CN202631492U - 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统 - Google Patents

一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统 Download PDF

Info

Publication number
CN202631492U
CN202631492U CN201220165015.XU CN201220165015U CN202631492U CN 202631492 U CN202631492 U CN 202631492U CN 201220165015 U CN201220165015 U CN 201220165015U CN 202631492 U CN202631492 U CN 202631492U
Authority
CN
China
Prior art keywords
interface
way valve
chromatographic column
valve
connects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN201220165015.XU
Other languages
English (en)
Inventor
黄晓磊
牛学坤
梁真镇
张景利
付梦月
侯玲玲
汤月贞
张亚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIMING CHEMICAL INST
Original Assignee
LIMING CHEMICAL INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIMING CHEMICAL INST filed Critical LIMING CHEMICAL INST
Priority to CN201220165015.XU priority Critical patent/CN202631492U/zh
Application granted granted Critical
Publication of CN202631492U publication Critical patent/CN202631492U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本实用新型公开了一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统。具体包括2个四通阀、2个十通阀、1个八通阀、1个定量环、4根色谱柱、14个压力平衡调节阀和1个放电离子化检测器,系统载气为高纯氦气。本实用新型采用五阀四柱的阀路系统,一次进样可完成多种气相杂质的测定。该阀路系统操作方便,适用于高纯度含氟电子气体领域工业化生产中使用。

