压发生器电路,所述基准电压发生器电路由所述低电源电压供电并且被配置成用于生成基准电压,所述基准电压超过所述输入电源电压并且小于所述低电源电压,所述基准电压发生器电路包括:
电路,所述电路被配置成用于生成与绝对温度互补的CTAT电压以及绝对温度成比例型PTAT电流;
输出电流电路,所述输出电流电路被配置成用于从所述PTAT电流中生成从第一节点灌入的灌PTAT电流以及被拉至第二节点的拉PTAT电流,其中,所述灌PTAT电流与所述拉PTAT电流是相等的;
电阻器,所述电阻器直接连接在所述第一节点与所述第二节点之间;以及
分压器电路,所述分压器电路被配置成用于对所述CTAT电压进行分压以生成施加到所述第一节点的经分压的CTAT电压;
其中,所述基准电压在所述第二节点处输出并且等于所述经分压的CTAT电压与所述电阻器两端的与所述PTAT电流成比例的电压降之和。
CN201720805222.XU 2016-07-12 2017-07-05 基准电压发生器电路和电路系统 Withdrawn - After Issue CN207457889U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/207,732 US9898030B2 (en) 2016-07-12 2016-07-12 Fractional bandgap reference voltage generator
US15/207,732 2016-07-12

Publications (1)

Publication Number Publication Date
CN207457889U true CN207457889U (zh) 2018-06-05

Family

ID=60940521

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710541792.7A Active CN107608444B (zh) 2016-07-12 2017-07-05 基准电压发生器电路和电子系统
CN201720805222.XU Withdrawn - After Issue CN207457889U (zh) 2016-07-12 2017-07-05 基准电压发生器电路和电路系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710541792.7A Active CN107608444B (zh) 2016-07-12 2017-07-05 基准电压发生器电路和电子系统

Country Status (2)

Country Link
US (2) US9898030B2 (zh)
CN (2) CN107608444B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107608444A (zh) * 2016-07-12 2018-01-19 意法半导体国际有限公司 分数带隙基准电压发生器
CN112835409A (zh) * 2019-11-25 2021-05-25 三星电子株式会社 带隙基准电压生成电路

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391518B1 (ko) * 2015-09-15 2022-04-27 삼성전자주식회사 기준 전류 발생 회로와 이를 구비하는 반도체 집적 회로
US10222817B1 (en) * 2017-09-29 2019-03-05 Cavium, Llc Method and circuit for low voltage current-mode bandgap
KR102518184B1 (ko) * 2017-11-21 2023-04-07 현대자동차주식회사 차량용 고전압배터리의 냉난방시스템
US10061340B1 (en) * 2018-01-24 2018-08-28 Invecas, Inc. Bandgap reference voltage generator
CN108279730A (zh) * 2018-01-26 2018-07-13 武汉新芯集成电路制造有限公司 带隙基准电路
CN108334154B (zh) * 2018-03-07 2020-08-11 西安微电子技术研究所 一种由低值基准生成高值基准的电路结构
US11112816B2 (en) * 2018-04-22 2021-09-07 Birad—Research & Development Company Ltd. Miniaturized digital temperature sensor
US11137788B2 (en) 2018-09-04 2021-10-05 Stmicroelectronics International N.V. Sub-bandgap compensated reference voltage generation circuit
US10924112B2 (en) * 2019-04-11 2021-02-16 Ememory Technology Inc. Bandgap reference circuit
US11392156B2 (en) * 2019-12-24 2022-07-19 Shenzhen GOODIX Technology Co., Ltd. Voltage generator with multiple voltage vs. temperature slope domains
US11086347B1 (en) * 2020-02-10 2021-08-10 ZJW Microelectronics Limited Bandgap reference circuit and electronic device
US11327514B2 (en) * 2020-03-26 2022-05-10 Stmicroelectronics (Grenoble 2) Sas Device for providing a current
CN112506262A (zh) * 2020-12-29 2021-03-16 上海华力微电子有限公司 高利用率的带隙基准电路
US11449088B2 (en) * 2021-02-10 2022-09-20 Nxp B.V. Bandgap reference voltage generator with feedback circuitry

