CN205983278U - 一种高精度低温漂带隙基准电压源 - Google Patents

一种高精度低温漂带隙基准电压源 Download PDF

Info

Publication number
CN205983278U
CN205983278U CN201620808810.4U CN201620808810U CN205983278U CN 205983278 U CN205983278 U CN 205983278U CN 201620808810 U CN201620808810 U CN 201620808810U CN 205983278 U CN205983278 U CN 205983278U
Authority
CN
China
Prior art keywords
drain electrode
node
grid
connects
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201620808810.4U
Other languages
English (en)
Inventor
白涛
刘小淮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Electronic Research Institute Anhui Co., Ltd.
Original Assignee
North Electronic Research Institute Anhui Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Electronic Research Institute Anhui Co., Ltd. filed Critical North Electronic Research Institute Anhui Co., Ltd.
Priority to CN201620808810.4U priority Critical patent/CN205983278U/zh
Application granted granted Critical
Publication of CN205983278U publication Critical patent/CN205983278U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型公开了一种高精度低温漂带隙基准电压源,正温度系数电流产生电路产生与绝对温度成正比的电流;负温度系数电流产生电路产生与绝对温度成反比的电流;2次温度探测与补偿电路,通过对正温度系数电流与负温度系数电流的相加补偿,使带隙基准在工作温度区间得到三个以上的温度拐点;启动电路,在电源上电过程中驱动正温度系数电流产生电路和负温度系数电流产生电路摆脱简并偏置点,建立正常工作点;电流求和电路,产生带隙基准电压。本实用新型的带隙基准电压源,引入2个温控电流比较器来实现多次温度补偿,在全温度范围内得到5个温度拐点,无需额外的偏置电路;无需运算放大器对电压钳位,降低了电路复杂程度。

