CN205122213U - 一种高温气冷堆优化氦净化再生系统 - Google Patents

一种高温气冷堆优化氦净化再生系统 Download PDF

Info

Publication number
CN205122213U
CN205122213U CN201520643206.6U CN201520643206U CN205122213U CN 205122213 U CN205122213 U CN 205122213U CN 201520643206 U CN201520643206 U CN 201520643206U CN 205122213 U CN205122213 U CN 205122213U
Authority
CN
China
Prior art keywords
helium
bed
water
helium purification
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520643206.6U
Other languages
English (en)
Inventor
常华
吴宗鑫
姚梅生
陈晓明
李富
苏庆善
何学东
银华强
董玉杰
张作义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINERGY Co.,Ltd.
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201520643206.6U priority Critical patent/CN205122213U/zh
Application granted granted Critical
Publication of CN205122213U publication Critical patent/CN205122213U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

本实用新型涉及一种高温气冷堆优化氦净化再生系统,其为包括水吸附床、二氧化碳吸附床的氦净化系统提供再生;所述氦净化再生系统包括隔膜压缩机、电加热器、水/氦冷却器1、气/水分离器、内设卸放管路的抽真空装置,及与氦净化系统水吸附床相连接的旁路;由此形成水吸附床再生回路、二氧化碳吸附床再生回路;且各再生回路上均设有抽真空装置;并提供再生运行方法。本实用新型简化了原氦净化再生系统结构,使高温气冷堆氦净化系统和氦净化再生系统设计更加合理和操作更加高效,并能保证高温气冷堆氦净化系统高效运行,对高温气冷堆技术实现产业化具有重要意义。

