CN202330188U - Micro-torsion mechanical property testing device - Google Patents
Micro-torsion mechanical property testing device Download PDFInfo
- Publication number
- CN202330188U CN202330188U CN2011204546435U CN201120454643U CN202330188U CN 202330188 U CN202330188 U CN 202330188U CN 2011204546435 U CN2011204546435 U CN 2011204546435U CN 201120454643 U CN201120454643 U CN 201120454643U CN 202330188 U CN202330188 U CN 202330188U
- Authority
- CN
- China
- Prior art keywords
- twisted wire
- micro
- torsion
- dimensional translation
- rotation angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 17
- 238000013519 translation Methods 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 23
- 238000005259 measurement Methods 0.000 claims abstract description 22
- 238000006073 displacement reaction Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
一种低维材料微扭转力学性能测试装置,包括机架、力传感器、微扭矩传感器、扭丝转角测量组件、上、下夹头、步进电机、三维平移台、丝杠螺母组件、伺服控制器、A/D采集卡和计算机系统。微扭矩传感器的扭丝两端张紧固定在支架上,具有很好的刚度和稳定性,还可通过对扭丝的更换来调整测量范围。另外,微扭矩传感器的上端安装有力传感器,可实时检测扭转测试过程中轴向力大小。本实用新型采用光靶和光电位移传感器相结合的方式测量扭丝的转角,和传统的光杠杆法相比,结构紧凑,自动化程度高,稳定性好。通过调节三维平移台实现上、下夹持点的对中。计算机系统可实时获取试样的扭矩-转角曲线。本装置适用于各种低维材料的微扭转力学性能测试。
A device for testing micro-torsion mechanical properties of low-dimensional materials, including a frame, force sensors, micro-torque sensors, twisted wire rotation angle measurement components, upper and lower chucks, stepping motors, three-dimensional translation stages, screw nut components, and servo control device, A/D acquisition card and computer system. The two ends of the torsion wire of the micro-torque sensor are tensioned and fixed on the bracket, which has good rigidity and stability, and the measurement range can also be adjusted by replacing the torsion wire. In addition, a force sensor is installed on the upper end of the micro-torque sensor, which can detect the axial force during the torsion test in real time. The utility model adopts the method of combining the light target and the photoelectric displacement sensor to measure the rotation angle of the twisted wire. Compared with the traditional light lever method, the utility model has the advantages of compact structure, high degree of automation and good stability. The centering of the upper and lower clamping points is realized by adjusting the three-dimensional translation platform. The computer system can obtain the torque-rotation angle curve of the sample in real time. This device is suitable for testing the micro-torsion mechanical properties of various low-dimensional materials.
Description
技术领域 technical field
本实用新型涉及一种对纤维、薄膜等低维材料微扭转力学性能测试的装置,属于微尺度材料力学性能精密测量领域。The utility model relates to a device for testing the micro-torsion mechanical properties of low-dimensional materials such as fibers and films, and belongs to the field of precise measurement of mechanical properties of micro-scale materials.
背景技术 Background technique
微电子机械系统(Micro-electromechanical Systems,MEMS)是集传感、信息处理和执行于一体的集成微系统,已广泛应用于加速度传感器、惯性、压力传感器、微型喷气发动机、大规模数据存储系统和微型的生物化学分析设备等,应用领域还在不断扩大。MEMS系统的设计和选材大量采用几何特征尺寸在微米或亚微米量级的硅膜、金属薄膜以及各种纤维等低维材料。因此,对这类材料的力学行为进行准确可靠的测试,不仅对于MEMS的安全性和可靠性至关重要,而且对于微纳米力学和材料科学的研究也有着重要的学术和应用价值。特别是近年来的大量实验表明,当金属材料非均匀塑性变形的特征长度在微米或亚微米量级时,表现出强烈的尺度效应。为了测试微纳米材料的力学性能,研究人员设计了各种微拉伸、微压痕和微弯曲实验装置。但是,对于低维材料的微扭转实验,由于面临诸如扭矩传感器的灵敏度和稳定性、转角的测量、试样的夹持和对中等问题,这方面的工作一直停滞不前,相应的实验装置也鲜有报道。Micro-electromechanical systems (MEMS) are integrated microsystems that integrate sensing, information processing and execution, and have been widely used in acceleration sensors, inertial, pressure sensors, micro jet engines, large-scale data storage systems and Miniature biochemical analysis equipment, etc., the application field is still expanding. The design and material selection of MEMS systems use a large number of low-dimensional materials such as silicon films, metal films, and various fibers with geometric feature sizes on the order of microns or submicrons. Therefore, accurate and reliable testing of the mechanical behavior of such materials is not only crucial for the safety and reliability of MEMS, but also has important academic and application value for the research of micro-nano mechanics and materials science. In particular, a large number of experiments in recent years have shown that when the characteristic length of non-uniform plastic deformation of metal materials is on the order of microns or submicrons, it shows a strong scale effect. In order to test the mechanical properties of micro-nano materials, researchers designed various micro-tension, micro-indentation and micro-bending experimental devices. However, for the micro-torsion experiment of low-dimensional materials, due to problems such as the sensitivity and stability of the torque sensor, the measurement of the rotation angle, the clamping and centering of the sample, the work in this area has been stagnant, and the corresponding experimental devices have also been delayed. Rarely reported.