Description

一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统
技术领域
本实用新型涉及多维气相色谱阀路系统,特别涉及用于多种高纯度含氟电子气体分析用气相色谱阀路系统。 
背景技术
含氟电子气体主要用途是在电子、半导体工业和光伏产业中化学气相沉积的清洗剂和等离子蚀刻剂。随着近几年TFT-LCD面板业、半导体业和太阳能面板业等相关领域的迅猛发展,含氟电子气体的用量也在不断增加。 
若高纯度含氟电子气体中杂质如H2、O2、N2、CH4、CO、CO2、N2O等含量过高,将严重影响其在清洗蚀刻方面的使用性能,因此在分析检测方面要求较高。目前,涉及以上高纯度含氟电子气体检测的国家标准和国外标准(如IEC、SEMI、ASTM等)中,对其中气体杂质的分析方法做了相应规定,有些明确的给出了阀路系统,例如《工业六氟化硫》(GB/T 12022-2006)、《电子工业用气体六氟化硫》(GB/T 18867-2002)、ASTM D2472-00(SE6)、SEMI C3.24-0301(SF6)、IEC 60376-2005(SF6)、《电子工业用气体三氟化氮》(GB/T 21287-2007)、SEMIC3.39-0999(NF3)、SEMI C3.40-1000(CF4)、SEMI C3.21-90(CF4)、SEMIC3.37-0701(C2F6)、SEMI C3.52-0200(WF6)、SEMI C3.58-0303(C4F8)等,但这些标准所列分析方法中气路相对单一,要完成一种气体杂质的分析需要多台仪器或多次进样,分析效率低,操作繁琐,分析成本高,不适合工业化生产中的分析检测。 
US 20100154511A1中介绍了一种多维气相色谱法的装置和方法,采用单阀三柱两检测器的阀路系统,重点介绍了其不同类型切换阀的工作原理,若主组 分中杂质种类较多时,无法满足分析需要;CN102053129A中介绍了一种采用两阀两柱分析电子级四氟化碳的色谱流程,从阀路配置和实施例中说明其无法满足电子级四氟化碳中N2、O2和CO的分离和分析;CN201780285U和CN101915811A中介绍了一种分析检测高纯度非腐蚀性气体中杂质的装置和方法,采用四阀五柱两种进样方式来分析高纯氧和其它非腐蚀性气体,介绍了其工作原理,通过阀路切换分析主组分中大分子量和小分子量杂质组分,只能实现组分的粗略分离。 
实用新型内容
本实用新型要解决的技术问题是提供一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统。 
为解决上述技术问题,本实用新型采用五阀四柱的阀路系统,一次进样可完成多种气相杂质的测定。该阀路系统操作方便,适用于高纯度含氟电子气体领域工业化生产中使用。具体包括2个四通阀、2个十通阀、1个八通阀、1个定量环、4根色谱柱、14个压力平衡调节阀和1个放电离子化检测器,系统载气为高纯氦气,其中第一四通阀1的第1接口、第2接口分别连接样品出口、样品进口,第一四通阀的第4接口连接第一路载气,第一四通阀的第3接口通过管路与第一十通阀2的第1接口连接; 
第一十通阀2的第2接口连接气体出口,第一十通阀的第3接口和第10接口之间连接定量环24,第一十通阀的第4接口连接第三路载气,第一十通阀的第5接口和第9接口之间连接预分离色谱柱6,第一十通阀的第6接口通过管路与八通阀3的第1接口连接,第一十通阀的第7接口连接第二路载气,第一十通阀的第8接口连接压力平衡调节阀21后接气体出口; 
八通阀3的第2接口通过管路与第二十通阀4的第1接口连接,八通阀的 第3接口连接第五路载气,八通阀的第4接口连接压力平衡调节阀19后接气体出口,八通阀的第5接口通过管路与第二四通阀5的第1接口连接,八通阀3的第6接口连接压力平衡调节阀20后接气体出口,八通阀3的第7接口连接第四路载气,八通阀3的第8接口连接第一分析色谱柱7; 
第二十通阀4的第2接口和第5接口之间连接管路和压力平衡调节阀17,第二十通阀的第3接口和第8接口之间连接管路,第二十通阀的第4接口连接压力平衡调节阀18后接气体出口,第二十通阀的第6接口连接第三分析色谱柱9,第二十通阀的第7接口和第10接口之间连接第二分析色谱柱8,第二十通阀的第9接口连接第六路载气; 
第二四通阀5的第2接口连接第三分析色谱柱9,第二四通阀的第3接口连接压力平衡调节阀22后接放电离子化检测器25,第二四通阀的第4接口连接第一分析色谱柱7。 
预分离色谱柱6可采用Hayesep Q色谱柱、硅胶色谱柱或氟油色谱柱等中的一种,其中氟油柱可作为具有腐蚀性或分解后产生腐蚀性物质的预分离柱,如主组分为六氟化钨的预分离。 
第一分析色谱柱7优选5A分子筛色谱柱。 