Description

一种高温气冷堆优化氦净化再生系统
技术领域
本实用新型涉及一种高温气冷堆优化氦净化再生系统,属于核反应堆技术领域。
背景技术
高温气冷堆是以氦为冷却剂,具有第四代核能系统主要特征的新型核反应堆。在运行过程中会有多种化学杂质和放射性杂质进入一回路氦冷却剂中,通常设置氦净化系统用于控制氦冷却剂中的化学和放射性杂质浓度。
目前,氦净化系统通常依次设置氧化铜床、分子筛床和低温活性炭床对氦中气体杂质进行净化。其中,氧化铜床主要将氢气、氚和一氧化碳分别氧化为水、氚水和二氧化碳,并脱除微量氧气;分子筛床主要吸附水、氚水和二氧化碳;低温活性炭床用于吸附氮气、甲烷及氪、氙等放射性核素和剩余杂质气体。氧化铜床、分子筛床和低温活性炭床通常为间歇操作,通过设置的氦净化再生系统为氧化铜床、分子筛床和低温吸附床提供再生,在对分子筛床再生时收集含氚废水并排至放射性废液系统。
然而,由于氦净化系统分子筛床用于同时对含氚废水和二氧化碳吸附脱除,在分子筛床再生时含氚废水容易在分子筛床内滞留,从而引起分子筛对二氧化碳吸附容量的急剧下降,因此已有研究对氦净化系统做出调整,通过设置水吸附床和二氧化碳吸附床取代原有的分子筛床,消除了含氚废水对二氧化碳在分子筛上吸附性能的影响。但其再生系统结构仍然较为复杂,一定程度上影响了再生效率。
实用新型内容
本实用新型的目的是提出一种高温气冷堆优化氦净化再生系统,简化了原有氦净化再生系统结构,使高温气冷堆氦净化系统和氦净化再生系统设计更加合理和操作更加高效,并能保证高温气冷堆氦净化系统高效运行,对高温气冷堆技术实现产业化具有重要意义。
为了实现上述目的,本实用新型采用如下技术方案:
一种高温气冷堆优化氦净化再生系统,其为包括水吸附床、二氧化碳吸附床的所述氦净化系统提供再生;所述氦净化再生系统包括隔膜压缩机、电加热器、水/氦冷却器1、气/水分离器、内设卸放管路的抽真空装置,及与氦净化系统水吸附床相连接的旁路;由此形成水吸附床再生回路、二氧化碳吸附床再生回路;且各再生回路上均设有抽真空装置。
优选地,所述抽真空装置设在氦净化系统水吸附床旁路出口处。抽真空装置优选设在氦净化系统水吸附床旁路出口处,以便于收集含氚废水和避免高剂量含氚废水向环境的排放。
本实用新型所述的氦净化再生系统中,所述水吸附床再生回路由隔膜压缩机、电加热器、氦净化系统水吸附床、水/氦冷却器1、气/水分离器依次连接组成;
本实用新型所述的氦净化再生系统中,所述二氧化碳吸附床再生回路由隔膜压缩机、电加热器、氦净化系统二氧化碳吸附床、水/氦冷却器1、气/水分离器、氦净化系统水吸附床依次连接组成。
其中,水吸附床的再生流向优选与正常净化运行流向相反,用于提高氦净化系统水吸附床再生运行效率,避免水吸附床中的吸附水由高浓度区向低浓度区转移。
其中,二氧化碳吸附床的再生流向优选与正常净化运行流向相反,用于提高氦净化系统二氧化碳吸附床再生运行效率。其中,氦净化系统水吸附床用于吸附二氧化碳吸附床再生回路中的微量水。
其中,氦净化再生系统中与氦净化系统水吸附床相连接的旁路,优选地,氦净化系统水吸附床旁路进口为氦净化系统水吸附床正常净化运行时水吸附床进口。即氦净化再生系统水吸附床旁路运行方向与氦净化系统水吸附床正常净化运行方向相同。
本实用新型所述的氦净化系统中,所述水吸附床内装填对水、氚水有强吸附作用的吸附剂,优选对水、氚水有强吸附作用的各类沸石分子筛,进一步优选3A、4A、5A、10X、13X等类型沸石分子筛。
本实用新型所述的氦净化系统中,所述二氧化碳吸附床内装填对二氧化碳有强吸附作用的吸附剂,优选对水、氚水和二氧化碳同时有强吸附作用的各类沸石分子筛,进一步优选4A、5A、10X、13X等类型沸石分子筛。
本实用新型所述的氦净化再生系统中,在水/氦冷却器1和气/水分离器处还可设一带有水/氦冷却器2的旁路;通过隔膜压缩机、电加热器、氦净化系统二氧化碳吸附床、水/氦冷却器2、氦净化系统水吸附床依次连接组成的二氧化碳吸附床再生回路。当二氧化碳吸附床再生时,优选利用含有水/氦冷却器2的再生回路,可避免水/氦冷却器1和气/水分离器内的含氚废水向二氧化碳吸附床再生回路扩散。
本实用新型所述的氦净化再生系统中,所述氦净化系统还可包括氧化铜床、低温活性炭床,相应的所述氦净化再生系统还形成氦净化系统氧化铜床再生回路、氦净化系统低温活性炭床再生回路;
其中,所述氧化铜床再生回路由隔膜压缩机、电加热器、氦净化系统氧化铜床、水/氦冷却器1和气/水分离器依次连接组成;且在氧化铜床再生回路上设一氧气注入装置;当氧化铜床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