低维材料的微扭转力学性能测量作为一个新问题,目前还没有比较完善的测量方法。Sail等(M.T.A Saif and N.C MacDonald,Journal of MaterialsResearch 13,3353(1998).)利用微加工技术将扭转试样、致动器和校准棒等耦合在一个MEMS系统内,对尺寸为1μm×1μm和1.5μm×1.5μm的矩形截面单晶硅材料进行了微扭转力学性能测试。这种方法存在的问题是驱动力的标定困难,试样的小尺寸影响测试结果,而且该装置的量程较小。Schiltges等(G.Schiltges,D.Gsell,and J.Dual,Microsystem technologies 5,22(1998).)研制的扭转装置中试样粘在夹具上,并与扭矩传感器的轴线保持一致,扭转角度的测量采用光杠杆原理,试样的拉应力由精密天平测量。通过对硅和镍试样的微扭转实验发现,该装置存在的缺陷主要有:试样的装夹和对中不方便,结构稳定性差,扭丝转角测量组件复杂,测量结果误差较大。Fleck等(N.A.Fleck et al.,Acta Metallurgica et Materialia 42,475(1994).)为了研究细铜丝微扭转过程中的尺度效应,搭建了一台细丝微扭转实验装置,该装置采用玻璃丝作为扭转弹性元件,玻璃丝的两端分别与试样和驱动装置连接,试样的扭转角通过两个指针和角度尺获得。该装置仍然存在试样的装夹和对中不方便,结构稳定性差,角度数据读取效率低下等缺点。The measurement of microtorsion mechanical properties of low-dimensional materials is a new problem, and there is no relatively perfect measurement method at present. Sail et al. (M.T.A Saif and N.C MacDonald, Journal of Materials Research 13, 3353 (1998).) used micromachining technology to couple torsion specimens, actuators, and calibration rods in a MEMS system, with a size of 1 μm × 1 μm and The 1.5μm×1.5μm rectangular cross-section monocrystalline silicon material was tested for micro-torsion mechanical properties. The problems of this method are that it is difficult to calibrate the driving force, the small size of the sample affects the test results, and the measuring range of the device is small. In the torsion device developed by Schiltges et al. (G.Schiltges, D.Gsell, and J.Dual, Microsystem technologies 5, 22 (1998).), the sample is glued to the fixture and kept consistent with the axis of the torque sensor. The measurement adopts the light lever principle, and the tensile stress of the sample is measured by a precision balance. Through micro-torsion experiments on silicon and nickel samples, it is found that the main defects of the device are: inconvenient clamping and centering of samples, poor structural stability, complex twisted wire rotation angle measurement components, and large errors in measurement results. Fleck et al. (N.A.Fleck et al., Acta Metallurgica et Materialia 42, 475 (1994).) In order to study the scale effect in the micro-twisting process of fine copper wires, a fine wire micro-twisting experimental device was built, which used glass wire as The torsion elastic element, the two ends of the glass filament are connected with the sample and the driving device respectively, and the torsion angle of the sample is obtained by two pointers and an angle ruler. The device still has disadvantages such as inconvenient clamping and centering of the sample, poor structural stability, and low efficiency in reading angle data.