Description

一种高精度低温漂带隙基准电压源
技术领域
本实用新型属于集成电路设计领域,尤其涉及高精度带隙基准电压源电路。
背景技术
很多高精度的电路诸如模数、数模转换器,锁相环、电源管理系统等都需要低温漂的带隙基准源作为参考电压使用。传统带隙电压电路通常采用一阶温度补偿即对BE结温度系数的线性补偿,得到一个温度拐点;或二阶曲率温度补偿即在一阶补偿的基础上增加对BE中的温度系数的平方项补偿,温度拐点在2~3个;但补偿后的带隙基准温漂受加工工艺影响较大,且温度范围较窄,很难满足一些对应用温度范围具有较宽要求的领域;一些基于诸如双极和薄膜电阻等工艺的带隙基准源电路可以实现几个ppm的温漂,但与标准CMOS工艺不兼容,不能实现全片内集成。
实用新型内容
本实用新型所要解决的技术问题是提供一种高精度低温漂带隙基准电压源,基于标准CMOS工艺实现,整个电路无需额外的偏置电路;无需运算放大器对电压钳位,可降低电路复杂程度。
为解决上述技术问题,本实用新型采用以下技术方案:
一种高精度低温漂带隙基准电压源,其特征是,包括:
正温度系数电流产生电路,产生与绝对温度成正比的电流IPTAT
负温度系数电流产生电路,产生与绝对温度成反比的电流ICTAT
2次温度探测与补偿电路,通过对正温度系数电流与负温度系数电流的相加补偿,使带隙基准在工作温度区间得到三个以上的温度拐点;
启动电路,在电源上电过程中驱动正温度系数电流产生电路和负温度系数电流产生电路摆脱简并偏置点,建立正常工作点;
电流求和电路,对正温度系数电流与负温度系数电流的电流求和,产生带隙基准电压Vref。
正温度系数电流产生电路包括由MOS管M1、M2、M3和M4构成的电流镜,电流镜对应由MOS管M5、M6、M7和M8构成负反馈钳位,使电流镜的节点3和节点4的电压相等。
正温度系数电流产生电路包括MOS管M1、M2、M3、M4、M5、M6、M7、M8和PNP管Q1、Q2及电阻R1;
MOS管M1、M2、M5和M6的源极接电源VDD;M1、M2的栅极及M2的漏极共连,M1、M2的漏极分别连接M3、M4的漏极,M3的栅极连接M8的栅极和漏极,M4的栅极连接M7的栅极和漏极形成节点11;M3的源极与M7的源极、电阻R1的一端共接形成电流镜节点3,M4的源极与M8的源极、PNP管Q2的发射极共接形成电流镜节点4;电阻R1的另一端连接PNP管Q1的发射极,PNP管Q1的集电极接地;PNP管Q1的基极与PNP管Q2的基极共连接地,PNP管Q2的集电极接地;M7、M8的漏极分别与M5、M6的漏极连接;M5、M6的栅极与M1的漏极共连形成节点1。
负温度系数电流产生电路包括由MOS管M1A、M2A、M3A和M4A构成的电流镜,电流镜对应由MOS管M5A、M6A、M7A和M8A构成负反馈钳位,使电流镜的节点5和节点4的电压相等。
负温度系数电流产生电路包括M1A、M2A、M3A、M4A、M5A、M6A、M7A、M8A和电阻R2;
MOS管M1A、M2A、M5A和M6A的源极接电源VDD;M1A、M2A的栅极及M2A的漏极共连,M1A、M2A的漏极分别连接M3A、M4A的漏极,M3A、M4A的栅极分别连接M8AA、M7A的栅极和漏极,M3A的源极与M7A的源极、电阻R2的一端共接形成电流镜节点5,M4A的源极与M8A的源极共接形成电流镜节点4;电阻R2的另一端接地;M7A、M8AA的漏极分别与M5A、M6A的漏极连接;M5A、M6A的栅极与M1A的漏极共接形成节点2。
2次温度探测与补偿电路包括MOS管M11、M12、M13、M14、M15、M16、M17、M18、M19和M20;
M11、M13、M14、M15、M17、M18和M19源极接电源VDD;M11的栅极连接至节点1,M11的漏极连接至M12的漏极与栅极形成节点6;M13的栅极连接至节点2,M13的漏极与M14的漏极和栅极、M15的栅极、M16的漏极共连形成节点7;M17的栅极连接至节点2,M17的漏极与M18的漏极和栅极、M19的栅极、M20的漏极共连形成节点8;M15的漏极与M19的漏极共连形成节点10;M12、M16、M20的源极共连至地。
启动电路包括MOS管M21、M22、M23和M24;