优选地,利用水/氦冷却器2旁路,由隔膜压缩机、电加热器、氦净化系统氧化铜床、水/氦冷却器2依次连接组成氧化铜床再生回路;所述氧气注入装置优选设置在氦净化系统氧化铜床进口或出口处。当氧化铜床再生时,优选利用含有水/氦冷却器2的再生回路进行再生,可避免水/氦冷却器1和气/水分离器内的含氚废水向氧化铜床再生回路扩散。当氧化铜床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
其中,所述低温活性炭床再生回路由隔膜压缩机、电加热器、氦净化系统低温活性炭床、水/氦冷却器1和气/水分离器依次连接组成;当低温活性炭床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
优选地,利用水/氦冷却器2旁路,由隔膜压缩机、电加热器、氦净化系统低温活性炭床、水/氦冷却器2依次连接组成低温活性炭床再生回路。当低温活性炭床再生时,优选利用含有水/氦冷却器2的再生回路,可避免水/氦冷却器1和气/水分离器内的含氚废水向低温活性炭床再生回路扩散。当低温活性炭床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
其中,所述氧化铜床再生回路、低温活性炭床再生回路上均设有抽真空装置。优选地,所述抽真空装置设在氦净化系统水吸附床旁路出口处。
采用上述氦净化系统,氧化铜床正常净化温度为200-300℃,水吸附床和二氧化碳吸附床的正常净化工作温度均为5-25℃,低温活性炭床正常净化温度约为-196℃。水吸附床可脱除氦中含氚废水至0.1ppm以下;二氧化碳吸附床可脱除氦中二氧化碳至0.1ppm以下。
上述氦净化再生系统对所述氦净化系统进行再生的方法为:当高温气冷堆氦净化系统水吸附床、二氧化碳吸附床及其它净化床出口某气体杂质组分到达穿透点时,须先对氦净化系统水吸附床进行再生,再对二氧化碳吸附床及其它净化床分别进行再生。通过氦净化再生系统与氦净化系统水吸附床相连接旁路,已完成再生的氦净化系统水吸附床用于氦净化系统二氧化碳吸附床的再生;必要时,还可通过打开旁路连接阀门,接入氦净化系统水吸附床旁路,脱除氧化铜床再生回路和低温活性炭床再生回路中的微量水。
其中,如果氦净化系统水吸附床旁路进口为氦净化系统正常运行时水吸附床进口时,先进行氦净化系统水吸附床再生,然后再分别对二氧化碳吸附床及其它净化床进行再生,即可投入氦净化系统正常运行。如果氦净化系统水吸附床旁路进口为氦净化系统正常运行时水吸附床出口,先进行氦净化系统水吸附床再生,然后分别进行氦净化系统氧化铜床再生、二氧化碳吸附床再生和低温活性炭床再生,最后须重新对氦净化系统水吸附床进行再生,才能重新投入氦净化系统正常运行;否则会导致正常运行时氦净化系统水吸附床含氚废水净化浓度不达标,从而使含氚废水进入二氧化碳吸附床,使氦净化系统正常运行操作恶化。本说明书对氦净化系统水吸附床的再生运行方法、氦净化系统二氧化碳吸附床的再生运行方法进行重点说明。
其中,所述水吸附床再生运行方法为:向水吸附床再生回路内充氦至低压,启动氦净化再生系统隔膜压缩机,然后启动氦净化再生系统电加热器;氦气经氦净化再生系统隔膜压缩机进入氦净化再生系统电加热器加热后进入水吸附床,使其在高温下加热再生;从水吸附床出来的热氦气经氦净化再生系统水/氦冷却器1降温后进入氦净化再生系统气/水分离器,其中饱和含氚废水冷凝后分离收集,最终排至高温气冷堆放射性废液系统;最后,水吸附床再生回路和水吸附床降温至室温并充氦至大于0.11MPa备用;
优选地,所述低压条件为0.5MPa-0.75MPa;所述水吸附床再生温度为200-350℃;所述氦净化再生系统水/氦冷却器将氦气降温至5℃-25℃。
其中,所述二氧化碳吸附床再生运行方法为:向二氧化碳吸附床再生回路内充氦至低压,启动氦净化再生系统隔膜压缩机,然后启动氦净化再生系统电加热器;氦气经氦净化再生系统隔膜压缩机进入氦净化再生系统电加热器加热后进入二氧化碳吸附床,使其在较高再生温度下加热再生;从二氧化碳吸附床出来的热氦气经氦净化再生系统水/氦冷却器降温后进入已完成再生的氦净化系统水吸附床吸附微量水;隔离氦净化系统水吸附床,对二氧化碳吸附床再生回路和二氧化碳吸附床进行抽真空操作;最后,二氧化碳吸附床降温并充氦至大于0.11MPa备用;二氧化碳吸附床再生过程中,由于二氧化碳脱附会引起二氧化碳吸附床再生回路增压,此时应及时对二氧化碳吸附床再生回路泄压,以保证正常再生工作压力。
优选地,所述低压条件为0.5MPa-0.75MPa;所述二氧化碳吸附床再生温度为100-350℃,进一步优选100℃-200℃;所述氦净化再生系统水/氦冷却器将氦气降温至5℃-25℃;所述抽真空具体条件为:二氧化碳吸附床在100℃-200℃下抽真空至低于100Pa。
采用本实用新型所述优化氦净化再生系统,可在氦净化系统中将水和二氧化碳杂质净化进行吸附分离切割,避免水对二氧化碳吸附性能的影响;同时在氦净化再生系统中设置氦净化系统水吸附床旁路,简化了氦净化再生系统,使氦净化系统和氦净化再生系统设计和运行更加合理、高效。本实用新型能够实现氦净化系统氧化铜床、水吸附床、二氧化碳吸附床和低温活性炭床的高效再生,并保证高温气冷堆氦净化系统高效运行,对高温气冷堆技术实现产业化具有重要意义。