第二分析色谱柱8优选Hayesep Q色谱柱。 
第三分析色谱柱9优选Hayesep Q色谱柱。 
本实用新型阀路系统可分为三部分:载气平衡调节系统、组分分离气路系统和检测器。 
1、载气平衡调节系统包括压力平衡调节阀10~23及其载气连接管路,通过压力平衡调节阀10将高纯度氦气引入阀路系统,确保各路载气使用同一稳定气源,通过压力平衡调节阀11~16将氦气引入第一至六路载气系统,通过压力平 衡调节阀23将氦气引入放电离子化检测器。 
2、组分分离系统包括第一至六路载气系统、第一四通阀1、第一十通阀2、八通阀3、第二十通阀4、第二四通阀5、预分离色谱柱6、3个分析色谱柱。 
3、检测器为放电离子化检测器25。 
本实用新型装置具有以下特点: 
1、第一四通阀1可以进行样品和吹扫气体的切换,既可实现对进样之前管路中杂质的吹扫,降低管路中杂质对样品的污染,又可实现对有腐蚀性气体分析结束后,对阀路系统中样品管线的吹扫,降低腐蚀气体在管线中的残留时间,减少对管线的腐蚀和影响。 
2、第一十通阀2和定量环24可以完成样品的采集,预分离色谱柱6可实现对被测组分的预分离,若被测样品是非腐蚀性气体,预分离色谱柱6可采用Hayesep Q色谱柱或硅胶色谱柱,若被测样品具腐蚀性或性质不稳定,则该柱采用氟油色谱柱。 
3、八通阀3、第二十通阀4、第二四通阀5、分析色谱柱7、8、9可以实现对被测样品中主组分和杂质的切割分离,其中第一分析色谱柱7可采用5A分子筛色谱柱,第二分析色谱柱8和第三分析色谱柱9均可采用Hayesep Q色谱柱。 
4、放电离子化检测器(DID)25可以实现对微量杂质的检测。 
5、压力平衡调节阀10~23可以实现阀路系统中各通道流量和压力平衡控制,确保阀路内气体流速和压力稳定,其中压力平衡调节阀23用来控制放电离子化检测器的放电气。 
6、载气通过压力平衡调节阀10进入阀路系统。 
7、八通阀3、第二十通阀4和第二四通阀5三个阀不同组合的切换,可以完成对被测组分的切割、分离,实现对被测组分的分析检测。 
8、通过第二四通阀5的开与关,可以确保从第一分析色谱柱7和第三分析色谱柱9分离出的组分依次进入检测器25中,实现被测组分的全分析。 
如图1所示的状态,本实用新型装置的使用过程是: 
1、使用初始状态各阀均处于“关”状态,一次阀动后处于“开”状态,再次阀动后处于“关”状态; 
2、通过压力平衡调节阀11将载气引入第一四通阀1,通过第4接口、第3接口进入第一十通阀2的第1接口→第10接口→定量环24→第3接口→第2接口,放空,对定量环进行充分吹扫和置换; 
3、样品进口与第一四通阀1的第2接口连接,通过第1接口进行放空或收集处理,开通第一四通阀1,样品经第2接口→第3接口→第一十通阀2的第1接口进入到定量环24中,实现被测样品的采集; 
4、开通第一十通阀2,压力平衡调节阀13出口载气通过第4接口→第3接口→定量环24→第10接口→第9接口,将采集的样品吹入预分离色谱柱6; 
5、经预分离色谱柱6预分离后,如果主组分出峰顺序夹在杂质组分之间,则全部组分经过第一十通阀2的第5接口→第6接口→八通阀3的第1接口;如果主组分出峰顺序在所有杂质组分之后,则杂质组分经过第一十通阀2的第5接口→第6接口→八通阀3的第1接口,然后关闭第一十通阀2,主组分经过第一十通阀2的第9接口→第8接口后被反吹放空; 
6、开通八通阀3,预分离杂质组分中H2、O2、N2、CH4、CO经八通阀3的第8接口进入第一分析色谱柱7,实现该几种杂质的分离;关闭八通阀3,其余组分经过八通阀3的第2接口和第二十通阀4的第1接口进入第二十通阀4; 
7、经第一分析色谱柱7分离的H2、O2、N2、CH4、CO组分,经过第二四通阀5的第4接口→第3接口→压力平衡调节阀22进入检测器25,实现被测组 分的检测; 
8、进入第二十通阀4的组分走向为以下方式之一或其组合: 
(1)、关闭第二十通阀4,组分经过第二十通阀4的第2接口→压力平衡调节阀17→第5接口→第6接口进入第三分析色谱柱9; 
(2)、开通第二十通阀4,组分经第10接口→第二分析色谱柱8→第7接口→第6接口→第三分析色谱柱9; 
(3)、开通第二十通阀4,组分经第10接口→第二分析色谱柱8,关闭第二十通阀4,第二分析色谱柱8中分离的主组分经第二十通阀4的第7接口→第8接口→第3接口→第4接口→压力平衡调节阀18后放空,再次开通第二十通阀4,第二分析色谱柱8中分离的杂质组分经第二十通阀4的第7接口→第6接口→第三分析色谱柱9; 
9、根据第三分析色谱柱9分离的组分,按以下步骤(1)或(2)操作: 
(1)分离出的若是主组分,则组分经过第二四通阀5的第2接口→第1接口→八通阀3的第5接口→第4接口或第6接口实现放空; 