M21的源极接电源VDD,M21的栅极接地,M21的漏极与M22的漏极、M23的栅极、M24的栅极共连形成节点12;M22的栅极连接至节点11;M23的漏极连接至节点1;M24的漏极连接至节点2;M22、M23和M24的源极接地。
电流求和电路包括MOS管M9、M10、电阻R3、电阻R4、电阻R5;
M9、M10的源极接电源VDD;M9、M10的栅极分别连接至节点2和节点1;M10的漏极与电阻R3一端共接形成带隙基准电压Vref;电阻R3另一端与M9的漏极、电阻R4的一端共接形成节点9;电阻R4的另一端与电阻R5的一端共接形成节点10;电阻R5的另一端接地。
本实用新型所达到的有益效果:
本实用新型的基于标准CMOS工艺实现的高精度低温漂带隙基准电压源,引入2个温控电流比较器来实现多次温度补偿,在全温度范围内得到5个温度拐点,整个电路无需额外的偏置电路;通过简单的环路负反馈电压钳位得到高精度的正温度系数和负温度系数电流,因而无需运算放大器对电压钳位,降低了电路复杂程度。
附图说明
图1本实用新型的高精度低温漂带隙基准电压源;
图2本实用新型的高精度低温漂带隙基准电压源温度曲线。
具体实施方式
下面结合附图对本实用新型作进一步描述。以下实施例仅用于更加清楚地说明本实用新型的技术方案,而不能以此来限制本实用新型的保护范围。
如图1和图2所示,本实用新型的电路组成:
(1)MOS管M1、M2、M3、M4、M5、M6、M7、M8和衬底PNP管Q1、Q2及电阻R1构成高精度正温度系数电流产生电路,即产生与绝对温度成正比的电流IPTAT
设MOS管M1和M2、M3和M4、M5和M6,M7和M8宽W、长L比分别相同,即:
MOS管M5、M6、M7和M8构成负反馈钳位,使由MOS管M1、M2、M3和M4构成的电流镜节点3和节点4的电压精确相等,即V3=V4;同时保证V3和V4不受电源VDD和沟道调制效应的影响。
MOS管M1、M2、M5和M6的源极接电源VDD;M1、M2的栅极及M2的漏极共连,M1、M2的漏极分别连接M3、M4的漏极,M3的栅极连接M8的栅极和漏极,M4的栅极连接M7的栅极和漏极形成节点11;M3的源极与M7的源极、电阻R1的一端共接形成电流镜节点3,M4的源极与M8的源极、PNP管Q2的发射极共接形成电流镜节点4;电阻R1的另一端连接PNP管Q1的发射极,PNP管Q1的集电极接地;PNP管Q1的基极与PNP管Q2的基极共连接地,PNP管Q2的集电极接地。M7、M8的漏极分别与M5、M6的漏极连接;M5、M6的栅极与M1的漏极共连形成节点1。
设PNP管Q1发射极电流为IPTAT
其中为热电压,KB为波尔兹曼常数,T为绝对温度,q为一个电子的电量;N为PNP管Q1和Q2的发射极面积比,M为PNP管Q2和Q1集电极电流值比;R1为电阻R1的阻值;VEB2为PNP管Q2的发射结偏置电压,VEB1为PNP管Q1的发射结偏置电压。
a为比例系数,a>0
为MOS管M10的宽长比;
则MOS管M5和M10的电流为
(2)MOS管M1A、M2A、M3A、M4A、M5A、M6A、M7A、M8A和电阻R2构成高精度负温度系数电流产生电路,即产生与绝对温度成反比的电流ICTAT
当MOS管M1A和M2A、M3A和M4A、M5A和M6A,M7A和M8A的宽W、长L比分别相同,即:
MOS管M5A、M6A、M7A和M8A构成负反馈钳位,使由MOS管M1A、M2A、M3A和M4A构成的电流镜节点5和节点4的电压精确相等,即V5=V4;同时保证V5和V4不受电源VDD和沟道调制效应的影响。
MOS管M1A、M2A、M5A和M6A的源极接电源VDD;M1A、M2A的栅极及M2A的漏极共连,M1A、M2A的漏极分别连接M3A、M4A的漏极,M3A、M4A的栅极分别连接M8AA、M7A的栅极和漏极,M3A的源极与M7A的源极、电阻R2的一端共接形成电流镜节点5,M4A的源极与M8A的源极、PNP管Q2的发射极共接形成电流镜节点4;电阻R2的另一端接地。M7A、M8AA的漏极分别与M5A、M6A的漏极连接;M5A、M6A的栅极与M1A的漏极共接形成节点2。
设电阻R2上的电流为ICTAT
其中,R2为电阻R2的阻值;
如果b为比例系数,b>0