附图说明
图1为本实用新型所述高温气冷堆优化氦净化再生系统结构示意图。
图2为本实用新型含有氧化铜床、低温活性炭床再生回路的所述高温气冷堆优化氦净化再生系统结构示意图。
图中:1、高温气冷堆一回路;2、氦净化系统;3、氦净化再生系统;4、氧化铜床;5、水吸附床;6、二氧化碳吸附床;7、低温活性炭床;8、水/氦冷却器1;9、气/水分离器;10、水/氦冷却器2;11、隔膜压缩机;12、电加热器;13、抽真空装置;14、氧气注入装置。
具体实施方式
以下实施例用于说明本实用新型,但不用来限制本实用新型的范围。
实施例1一种高温气冷堆氦净化系统
一种高温气冷堆氦净化系统,如图1和图2所示,包括依次连接的氧化铜床、水吸附床、二氧化碳吸附床、低温活性炭床;
其中,水吸附床用于脱除氦中含氚废水至0.1ppm以下;二氧化碳吸附床用于脱除氦中二氧化碳至0.1ppm以下。
其中,所述水吸附床、二氧化碳吸附床内均装填5A类型沸石分子筛。
实施例2利用实施例1所述氦净化系统对高温气冷堆一回路中氦冷却剂进行净化
利用实施例1所述氦净化系统对高温气冷堆一回路中氦冷却剂净化过程简述如下:
一回路的冷却剂氦气以5%/h流量流入高温气冷堆氦净化系统,氦净化系统操作压力为3-9MPa。经过尘埃过滤器脱除掉固体颗粒、通过电加热器加热至250℃,进入氧化铜床中将氢气、氚和一氧化碳分别氧化为水、氚水和二氧化碳,并脱除微量氧气;经过中温氦/氦热交换器和水/氦冷却器降温至10℃,然后进入水吸附床在约10℃下吸附含氚废水,再进入二氧化碳吸附床在约10℃下脱除二氧化碳和微量水;再通过低温氦/氦热交换器降温至约-160℃,进入低温活性炭床在约-196℃下吸附氮气、甲烷及放射性核素Kr、Xe等及其余气体杂质。
实施例3为实施例1所述氦净化系统提供再生的氦净化再生系统
氦净化再生系统由隔膜压缩机、电加热器、水/氦冷却器1、气/水分离器、和内设卸放管路的抽真空装置组成;及与氦净化系统水吸附床相连接的旁路;氦净化再生系统中,与氦净化系统水吸附床相连接的旁路,氦净化系统水吸附床旁路进口为氦净化系统正常净化运行时水吸附床进口。所述各装置与氦净化系统形成四个再生回路:氦净化系统氧化铜床再生回路、氦净化系统水吸附床再生回路、氦净化系统二氧化碳吸附床再生回路、氦净化系统低温活性炭床再生回路;
其中,所述氧化铜床再生回路由隔膜压缩机、电加热器、氦净化系统氧化铜床、水/氦冷却器1和气/水分离器依次连接组成;且在氧化铜床再生回路上设一氧气注入装置;当氧化铜床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
其中,所述水吸附床再生回路由隔膜压缩机、电加热器、氦净化系统水吸附床、水/氦冷却器1、气/水分离器依次连接组成;水吸附床的再生流向与正常净化运行流向相反。
其中,所述二氧化碳吸附床再生回路由隔膜压缩机、电加热器、氦净化系统二氧化碳吸附床、水/氦冷却器1、气/水分离器、氦净化系统水吸附床依次连接组成;二氧化碳吸附床的再生流向与正常净化运行流向相反。
其中,所述低温活性炭床再生回路由隔膜压缩机、电加热器、氦净化系统低温活性炭床、水/氦冷却器1和气/水分离器依次连接组成;当低温活性炭床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
其中,所述氧化铜床再生回路、水吸附床再生回路、二氧化碳吸附床再生回路、低温活性炭床再生回路上均设有抽真空装置。优选地,所述抽真空装置设在氦净化系统水吸附床旁路出口处。抽真空装置优选设在氦净化系统水吸附床旁路出口处,以便于收集含氚废水和避免高剂量含氚废水向环境的排放。
其中,在水/氦冷却器1和气/水分离器处还可设一带有水/氦冷却器2的旁路,并由此得到由隔膜压缩机、电加热器、氦净化系统氧化铜床、水/氦冷却器2依次连接组成氧化铜床再生回路;利用水/氦冷却器2的旁路,还可得到由隔膜压缩机、电加热器、氦净化系统二氧化碳吸附床、水/氦冷却器2、氦净化系统水吸附床依次连接组成的二氧化碳吸附床再生回路;还可得到由隔膜压缩机、电加热器、氦净化系统低温活性炭床、水/氦冷却器2依次连接组成的低温活性炭床再生回路。
其中,所述氧气注入装置设置在氦净化系统氧化铜床进口处。当氧化铜床再生时,优选利用含有水/氦冷却器2的再生回路进行再生,可避免水/氦冷却器1和气/水分离器内的含氚废水向氧化铜床再生回路扩散。当氧化铜床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