(2)分离出的若是杂质组分,则开通第二四通阀5,组分经过第2接口→第3接口→压力平衡调节阀22→放电离子化检测器25,实现组分的检测。 
本实用新型装置与现有技术相比具有如下优点: 
1、只需一次进样便可完成一种气体中多种气体杂质的全分析。 
2.一台装置可以完成对多种高纯度含氟电子特气的分析,如六氟化硫、三氟化氮、四氟化碳、六氟化钨、六氟乙烷、八氟丙烷、四氟化硅、八氟环丁烷等。 
3、通过预分离色谱柱和阀路开关,可以将主组分切割去除,降低了主组分对微量杂质的分析影响,又可避免了主组分对检测器的污染和损害。 
4、被测样品中各组分分离度和重复性好,降低了系统误差。 
附图说明
图1是本实用新型阀路系统示意图。 
具体实施方式
下面结合实施例对本实用新型作进一步说明。载气为99.9999%以上高纯氦气。 
实施例1:高纯六氟化硫中气相杂质的分离检测 
99.999%以上纯度的六氟化硫中气相杂质主要包括:氮(N2)、氧(O2)、一氧化碳(CO)、二氧化碳(CO2)、甲烷(CH4)、四氟化碳(CF4)。 
预分离色谱柱6选用长2米的硅胶色谱柱。 
第一分析色谱柱7选用长2米的5A分子筛色谱柱。 
第二分析色谱柱8选用长3米的Hayesep Q色谱柱。 
第三分析色谱柱9选用长6米的Hayesep Q色谱柱。 
1、在附图1状态下,用载气吹扫定量环24,六氟化硫样品经第一四通阀1后放空或收集处理。 
2、开通第一四通阀1,样品被引入定量环24中。 
3、开通第一十通阀2,通过压力平衡调节阀13的载气经第一十通阀2的第4接口→第3接口→定量环24→第10接口→第9接口→预分离色谱柱6→第5接口→第6接口,将样品引入到预分离色谱柱6中,实现杂质组分N2、O2、CH4、CO、CF4、CO2和主组分SF6的预分离。 
4、开通八通阀3,经预分离分离色谱柱6预分离出的杂质组分N2、O2、CH4、CO经八通阀3的第1接口→第8接口→第一分析色谱柱7,实现四种组分的分离,再经第二四通阀5的第4接口→第3接口→压力平衡调节阀22→放电离子化检测器25,实现四种组分的检测,出峰顺序依次为O2、N2、CH4、CO。 
5、关闭八通阀3,经预分离色谱柱6预分离出的杂质组分CF4、CO2经八通阀3的第1接口→第2接口进入第二十通阀4,关闭第二十通阀4,两种组分经第二十通阀的第1接口→第2接口→压力平衡调节阀17→第5接口→第6接口→第三分析色谱柱9,进入第二四通阀5;或开通第二十通阀4,两种组分经第二十通阀的第1接口→第10接口→色谱柱8→第7接口→第6接口→第三分析色谱柱9。 
6、开通第二四通阀5,两种组分经第二四通阀的第2接口→第3接口→压力平衡调节阀22→放电离子化检测器25,实现两种组分的检测,出峰顺序依次为CF4、CO2。 
7、待其它杂质组分从预分离色谱柱6分离出,关闭第一十通阀2,主组分SF6被反吹放空,关闭第一四通阀1,用载气吹扫定量环24。 
一次进样后六氟化硫中最终杂质出峰顺序为:O2、N2、CH4、CO、CF4、CO2,出峰时间分别为1.66min、2.07min、2.90min、3.89min、6.14min、9.62min。 
实施例2:高纯三氟化氮中气相杂质的分离检测 
99.99%以上纯度的三氟化氮中气相杂质主要包括:氮(N2)、氧(O2)、一氧化碳(CO)、二氧化碳(CO2)、四氟化碳(CF4)、氧化亚氮(N2O)、六氟化硫(SF6)。 
预分离色谱柱6选用长2米的Hayesep Q色谱柱。 
第一分析色谱柱7选用长2米的5A分子筛色谱柱。 
第二分析色谱柱8选用长3米的Hayesep Q色谱柱。 
第三分析色谱柱9选用长6米的Hayesep Q色谱柱。 
1、在附图1状态下,用载气吹扫定量环24,三氟化氮样品经第一四通阀1后放空或收集处理。 
2、开通第一四通阀1,样品被引入定量环24中。 
3、开通第一十通阀2,通过压力平衡调节阀13的载气经第一十通阀2的第4接口→第3接口→定量环24→第10接口→第9接口→预分离色谱柱6→第5接口→第6接口,将样品引入到预分离色谱柱6中,可实现杂质N2、O2、CO、CF4、CO2、N2O、SF6和主组分NF3的预分离。 
4、开通八通阀3,经预分离色谱柱6预分离出的N2、O2、CO经八通阀3的第1接口→第8接口→第一分析色谱柱7,实现三种组分的分离,再经第二四通阀5的第4接口→第3接口→压力平衡调节阀22→检测器25,实现三种组分的检测,出峰顺序依次为O2、N2、CO。 