为MOS管M9的宽长比;
则M5A和M9的电流为
(3)MOS管M11、M12、M13、M14、M15、M16、M17、M18、M19、M20构成2次温度探测与补偿电路。
MOS管M11、M13、M14、M15、M17、M18和M19源极接电源VDD。M11的栅极连接至节点1,M11的漏极连接至M12的漏极与栅极形成节点6;M13的栅极连接至节点2,M13的漏极与M14的漏极和栅极、M15的栅极、M16的漏极共连形成节点7;M17的栅极连接至节点2,M17的漏极与M18的漏极和栅极、M19的栅极、M20的漏极共连形成节点8;M15的漏极与M19的漏极、电阻R4的另一端、电阻R5的一端共连形成节点10;M12、M16、M20的源极共连至地。
通过正温度系数与负温度系数电流的相加补偿,带隙基准得到一个温度拐点T0。当电路的应用温度范围较宽时,基准电压随温度的变化相应增大。
设MOS管M5和M11、M12和M16、M20的宽W、长L比分别相同,
则MOS管M5、M11、M12、M16和M20的电流相等,I5=I11=I12=I16=I20
则MOS管M13的电流I13=cI5A,MOS管M17的电流I17=dI5A
因为I13为负温度系数电流,I16为正温度系数电流。当温度较低时,I13≥I16,所以M14和M15没有电流,处于截止状态,M15不在节点10注入电流。直到升高至温度T1时,当I13<I16,M15开始在节点10注入电流,电流为I15=k1(I16-I13),其中k1是比例系数,此电流I15具有正温度系数,因而得到第二个温度拐点T1。其中,分别为MOS管M15、M14的宽W、长L比。
随着温度继续升,EB结电压下降占优,直到升至温度T2时,出现第三个温度拐点T2
同理,因为I17为负温度系数电流,I20为正温度系数电流,当温度大于T2小于T3,I17≥I20,M18和M19没有电流,处于截止状态,因而M19不在节点10注入电流。直到温度T3时,I17<I20,M19开始在节点10注入电流,电流为I19=k2(I20-I17),其中k2是比例系数,得到第四个温度拐点T3
其中,分别为MOS管M19、M18的宽W、长L比。
这时总的补偿电流为I15+I19,且c<d。
随着温度继续升高至T4时,EB结电压下降开始占优,出现第五个温度拐点T4。其中,温度拐点T0<T1<T2<T3<T4
本电路在整个工作温度区间出现5个温度拐点,与传统的一阶温度补偿的一个温度拐点或二阶温度补偿的2~3个温度拐点相比,大大降低了基准电压随温度的变化。
(4)MOS管M21、M22、M23和M24构成启动电路,保证电源上电过程中驱动带隙基准源电路摆脱简并偏置点,建立正常工作点。
MOS管M21的源极接电源VDD,M21的栅极接地,M21的漏极与M22的漏极、M23的栅极、M24的栅极共连形成节点12;M22的栅极连接至节点11;M23的漏极连接至节点1;M24的漏极连接至节点2;M22、M23和M24的源极接地。
电源VDD从0升高初期,节点12的电压等于电源VDD,因此节点1的电压为0,MOS管M5和M6导通给正温度系数电流产生电路充电;同理,节点2的电压为0,MOS管M5A和M6A导通给负温度系数电流产生电路充电直到建立正常的工作点。当节点11的电压大于1个NMOS阈值电压后,MOS管M22导通,节点12的电压被拉至0,因而MOS管M23和M24关断,启动完成。
(5)MOS管M9、M10、电阻R3、电阻R4、电阻R5构成电流求和电路,产生带隙基准电压Vref。M9、M10的源极接电源VDD。M9、M10的栅极分别连接至节点2和节点1。M10的漏极与电阻R3一端共接形成带隙基准电压Vref;电阻R3另一端与M9的漏极、电阻R4的一端共接形成节点9;电阻R4的另一端与电阻R5的一端、M15的漏极与M19的漏极共接形成节点10;电阻R5的另一端接地。
当I13≥I16,即
其中,R3、R4、R5分别为电阻R3、电阻R4、电阻R5的阻值;
当I13<I16且I17≥I20,即
当I17<I20,即
以上所述仅是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本实用新型的保护范围。