综上所述,微扭转实验作为观测低维材料尺度效应和扭转力学性能最为直接有效的手段,其测试方法还很不完善。因此,研制低维材料微扭转力学性能测试装置具有重要的科学意义和实用价值,也将为推动微纳米力学和微机电系统的发展做出较大贡献。To sum up, the micro-torsion experiment is the most direct and effective means to observe the scale effect and torsional mechanical properties of low-dimensional materials, and its testing method is still far from perfect. Therefore, it is of great scientific significance and practical value to develop a device for testing the micro-torsion mechanical properties of low-dimensional materials, and it will also make a great contribution to the development of micro-nano mechanics and MEMS.
实用新型内容 Utility model content
本实用新型的目的在于提供一种低维材料微扭转力学性能测试的装置,自动、实时、精确地测量纤维、薄膜等低维材料试样在微扭转时的扭矩-转角曲线,从而获得表征低维材料扭转力学性能的参数值;该装置具有适用范围广,灵敏度高,结构稳定,测量结果可靠的优点。The purpose of this utility model is to provide a device for testing the micro-torsion mechanical properties of low-dimensional materials. The parameter value of the torsional mechanical properties of the dimension material; the device has the advantages of wide application range, high sensitivity, stable structure and reliable measurement results.
本实用新型提供的一种低维材料微扭转力学性能测试装置,其特征在于,该装置包括机架、力传感器、微扭矩传感器、扭丝转角测量组件、上夹头、下夹头、步进电机、三维平移台、丝杠螺母组件、伺服控制器、A/D采集卡和计算机系统;微扭矩传感器包括扭丝、支架、矩形框、上扭丝固定块和下扭丝固定块;扭丝张紧固定在支架上,两端分别用上扭丝固定块和下扭丝固定块压紧,矩形框悬挂固定于扭丝的中部。The utility model provides a low-dimensional material micro-torsion mechanical performance testing device, which is characterized in that the device includes a frame, a force sensor, a micro-torque sensor, a twisted wire rotation angle measurement component, an upper chuck, a lower chuck, a stepper Motor, three-dimensional translation stage, lead screw nut assembly, servo controller, A/D acquisition card and computer system; micro torque sensor includes torsion wire, bracket, rectangular frame, upper torsion wire fixed block and lower torsion wire fixed block; torsion wire Tensioned and fixed on the support, the two ends are respectively pressed by the upper twisted wire fixing block and the lower twisted wire fixing block, and the rectangular frame is suspended and fixed in the middle of the twisted wire.
微扭矩传感器的支架通过力传感器悬挂固定在机架的上端,上夹头采用扣件的方式连接在矩形框的下端,下夹头安装在步进电机的主轴上,上夹头与下夹头用于夹持试样,步进电机安放在三维平移台上,三维平移台安装在丝杠螺母组件上,丝杠螺母组件固定在机架的底部。The bracket of the micro-torque sensor is suspended and fixed on the upper end of the frame through the force sensor. The upper chuck is connected to the lower end of the rectangular frame by means of fasteners. The lower chuck is installed on the main shaft of the stepping motor. The upper chuck and the lower chuck For clamping the sample, the stepper motor is placed on the three-dimensional translation platform, the three-dimensional translation platform is installed on the lead screw nut assembly, and the lead screw nut assembly is fixed at the bottom of the frame.
所述的伺服控制器与步进电机电连接;A/D采集卡用于对扭丝转角和轴向拉力的数据采集,伺服控制器和A/D采集卡均与计算机系统电连接;The servo controller is electrically connected with the stepping motor; the A/D acquisition card is used for data acquisition of the twisted wire rotation angle and axial tension, and the servo controller and the A/D acquisition card are electrically connected with the computer system;
扭丝转角测量组件由一维平移台、光电位移传感器和光靶组成,一维平移台安装在机架的侧面支板上,光电位移传感器安放在一维平移台上,光靶固定在矩形框和扭丝的连接处,并和扭丝保持在同一平面,并且光靶对着光电位移传感器的出光口,光电位移传感器的发射光束A打在光靶上。The twisted wire rotation angle measurement component consists of a one-dimensional translation stage, a photoelectric displacement sensor and a light target. The one-dimensional translation stage is installed on the side support plate of the frame, the photoelectric displacement sensor is placed on the one-dimensional translation stage, and the light target is fixed on the rectangular frame and The joint of the twisted wire is kept on the same plane as the twisted wire, and the light target faces the light outlet of the photoelectric displacement sensor, and the emitted beam A of the photoelectric displacement sensor hits the light target.