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087820A (en) * 1999-03-09 2000-07-11 Siemens Aktiengesellschaft Current source
US6531857B2 (en) * 2000-11-09 2003-03-11 Agere Systems, Inc. Low voltage bandgap reference circuit
US6788041B2 (en) * 2001-12-06 2004-09-07 Skyworks Solutions Inc Low power bandgap circuit
US7113025B2 (en) * 2004-04-16 2006-09-26 Raum Technology Corp. Low-voltage bandgap voltage reference circuit
US7224210B2 (en) 2004-06-25 2007-05-29 Silicon Laboratories Inc. Voltage reference generator circuit subtracting CTAT current from PTAT current
US7780346B2 (en) * 2007-10-31 2010-08-24 Texas Instruments Incorporated Methods and apparatus for a fully isolated NPN based temperature detector
KR100957228B1 (ko) * 2007-11-08 2010-05-11 주식회사 하이닉스반도체 반도체 소자의 밴드갭 기준전압 발생회로
US7863883B2 (en) * 2008-04-18 2011-01-04 Nanya Technology Corp. Low-voltage current reference and method thereof
US9218015B2 (en) * 2009-03-31 2015-12-22 Analog Devices, Inc. Method and circuit for low power voltage reference and bias current generator
US8704588B2 (en) * 2009-10-30 2014-04-22 Stmicroelectronics S.R.L. Circuit for generating a reference voltage
CN102904421B (zh) * 2012-09-24 2015-01-28 重庆西南集成电路设计有限责任公司 整流二极管替代电路
US9122290B2 (en) * 2013-03-15 2015-09-01 Intel Deutschland Gmbh Bandgap reference circuit
CN103412595A (zh) * 2013-06-20 2013-11-27 中国矿业大学 一种基于ptat电流的低电源依赖性带隙基准电压电路设计
US9158320B1 (en) * 2014-08-07 2015-10-13 Psikick, Inc. Methods and apparatus for low input voltage bandgap reference architecture and circuits
US10151644B2 (en) * 2015-03-13 2018-12-11 Taiwan Semiconductor Manufacturing Company Limited Combination current generator configured to selectively generate one of a PTAT and a CTAT current
CN104714594B (zh) * 2015-03-27 2016-03-23 西安紫光国芯半导体有限公司 一种带隙基准的启动电路
US20170255220A1 (en) * 2016-03-02 2017-09-07 Qualcomm Incorporated Crystal-less clock that is invariant with process, supply voltage, and temperature
US9898030B2 (en) * 2016-07-12 2018-02-20 Stmicroelectronics International N.V. Fractional bandgap reference voltage generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107608444A (zh) * 2016-07-12 2018-01-19 意法半导体国际有限公司 分数带隙基准电压发生器
CN107608444B (zh) * 2016-07-12 2020-03-17 意法半导体国际有限公司 基准电压发生器电路和电子系统
CN112835409A (zh) * 2019-11-25 2021-05-25 三星电子株式会社 带隙基准电压生成电路
CN112835409B (zh) * 2019-11-25 2024-04-16 三星电子株式会社 带隙基准电压生成电路

Also Published As

Publication number Publication date
US9898030B2 (en) 2018-02-20
US20180129239A1 (en) 2018-05-10
US10222819B2 (en) 2019-03-05
CN107608444A (zh) 2018-01-19
CN107608444B (zh) 2020-03-17
US20180017986A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
CN207457889U (zh) 基准电压发生器电路和电路系统
CN101349928B (zh) 超低电压次带隙电压参考产生器
CN101685317B (zh) 带隙基准电压电路
US8159206B2 (en) Voltage reference circuit based on 3-transistor bandgap cell
US11137788B2 (en) Sub-bandgap compensated reference voltage generation circuit
CN107608441B (zh) 一种高性能基准电压源
CN103760946A (zh) 集成电路
US10496122B1 (en) Reference voltage generator with regulator system
CN102841629A (zh) 一种BiCMOS电流型基准电路
CN106055002A (zh) 低压输出的带隙基准电路
CN108334144A (zh) 一种高性能基准电压源及其实现方法
CN110377101A (zh) 齐纳二极管电压参考电路
CN108415500A (zh) 低电压锁定电路及其整合参考电压产生电路的装置
CN103365330A (zh) 参考电压/电流产生装置
CN102645947B (zh) 具备电压生成电路的半导体装置
CN108227809B (zh) 一种基于亚阈区mos分压的高电源抑制比基准电路
US20130265083A1 (en) Voltage and current reference generator
JP2009251877A (ja) 基準電圧回路
CN109240407A (zh) 一种基准源
CN108664068A (zh) 一种应用于低电源电压的分数式带隙基准电路
US20100102795A1 (en) Bandgap voltage reference circuit
US20130321068A1 (en) Circuit for generation of an electric current with a configurable value
CN105159381B (zh) 一种具有指数补偿特性的带隙基准电压源
CN108196615A (zh) 一种高精度、低功耗电源装置
CN108205349A (zh) 一种带隙基准电路

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20180605

Effective date of abandoning: 20200317

AV01 Patent right actively abandoned