Claims (8)

1.一种高精度低温漂带隙基准电压源,其特征是,包括:
正温度系数电流产生电路,产生与绝对温度成正比的电流;
负温度系数电流产生电路,产生与绝对温度成反比的电流;
2次温度探测与补偿电路,通过对正温度系数电流与负温度系数电流的相加补偿,使带隙基准在工作温度区间得到三个以上的温度拐点;
启动电路,在电源上电过程中驱动正温度系数电流产生电路和负温度系数电流产生电路摆脱简并偏置点,建立正常工作点;
电流求和电路,对正温度系数电流与负温度系数电流的电流求和,产生带隙基准电压。
2.根据权利要求1所述的一种高精度低温漂带隙基准电压源,其特征是,正温度系数电流产生电路包括由MOS管M1、M2、M3和M4构成的电流镜,电流镜对应由MOS管M5、M6、M7和M8构成负反馈钳位,使电流镜的节点3和节点4的电压相等。
3.根据权利要求1所述的一种高精度低温漂带隙基准电压源,其特征是,正温度系数电流产生电路包括MOS管M1、M2、M3、M4、M5、M6、M7、M8和PNP管Q1、Q2及电阻R1;
MOS管M1、M2、M5和M6的源极接电源VDD;M1、M2的栅极及M2的漏极共连,M1、M2的漏极分别连接M3、M4的漏极,M3的栅极连接M8的栅极和漏极,M4的栅极连接M7的栅极和漏极形成节点11;M3的源极与M7的源极、电阻R1的一端共接形成电流镜节点3,M4的源极与M8的源极、PNP管Q2的发射极共接形成电流镜节点4;电阻R1的另一端连接PNP管Q1的发射极,PNP管Q1的集电极接地;PNP管Q1的基极与PNP管Q2的基极共连接地,PNP管Q2的集电极接地;M7、 M8的漏极分别与M5、M6的漏极连接;M5、M6的栅极与M1的漏极共连形成节点1。
4.根据权利要求1所述的一种高精度低温漂带隙基准电压源,其特征是,负温度系数电流产生电路包括由MOS管M1A、M2A、M3A和M4A构成的电流镜,电流镜对应由MOS管M5A、M6A、M7A和M8A构成负反馈钳位,使电流镜的节点5和节点4的电压相等。
5.根据权利要求1所述的一种高精度低温漂带隙基准电压源,其特征是,负温度系数电流产生电路包括M1A、M2A、M3A、M4A、M5A、M6A、M7A、M8A和电阻R2;
MOS管M1A、M2A、M5A和M6A的源极接电源VDD;M1A、M2A的栅极及M2A的漏极共连,M1A、M2A的漏极分别连接M3A、M4A的漏极,M3A、M4A的栅极分别连接M8AA、M7A的栅极和漏极,M3A的源极与M7A的源极、电阻R2的一端共接形成电流镜节点5,M4A的源极与M8A的源极共接形成电流镜节点4;电阻R2的另一端接地;M7A、 M8AA的漏极分别与M5A、M6A的漏极连接;M5A、M6A的栅极与M1A的漏极共接形成节点2。
6.根据权利要求1、3或5所述的一种高精度低温漂带隙基准电压源,其特征是,2次温度探测与补偿电路包括MOS管M11、M12、M13、M14、M15、M16、M17、M18、M19和M20;
M11、M13、M14、M15、M17、M18和M19源极接电源VDD;M11的栅极连接至节点1,M11的漏极连接至M12的漏极与栅极形成节点6;M13的栅极连接至节点2,M13的漏极与M14的漏极和栅极、M15的栅极、M16的漏极共连形成节点7;M17的栅极连接至节点2,M17的漏极与M18的漏极和栅极、M19的栅极、M20的漏极共连形成节点8;M15的漏极与M19的漏极共连形成节点10;M12、M16、M20的源极共连至地。
7.根据权利要求1、3或5所述的一种高精度低温漂带隙基准电压源,其特征是,启动电路包括MOS管M21、M22、 M23和M24;
M21的源极接电源VDD,M21的栅极接地,M21的漏极与M22的漏极、M23的栅极、M24的栅极共连形成节点12;M22的栅极连接至节点11;M23的漏极连接至节点1;M24的漏极连接至节点2;M22、 M23和M24的源极接地。
8.根据权利要求1、3或5所述的一种高精度低温漂带隙基准电压源,其特征是,电流求和电路包括MOS管M9、M10、电阻R3、电阻R4、电阻R5;
M9、M10的源极接电源VDD;M9、M10的栅极分别连接至节点2和节点1;M10的漏极与电阻R3一端共接形成带隙基准电压;电阻R3另一端与M9的漏极、电阻R4的一端共接形成节点9;电阻R4的另一端与电阻R5的一端共接形成节点10;电阻R5的另一端接地。
CN201620808810.4U 2016-07-28 2016-07-28 一种高精度低温漂带隙基准电压源 Expired - Fee Related CN205983278U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620808810.4U CN205983278U (zh) 2016-07-28 2016-07-28 一种高精度低温漂带隙基准电压源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620808810.4U CN205983278U (zh) 2016-07-28 2016-07-28 一种高精度低温漂带隙基准电压源

Publications (1)

Publication Number Publication Date
CN205983278U true CN205983278U (zh) 2017-02-22

Family

ID=58027354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620808810.4U Expired - Fee Related CN205983278U (zh) 2016-07-28 2016-07-28 一种高精度低温漂带隙基准电压源

Country Status (1)