当二氧化碳吸附床再生时,优选利用含有水/氦冷却器2的再生回路,可避免水/氦冷却器1和气/水分离器内的含氚废水向二氧化碳吸附床再生回路扩散。当低温活性炭床再生时,优选利用含有水/氦冷却器2的再生回路,可避免水/氦冷却器1和气/水分离器内的含氚废水向低温活性炭床再生回路扩散。当低温活性炭床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
实施例4实施例1所述氦净化系统中各净化床的再生运行工艺
当高温气冷堆氦净化系统氧化铜床、水吸附床、二氧化碳吸附床和低温活性炭床出口某气体杂质组分到达穿透点时,须对氦净化系统氧化铜床、水吸附床、二氧化碳吸附床和低温活性炭床分别进行再生。
一种利用上述氦净化再生系统进行再生的再生方法,先将再生系统与水吸附床连接形成再生回路,完成对水吸附床的再生;再利用再生完的水吸附床、氦净化再生系统与二氧化碳吸附床连接形成再生回路,对二氧化碳吸附床进行再生;最后对氧化铜床及低温活性炭床进行再生。
其中,水吸附床再生工艺为:形成水吸附床再生回路,并向水吸附床再生回路充氦至0.6MPa,启动氦净化再生系统隔膜压缩机,然后启动氦净化再生系统电加热器。氦气经氦净化再生系统隔膜压缩机进入氦净化再生系统电加热器加热后进入水吸附床,当水吸附床再生温度达到250℃,然后进入氦净化再生系统水/氦冷却器1冷却至10℃,使饱和含氚废水冷凝收集至氦净化再生系统气/水分离器中,最终含氚废水排入高温气冷堆放射性废液系统。最后,水吸附床再生回路和水吸附床降温至室温并充氦至大于0.11MPa备用。
其中,二氧化碳吸附床再生工艺为:形成二氧化碳吸附床再生回路,并向二氧化碳吸附床再生回路充氦至0.6MPa,启动氦净化再生系统隔膜压缩机,然后启动氦净化再生系统电加热器。氦气经氦净化再生系统隔膜压缩机进入氦净化再生系统电加热器加热后进入二氧化碳吸附床,二氧化碳吸附床加热至150℃,然后进入氦净化再生系统水/氦冷却器2冷却至10℃,之后进入已经再生完成的氦净化系统水吸附床吸附微量水。在二氧化碳吸附床温度达到150℃并保持5h,隔离氦净化系统水吸附床,二氧化碳吸附床再生回路和二氧化碳吸附床在150℃下抽真空至低于100Pa;最后二氧化碳吸附床再生回路和二氧化碳吸附床降温并充氦至大于0.11MPa备用。二氧化碳吸附床再生过程中,由于二氧化碳脱附会引起二氧化碳吸附床再生回路增压,此时应及时对二氧化碳吸附床再生回路泄压,以保证正常再生工作压力。
其中,氧化铜床再生工艺为:形成氧化铜床再生回路,并向氧化铜床再生回路中充氦至约0.6MPa,启动氦净化再生系统隔膜压缩机,然后启动氦净化再生系统电加热器,设置氦净化再生系统水/氦冷却器2工作温度为10℃。氦气在氦净化再生系统隔膜压缩机驱动下,经过氦净化再生系统电加热器,使氧化铜床再生入口温度达到80℃,在氧化铜床正常净化入口处通过氧气注入装置注入氧气。注入氧气过程中,调节注氧流量使氧化铜床温度不超过300℃。待氧化铜床再生出口有明显氧气穿透时,氧化铜床注氧操作结束。关闭氦净化再生系统隔膜压缩机和氦净化再生系统电加热器,氧化铜床再生回路和氧化铜床泄压、抽真空并充氦至大于0.11MPa备用。当氧化铜床再生回路中有水存在时,通过连接已完成再生的氦净化系统水吸附床脱除回路中的微量水。
其中,低温活性炭床再生工艺为:形成低温活性炭床再生回路,并向低温活性炭床再生回路中充氦至约0.6MPa,启动氦净化再生系统隔膜压缩机,然后启动氦净化再生系统电加热器。使低温活性炭床再生温度达到150℃,然后进入氦净化再生系统水/氦冷却器2冷却至10℃,使氦净化系统低温活性炭床中的吸附组分充分脱附。低温活性炭床再生过程中,由于吸附组分从活性炭中脱附,会引起低温活性炭床再生回路增压,此时应及时对低温活性炭床再生回路泄压排入放射性废气系统。低温活性炭床再生回路和低温活性炭床泄压并抽真空,低温活性炭床在150℃下抽真空至低于100Pa。低温活性炭床再生回路中的化学及放射性气体排入废气系统,最后低温活性炭床再生回路和低温活性炭床降温并充氦至大于0.11MPa备用。当低温活性炭床再生回路中有水存在时,通过连接已完成再生的氦净化系统水吸附床脱除回路中的微量水。
采用本实用新型所述优化氦净化再生系统,可在氦净化系统中将水和二氧化碳杂质净化进行吸附分离切割,避免水对二氧化碳吸附性能的影响;同时在氦净化再生系统中设置氦净化系统水吸附床旁路,简化了氦净化再生系统,使氦净化系统和氦净化再生系统设计和运行更加合理、高效,能够保证氦净化系统氧化铜床、水吸附床、二氧化碳吸附床和低温活性炭床净化设备的高效再生,并保证高温气冷堆氦净化系统高效运行。
虽然,上文中已经用一般性说明及具体实施方案对本实用新型作了详尽的描述,但在本实用新型基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本实用新型精神的基础上所做的这些修改或改进,均属于本实用新型要求保护的范围。