5、关闭八通阀3,经预分离色谱柱6预分离出的CF4、CO2、N2O、SF6和主组分NF3,经八通阀3的第1接口→第2接口进入第二十通阀4,开通第二十通阀4,CF4、主组分NF3经第二十通阀的第1接口→第10接口→第二分析色谱柱8,从第二分析离色谱柱8分离出的CF4和少量NF3经第二十通阀的第7接口→第6接口→第三分析色谱柱9,关闭第二十通阀4,大量的NF3经第二十通阀的第7接口→第8接口→第3接口→第4接口→压力平衡调节阀18后放空,CO2、N2O、SF6经第二十通阀的第1接口→第2接口→压力平衡调节阀17→第5接口→第6接口→第三分析色谱柱9。 
6、经过第三分析色谱柱9分离后的组分出峰顺序依次为CF4、少量NF3、CO2、N2O、SF6,通过开、关第二四通阀5,CF4、CO2、N2O、SF6,经第二四通阀的第2接口→第3接口→压力平衡调节阀22→放电离子化检测器25,实现四种组分的检测,而少量NF3经第二四通阀5的第2接口→第1接口进入八通阀3,再经八通阀3的第5接口→第6接口放空。 
7、样品中所有组分经预分离色谱柱6预分离出后,关闭第一四通阀1和第 一十通阀2,用载气吹扫定量环24。 
一次进样后三氟化氮中最终杂质出峰顺序为:O2、N2、CF4、CO、CO2、N2O、SF6,出峰时间分别为2.91min、4.03min、5.92min、10.15min、12.65min、16.11min、22.18min。 
实施例3:高纯六氟化钨中气相杂质的分离检测 
99.999%以上纯度的六氟化钨中气相杂质主要包括:氮(N2)、氧(O2)、一氧化碳(CO)、二氧化碳(CO2)、四氟化碳(CF4)、六氟化硫(SF6)。 
预分离色谱柱6选用长4米的氟油色谱柱。 
第一分析色谱柱7选用长2米的5A分子筛色谱柱。 
第二分析色谱柱8选用长3米的Hayesep Q色谱柱。 
第三分析色谱柱9选用长6米的Hayesep Q色谱柱。 
1、在附图1状态下,用载气吹扫定量环24,六氟化钨样品经第一四通阀1后收集处理。 
2、开通第一四通阀1,样品被引入定量环24中。 
3、开通第一十通阀2,通过压力平衡调节阀13的载气经第一十通阀2的第4接口→第3接口→定量环24→第10接口→第9接口→预分离色谱柱6→第5接口→第6接口,将样品引入到预分离色谱柱6中,可实现杂质组分N2、O2、CO、CF4、CO2、SF6和主组分WF6的预分离。 
4、开通八通阀3,经预分离色谱柱6预分离出的组分N2、O2、CO经八通阀3的第1接口→第8接口→第一分析色谱柱7,实现三种组分的分离,再经第二四通阀5的第4接口→第3接口→压力平衡调节阀22→放电离子化检测器25,实现三种组分的检测,出峰顺序依次为O2、N2、CO。 
5、关闭八通阀3,经预分离色谱柱6预分离出的组分CF4、CO2、SF6经八 通阀3的第1接口→第2接口进入第二十通阀4。关闭第二十通阀4,三种组分经第二十通阀的第1接口→第2接口→压力平衡调节阀17→第5接口→第6接口→第三分析色谱柱9,进入第二四通阀5;或开通第二十通阀4,三种组分经第二十通阀的第1接口→第10接口→第二分析色谱柱8→第7接口→第6接口→第三分析色谱柱9。 
6、开通第二四通阀5,三种组分经第二四通阀的第2接口→第3接口→压力平衡调节阀22→放电离子化检测器25,实现三种组分的检测,出峰顺序依次为CF4、CO2、SF6。 
7、待其它杂质组分从预分离色谱柱6分离出,立即关闭第一十通阀2,主组分WF6被反吹放空收集,关闭第一四通阀1,用载气分吹扫定量环24。 
一次进样后六氟化钨中最终杂质出峰顺序为:O2、N2、CO、CF4、CO2、SF6,出峰时间分别为2.77min、3.98min、9.88min、11.63min、13.02min、20.17min。 
实施例4:高纯八氟丙烷中气相杂质的分离检测 
99.999%以上纯度的八氟丙烷中气相杂质主要包括:氮(N2)、氧(O2)、一氧化碳(CO)、二氧化碳(CO2)、四氟化碳(CF4)、六氟乙烷(C2F6)。 
色谱柱配置为: 
Figure DEST_PATH_GSB00000929860100111
其它同实施例1,一次进样后八氟丙烷中最终杂质出峰顺序为:O2、N2、CO、CF4、CO2、C2F6。 
实施例5:高纯度四氟化碳中气相杂质的分离检测 
99.999%以上纯度的四氟化碳中气相杂质主要包括:氮(N2)、氧(O2)、一氧化碳(CO)、二氧化碳(CO2)、六氟乙烷(C2F6)、六氟化硫(SF6)、八氟丙烷(C3F8)。 
其它同实施例2,一次进样后四氟化碳中最终杂质出峰顺序为:O2、N2、CO、CO2、C2F6、SF6、C3F8。 
实施例6:六氟乙烷中气相杂质的分离检测 
六氟乙烷中中气相杂质主要包括:氮(N2)、氧(O2)、一氧化碳(CO)、二氧化碳(CO2)、四氟化碳(CF4)、八氟丙烷(C3F8)。 
其它同实施例2,一次进样后六氟乙烷中最终杂质出峰顺序为:O2、N2、CO、CO2、CF4、C3F8。 