本实用新型与现有技术相比,具有以下优点及突出性效果:(1)采用扭丝作为扭转弹性元件,扭丝张紧固定在支架上,大大地提高了系统的刚度和稳定性,为实现低维材料微扭矩的自动化、智能化测量奠定了基础;作用在试样上的扭矩通过上夹头和矩形框直接传递给扭丝,无摩擦阻力矩干扰,测试结果更加稳定、精确;通过更换不同规格的扭丝,可以制作出不同量程的微扭矩传感器,从而实现对低维材料微扭转力学性能的宽量程测量。(2)本实用新型采用非接触式光电位移传感器测量靶面光点的位移δ,然后将位移量转化为扭丝的转角,分辨率可高达10-6rad。与传统的光杠杆原理测量转角相比,结构更加紧凑,自动化程度更高,稳定性更好。(3)夹头组件均采用特制的四头索咀式圆柱形夹头,通过调节三维平移台以保证上、下夹头的对中性。(4)上夹头与矩形框采用扣件式连接,试样装夹方便。(5)微扭矩传感器的上端固定有力传感器,可以实时检测试样的预加张力和在微扭转过程中的Z向张力大小。整个测量具有自动化、实时化、智能化、高精度、高灵敏度和宽量程的特点,且装置结构紧凑,性能稳定,操作简便,测量结果可靠,适用于各种低维材料的微扭转力学性能测试。Compared with the prior art, the utility model has the following advantages and prominent effects: (1) twisted wire is used as the torsion elastic element, and the twisted wire is tensioned and fixed on the bracket, which greatly improves the rigidity and stability of the system, and provides The realization of automatic and intelligent measurement of micro-torque of low-dimensional materials has laid the foundation; the torque acting on the sample is directly transmitted to the torsion wire through the upper chuck and the rectangular frame, without frictional resistance torque interference, and the test results are more stable and accurate; through By replacing the torsion wires of different specifications, micro-torque sensors with different ranges can be produced, so as to realize the wide-range measurement of the micro-torsion mechanical properties of low-dimensional materials. (2) The utility model uses a non-contact photoelectric displacement sensor to measure the displacement δ of the light spot on the target surface, and then converts the displacement into the twisted wire rotation angle, and the resolution can be as high as 10 -6 rad. Compared with the traditional optical lever principle to measure the rotation angle, the structure is more compact, the degree of automation is higher, and the stability is better. (3) The chuck assembly adopts a special four-head cable nozzle cylindrical chuck, and the alignment of the upper and lower chucks is ensured by adjusting the three-dimensional translation platform. (4) The upper chuck and the rectangular frame are connected by fasteners, which is convenient for sample clamping. (5) The upper end of the micro-torque sensor is fixed with a force sensor, which can detect the pre-tension of the sample and the Z-direction tension during the micro-torsion process in real time. The entire measurement has the characteristics of automation, real-time, intelligence, high precision, high sensitivity and wide range, and the device is compact in structure, stable in performance, easy to operate, reliable in measurement results, and suitable for micro-torsion mechanical performance tests of various low-dimensional materials. .
附图说明 Description of drawings
图1为本实用新型的结构示意图。Fig. 1 is the structural representation of the utility model.
图2为扭丝转角测量组件示意图。Fig. 2 is a schematic diagram of a twisted wire rotation angle measuring assembly.
图3为铜丝(38μm)的扭矩-转角曲线图。Fig. 3 is a torque-angle curve diagram of copper wire (38 μm).