Country Link
CN (1) CN205983278U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710401A (zh) * 2018-08-27 2018-10-26 北方电子研究院安徽有限公司 一种高精度大驱动电流的带隙基准电压源
CN109270984A (zh) * 2018-10-22 2019-01-25 北方电子研究院安徽有限公司 一种高精度互补电流源电路
CN114115417A (zh) * 2021-11-12 2022-03-01 中国兵器工业集团第二一四研究所苏州研发中心 带隙基准电路
CN114200997A (zh) * 2021-12-10 2022-03-18 中国兵器工业集团第二一四研究所苏州研发中心 一种无运放型曲率补偿带隙基准电压源
CN115309227A (zh) * 2022-08-04 2022-11-08 西安电子科技大学 一种全饱和mosfet带隙基准源
CN116559522A (zh) * 2023-07-11 2023-08-08 苏州锴威特半导体股份有限公司 一种低温漂的低压检测电路

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710401A (zh) * 2018-08-27 2018-10-26 北方电子研究院安徽有限公司 一种高精度大驱动电流的带隙基准电压源
CN108710401B (zh) * 2018-08-27 2023-10-27 北方电子研究院安徽有限公司 一种高精度大驱动电流的带隙基准电压源
CN109270984A (zh) * 2018-10-22 2019-01-25 北方电子研究院安徽有限公司 一种高精度互补电流源电路
CN109270984B (zh) * 2018-10-22 2023-08-18 北方电子研究院安徽有限公司 一种高精度互补电流源电路
CN114115417A (zh) * 2021-11-12 2022-03-01 中国兵器工业集团第二一四研究所苏州研发中心 带隙基准电路
CN114115417B (zh) * 2021-11-12 2022-12-20 中国兵器工业集团第二一四研究所苏州研发中心 带隙基准电路
CN114200997A (zh) * 2021-12-10 2022-03-18 中国兵器工业集团第二一四研究所苏州研发中心 一种无运放型曲率补偿带隙基准电压源
CN114200997B (zh) * 2021-12-10 2023-03-07 中国兵器工业集团第二一四研究所苏州研发中心 一种无运放型曲率补偿带隙基准电压源
CN115309227A (zh) * 2022-08-04 2022-11-08 西安电子科技大学 一种全饱和mosfet带隙基准源
CN116559522A (zh) * 2023-07-11 2023-08-08 苏州锴威特半导体股份有限公司 一种低温漂的低压检测电路
CN116559522B (zh) * 2023-07-11 2023-09-15 苏州锴威特半导体股份有限公司 一种低温漂的低压检测电路

Similar Documents

Publication Publication Date Title
CN205983278U (zh) 一种高精度低温漂带隙基准电压源
CN106020318B (zh) 一种高精度低温漂带隙基准电压源
CN101840240B (zh) 一种可调式多值输出的基准电压源
CN108037791B (zh) 一种无运放的带隙基准电路
CN102270008B (zh) 宽输入带曲率补偿的带隙基准电压源
CN103631306B (zh) 具有低温度系数的电流源基准电路
CN104298293B (zh) 一种带曲率补偿的带隙基准电压源
CN101226414A (zh) 一种动态补偿基准电压的方法以及带隙基准电压源
CN105974996B (zh) 一种基准电压源
CN102981545B (zh) 一种高阶曲率补偿的带隙基准电压电路
CN102981546B (zh) 指数补偿带隙基准电压源
CN102393786A (zh) 高阶温度补偿cmos带隙基准电压源
CN205405321U (zh) 曲率补偿低温漂带隙基准电压源
CN100428105C (zh) 1v电源非线性纠正的高温度稳定性基准电压源
CN110320954B (zh) 一种基于凹凸曲率补偿的低温漂带隙基准电路
CN106055002A (zh) 低压输出的带隙基准电路
CN104977963B (zh) 一种无运放低功耗高电源抑制比的带隙基准电路
CN103440009B (zh) 一种启动电路及带该启动电路的稳压电路
CN104460799A (zh) Cmos基准电压源电路
CN108052150A (zh) 一种带高阶曲率补偿的带隙基准电压源
CN207067835U (zh) 一种具有高阶温度补偿的带隙基准电压源电路
CN101149628B (zh) 一种基准电压源电路
CN113467562B (zh) 一种无运放带隙基准源
CN211956253U (zh) 温度补偿带隙基准电路
CN109491439A (zh) 一种基准电压源及其工作方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170222

Termination date: 20190728

CF01 Termination of patent right due to non-payment of annual fee