Claims (2)

1.一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统,包括2个四通阀、2个十通阀、1个八通阀、1个定量环、4根色谱柱、14个压力平衡调节阀和1个放电离子化检测器,系统载气为高纯氦气,其中第一四通阀(1)的第1接口、第2接口分别连接样品出口、样品进口,第一四通阀的第4接口连接第一路载气,第一四通阀的第3接口通过管路与第一十通阀(2)的第1接口连接;
第一十通阀(2)的第2接口连接气体出口,第一十通阀的第3接口和第10接口之间连接定量环(24),第一十通阀的第4接口连接第三路载气,第一十通阀的第5接口和第9接口之间连接预分离色谱柱(6),第一十通阀的第6接口通过管路与八通阀(3)的第1接口连接,第一十通阀的第7接口连接第二路载气,第一十通阀的第8接口连接压力平衡调节阀(21)后接气体出口;
八通阀(3)的第2接口通过管路与第二十通阀(4)的第1接口连接,八通阀的第3接口连接第五路载气,八通阀的第4接口连接压力平衡调节阀(19)后接气体出口,八通阀的第5接口通过管路与第二四通阀(5)的第1接口连接,八通阀的第6接口连接压力平衡调节阀(20)后接气体出口,八通阀的第7接口连接第四路载气,八通阀的第8接口连接第一分析色谱柱(7);
第二十通阀(4)的第2接口和第5接口之间连接管路和压力平衡调节阀(17),第二十通阀的第3接口和第8接口之间连接管路,第二十通阀的第4接口连接压力平衡调节阀(18)后接气体出口,第二十通阀的第6接口连接第三分析色谱柱(9),第二十通阀的第7接口和第10接口之间连接第二分析色谱柱(8),第二十通阀的第9接口连接第六路载气;
第二四通阀(5)的第2接口连接第三分析色谱柱(9),第二四通阀的第3接口连接压力平衡调节阀(22)后接放电离子化检测器(25),第二四通阀的第4接口连接第一分析色谱柱(7)。
2.根据权利要求1所述的阀路系统,其特征是预分离色谱柱(6)采用Hayesep Q色谱柱、硅胶色谱柱或氟油色谱柱中的一种;第一分析色谱柱(7)是5A分子筛色谱柱,第二分析色谱柱(8)是Hayesep Q色谱柱,第三分析色谱柱(9)是Hayesep Q色谱柱。 
CN201220165015.XU 2012-04-10 2012-04-10 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统 Expired - Lifetime CN202631492U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201220165015.XU CN202631492U (zh) 2012-04-10 2012-04-10 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201220165015.XU CN202631492U (zh) 2012-04-10 2012-04-10 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统