图中:1-机架;2-三维平移台;3-丝杠螺母组件;4-步进电机;5-下夹头;6-试样;7-上夹头;8-支架;9-下扭丝固定块;10-矩形框;11-一维平移台;12-光电位移传感器;13-光靶;14-扭丝;15-上扭丝固定块;16-力传感器;17-伺服控制器;18-A/D采集卡;19-计算机系统;A-激光束;B-光靶初始位置;B′-光靶当前位置;C-光点。In the figure: 1-frame; 2-three-dimensional translation stage; 3-screw nut assembly; 4-stepper motor; 5-lower chuck; 6-sample; 7-upper chuck; 8-bracket; 9- Lower twisted wire fixed block; 10-rectangular frame; 11-one-dimensional translation stage; 12-photoelectric displacement sensor; 13-light target; 14-twisted wire; 15-upper twisted wire fixed block; 16-force sensor; Controller; 18-A/D acquisition card; 19-computer system; A-laser beam; B-initial position of light target; B'-current position of light target; C-light spot.
具体实施方式 Detailed ways
现结合附图对本实用新型的实施方式作进一步的详细说明。The embodiment of the present utility model is described in further detail in conjunction with accompanying drawing now.
本实用新型是基于扭秤的静态工作原理,但形式上进行了改进,提高了结构的刚度,保证了良好的稳定性。The utility model is based on the static working principle of the torsion balance, but the form is improved to increase the rigidity of the structure and ensure good stability.
如图1所示,本实用新型装置包括机架1、力传感器16、微扭矩传感器、扭丝转角测量组件、上夹头7、下夹头5、步进电机4、三维平移台2、丝杠螺母组件3、伺服控制器17、A/D采集卡18和计算机系统19。As shown in Figure 1, the utility model device includes a frame 1, a
微扭矩传感器由扭丝14、支架8、矩形框10和上、下扭丝固定块15、9组成;扭丝14张紧固定在支架8上,两端分别由扭丝固定块15、9压紧,矩形框10悬挂固定于扭丝14的中部。Micro-torque sensor is made up of
扭丝转角测量组件由一维平移台11、光电位移传感器12和光靶13组成。一维平移台11安装在机架1的侧面支板上,光电位移传感器12安放在一维平移台11上,光靶13固定在矩形框10和扭丝14的连接处,并和扭丝14保持在同一平面,并且光靶13对着光电位移传感器12的出光口,光电位移传感器12的发射光束A打在光靶13上。The twisted wire rotation angle measurement assembly consists of a one-dimensional translation stage 11 , a
微扭矩传感器的支架8通过力传感器16悬挂固定在机架1的上端,上夹头7连接在矩形框10的下端,下夹头5安装在步进电机4的主轴上,上、下夹头7、5之间夹持试样6,步进电机4安放在三维平移台2上,三维平移台2安装在丝杠螺母组件3上,丝杠螺母组件3固定在机架1的底部。The
所述的微扭矩传感器,其特征在于弹性元件扭丝14两端张紧固定在支架8上,大大提高了系统的刚度,作用在试样6上的扭矩通过上夹头7和矩形框10直接传递给扭丝14,无摩擦阻力矩干扰,测试结果稳定、精确;所述的扭丝转角测量组件,其特征在于采用光学非接触的方法测量扭丝的转角,结构简单,分辨率高,其中靶面13上光点C和扭丝14之间的距离通过调节一维平移台11获得;所述的上、下夹头7、5,其特征在于均采用四头索咀式圆柱形夹头,对中性好,其中上夹头7与矩形框10采用扣件式连接,试样装夹方便;所述的伺服控制器17用于对步进电机4的运动控制;A/D采集卡18用于对扭丝14转角和轴向拉力的数据采集;计算机系统19用于完成测试系统的参数设置、数据分析与处理以及扭矩-转角曲线的实时显示。The micro-torque sensor is characterized in that the two ends of the elastic
其步骤:Its steps:
(1)按照测量要求,截取一定长度无损伤的材料试样,用软基材料作衬垫粘贴试样的两端,完成试样6的制作。用镊子将试样夹持于上夹头7和下夹头5之间,并使之处于松弛状态。然后,调节三维平移台2的X、Y方向,使上、下夹持点和扭丝14保持在同一轴线。(1) According to the measurement requirements, cut a certain length of undamaged material sample, use soft base material as a pad to paste the two ends of the sample, and complete the production of
(2)对试样施加一定预加张力,使试样6保持伸直。首先粗调丝杠螺母组件3,然后沿Z方向精调三维平移台2,带动步进电机4和下夹头5向下移动,给试样6施加一预加张力,预加张力的大小由力传感器16检测。(2) Apply a certain pretension to the sample to keep the