Claims (10)

1.一种高温气冷堆优化氦净化再生系统,其为包括水吸附床、二氧化碳吸附床的氦净化系统提供再生,其特征在于,所述氦净化再生系统由隔膜压缩机、电加热器、水/氦冷却器1、气/水分离器、内设卸放管路的抽真空装置,及与氦净化系统水吸附床相连接的旁路组成;由此形成水吸附床再生回路、二氧化碳吸附床再生回路;且各再生回路上均设有抽真空装置。
2.根据权利要求1所述的氦净化再生系统,其特征在于,所述水吸附床再生回路由隔膜压缩机、电加热器、氦净化系统水吸附床、水/氦冷却器1、气/水分离器依次连接组成。
3.根据权利要求1所述的氦净化再生系统,其特征在于,所述二氧化碳吸附床再生回路由隔膜压缩机、电加热器、氦净化系统二氧化碳吸附床、水/氦冷却器1、气/水分离器、氦净化系统水吸附床依次连接组成。
4.根据权利要求3所述的氦净化再生系统,其特征在于,在水/氦冷却器1和气/水分离器处还可设一带有水/氦冷却器2的旁路;通过隔膜压缩机、电加热器、氦净化系统二氧化碳吸附床、水/氦冷却器2、氦净化系统水吸附床依次连接组成的二氧化碳吸附床再生回路。
5.根据权利要求1或4所述的氦净化再生系统,其特征在于,所述氦净化系统包括氧化铜床、低温活性炭床;相应的所述氦净化再生系统还形成氦净化系统氧化铜床再生回路、氦净化系统低温活性炭床再生回路;
所述氧化铜床再生回路由隔膜压缩机、电加热器、氦净化系统氧化铜床、水/氦冷却器1、气/水分离器依次连接组成;且在氧化铜床再生回路上设一氧气注入装置;优选地,利用水/氦冷却器2旁路,由隔膜压缩机、电加热器、氦净化系统氧化铜床、水/氦冷却器2依次连接组成氧化铜床再生回路;
所述低温活性炭床再生回路由隔膜压缩机、电加热器、氦净化系统低温活性炭床、水/氦冷却器1、气/水分离器依次连接组成;优选地,利用水/氦冷却器2旁路,由隔膜压缩机、电加热器、氦净化系统低温活性炭床、水/氦冷却器2依次连接组成低温活性炭床再生回路。
其中,所述氧化铜床再生回路、低温活性炭床再生回路上均设有抽真空装置。
6.根据权利要求1-4任一所述的氦净化再生系统,其特征在于,所述水吸附床内装填对水、氚水有强吸附作用的吸附剂;所述二氧化碳吸附床内装填对二氧化碳有强吸附作用的吸附剂。
7.根据权利要求6所述的氦净化再生系统,其特征在于,所述水吸附床内装填对水、氚水有强吸附作用的沸石分子筛。
8.根据权利要求7所述的氦净化再生系统,其特征在于,所述水吸附床内装填3A、4A、5A、10X、13X类型沸石分子筛。
9.根据权利要求6所述的氦净化再生系统,其特征在于,所述二氧化碳吸附床内装填对水、氚水和二氧化碳同时有强吸附作用的沸石分子筛。
10.根据权利要求9所述的氦净化再生系统,其特征在于,所述二氧化碳吸附床内装填4A、5A、10X、13X类型沸石分子筛。
CN201520643206.6U 2015-08-24 2015-08-24 一种高温气冷堆优化氦净化再生系统 Active CN205122213U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520643206.6U CN205122213U (zh) 2015-08-24 2015-08-24 一种高温气冷堆优化氦净化再生系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520643206.6U CN205122213U (zh) 2015-08-24 2015-08-24 一种高温气冷堆优化氦净化再生系统