Publications (1)

Publication Number Publication Date
CN202631492U true CN202631492U (zh) 2012-12-26

Family

ID=47384683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201220165015.XU Expired - Lifetime CN202631492U (zh) 2012-04-10 2012-04-10 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统

Country Status (1)

Country Link
CN (1) CN202631492U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636598A (zh) * 2012-04-10 2012-08-15 黎明化工研究院 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统及其使用方法
CN104914172A (zh) * 2014-03-10 2015-09-16 福建省邵武市永晶化工有限公司 一种气相色谱法测量含氟混合气体中氟气含量的方法
CN105181851A (zh) * 2015-10-13 2015-12-23 神华集团有限责任公司 环境中氮氧化物的测定方法
CN112485347A (zh) * 2020-11-05 2021-03-12 北京高麦克仪器科技有限公司 Hf中杂质分离分析方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636598A (zh) * 2012-04-10 2012-08-15 黎明化工研究院 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统及其使用方法
CN104914172A (zh) * 2014-03-10 2015-09-16 福建省邵武市永晶化工有限公司 一种气相色谱法测量含氟混合气体中氟气含量的方法
CN105181851A (zh) * 2015-10-13 2015-12-23 神华集团有限责任公司 环境中氮氧化物的测定方法
CN112485347A (zh) * 2020-11-05 2021-03-12 北京高麦克仪器科技有限公司 Hf中杂质分离分析方法

Similar Documents

Publication Publication Date Title
CN102636598B (zh) 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统及其使用方法
CN202631492U (zh) 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统
Sulzer et al. From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis
CN107121520A (zh) 一种高纯三氟化氮分析用无氧吸附的气相色谱阀路系统及其使用方法
KR101107196B1 (ko) 가스 분리 장치 및 가스 분리 방법
CN104678034B (zh) 测定高纯气体中杂质成分的分析系统及测定方法
CN108414633B (zh) 一种微量氮同位素的测定仪器及其应用
CN102628846B (zh) 超高纯气体中微量杂质分析的气相色谱检测系统及方法
CN102072934B (zh) 一种电力系统六氟化硫气体品质的检测方法
CN104931615A (zh) 一种气体中微量杂质分析装置及方法
CN101963596A (zh) 基于四极杆质谱的稀有气体测定系统
CN216285088U (zh) 一种用于高纯氟气中杂质的分析装置
US20110192215A1 (en) Analytical System for In-Line Analysis of Post-Combustion Capture Solvents
CN207215766U (zh) 一种高纯三氟化氮分析用无氧吸附的气相色谱阀路系统
CN103837629B (zh) 用于气体中co、ch4和co2组分色谱分析的装置及其检测方法
CN101907612A (zh) 一种对成品氢气中微量组份进行气相色谱分析的方法
CN101893614B (zh) 一种检测腐蚀性气体中杂质的方法
CN202256274U (zh) 一种氦离子气相色谱仪
CN203811584U (zh) 纯氧气相色谱检测通用装置
CN116223708A (zh) 用于四氟化碳中三氟化氮气体含量分析的气相色谱阀路系统及其使用方法
CN201837613U (zh) 一种用于检测腐蚀性气体中杂质的装置
CN112946126B (zh) 高纯三氟化氯中杂质定量、定性装置及方法
CN106093225B (zh) 利用He和CO2联合识别煤成气和/或油型气的方法
CN114660221A (zh) 一种三氟碘甲烷中杂质的分析装置及其分析方法
CN204575606U (zh) 用于电子级六氟化钨中微量杂质分析的在线分析仪

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20121226

Effective date of abandoning: 20140305

AV01 Patent right actively abandoned

Granted publication date: 20121226

Effective date of abandoning: 20140305