Publications (1)

Publication Number Publication Date
CN205122213U true CN205122213U (zh) 2016-03-30

Family

ID=55577799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520643206.6U Active CN205122213U (zh) 2015-08-24 2015-08-24 一种高温气冷堆优化氦净化再生系统

Country Status (1)

Country Link
CN (1) CN205122213U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106800281A (zh) * 2017-01-20 2017-06-06 中国工程物理研究院材料研究所 一种高纯氦‑3气体净化装置及净化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106800281A (zh) * 2017-01-20 2017-06-06 中国工程物理研究院材料研究所 一种高纯氦‑3气体净化装置及净化方法

Similar Documents

Publication Publication Date Title
CN102179129B (zh) 吸附冷凝废气处理工艺
CN105006264B (zh) 一种高温气冷堆氦净化再生系统及再生方法
CN105513661B (zh) 一种聚变堆热室清洗废气变压吸附净化再生利用方法及装置
CN105032113B (zh) 基于湿法再生技术捕集烟气中二氧化碳的方法
CN201842645U (zh) 集成有膜分离和变压吸附装置的高纯制氮系统
CN105097060A (zh) 一种高温气冷堆优化氦净化再生系统及再生方法
Ciampichetti et al. Conceptual design of tritium extraction system for the European HCPB test blanket module
CN112263890A (zh) 一种烟气余热利用型碳捕集方法和系统
CN104318969B (zh) 一种高温气冷堆含氚废水优化收集系统及收集工艺
CN204884595U (zh) 一种高温气冷堆氦净化再生系统
CN109957429A (zh) 带热回收利用结构的天然气分子筛吸附脱水的系统及方法
CN114558414A (zh) 一种基于湿法再生二氧化碳捕集材料的从集中二氧化碳排放源中脱碳的方法
CN108786371B (zh) 一种高温富氧烟气回收氧气系统及其回收方法
CN205122213U (zh) 一种高温气冷堆优化氦净化再生系统
CN104923031A (zh) 一种新型的颗粒活性炭吸附工艺及其装置
CN211537120U (zh) 一种采用热氮脱附的有机废气净化装置及系统
CN204147734U (zh) 一种转轮空分纯化装置
CN105032122A (zh) 一种氚化水回收装置及其实现方法
CN204891541U (zh) 一种氚化水回收装置
CN204966067U (zh) 一种高温气冷堆冷却剂优化净化系统及再生系统
CN104984628A (zh) 一种有机废气吸附回收工艺
JP2021035654A (ja) Co2分離方法及び設備
CN105654997A (zh) 一种聚变堆热室清洗废气氧化分离净化再生利用方法及装置
CN115976575B (zh) 一种带干燥、提纯功能的小型制氢系统
CN102029100A (zh) 有机废气活性炭吸附的干法脱附工艺

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210120

Address after: 100193 building 26, Zhongguancun Software Park, 8 Dongbeiwang West Road, Haidian District, Beijing

Patentee after: CHINERGY Co.,Ltd.

Address before: 100084 mailbox, 100084-82 Tsinghua Yuan, Beijing, Haidian District, Beijing

Patentee before: TSINGHUA University