(3)对试样6进行扭转加载,当试样6扭转一定角度时,试样6中的扭矩T,通过上夹头7传递给微扭矩传感器,在T的作用下微扭矩传感器的平衡位置将发生偏转,此时,作为扭转弹性元件的扭丝14将提供一反力矩Tw,使得系统重新达到平衡。用扭丝转角测量组件检测出扭丝14相应的转角θ,根据力矩平衡得试样的扭矩(3) The
T=Tw=Kθ ①T= Tw =Kθ ①
式中,K为扭丝14的扭转弹性系数,θ为扭丝14的扭转角。由于矩形框10把扭丝14分成l1、l2两段,根据材料力学知识有In the formula, K is the torsional elastic coefficient of the twisted
式中,G为扭丝14的切变模量,d为扭丝14的直径。In the formula, G is the shear modulus of the twisted
所述的扭丝转角测量组件如附图2所示,光靶13的初始位置B(基准面)与光电位移传感器12的激光束A垂直,当扭丝14带动光靶13转动到B′时,光电位移传感器12测量出其偏离基准面B的位移δ,则扭丝14的转角为The twisted wire rotation angle measurement assembly is shown in Figure 2, the initial position B (reference plane) of the
式中,L为光靶13上的光点C距离扭丝的距离。In the formula, L is the distance between the light spot C on the
此时,试样6的扭转角为At this time, the torsion angle of
④ ④
式中,为步进电机4对试样6施加的转角。In the formula, is the rotation angle applied by the stepping motor 4 to the
(4)扭丝14的转角θ及步进电机4对试样6施加的转角分别由A/D采集卡18和伺服控制器17传递给计算机系统19,再根据式①~④,计算机系统19就可以实时获得试样微扭转时的扭矩-转角曲线。测试完毕后,保存相关数据,如图3所示。(4) The angle of rotation θ of the twisted
实例:Example:
装置中微扭矩传感器的扭丝采用直径为80μm的纯钨丝,上、下两段扭丝的长度都取20cm,其分辨率为0.5μN.cm,量程为±6000μN.cm。力传感器的分辨率为0.1mN,测量范围为±5N。选用的光电位移传感器的分辨率为1μm,量程为±15mm,采用三角法测量靶面的转动距离。选用的步进电机的最小步距角为0.0072°。丝杠螺母组件的行程为200mm,一维平移台的行程为20mm,三维平移台X、Y、Z三个方向的行程皆为10mm。The twisted wire of the micro-torque sensor in the device is pure tungsten wire with a diameter of 80 μm. The length of the upper and lower twisted wires is 20 cm, the resolution is 0.5 μN.cm, and the measuring range is ±6000 μN.cm. The force sensor has a resolution of 0.1mN and a measuring range of ±5N. The selected photoelectric displacement sensor has a resolution of 1 μm and a measuring range of ±15 mm, and uses triangulation to measure the rotational distance of the target surface. The selected stepper motor has a minimum step angle of 0.0072°. The stroke of the screw nut assembly is 200mm, the stroke of the one-dimensional translation stage is 20mm, and the strokes of the three-dimensional translation stage X, Y, and Z are all 10mm.
本实用新型不仅局限于上述具体实施方式,本领域一般技术人员根据本实用新型公开的内容,可以采用其它多种具体实施方式实施本实用新型,因此,凡是采用本实用新型的设计结构和思路,做一些简单的变化或更改的设计,都落入本实用新型保护的范围。The utility model is not limited to the above-mentioned specific implementation methods, and those skilled in the art can implement the utility model by adopting other various specific implementation modes according to the disclosed content of the utility model. Do some simple changes or modified designs, all fall into the protection scope of the present utility model.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011204546435U CN202330188U (en) | 2011-11-16 | 2011-11-16 | Micro-torsion mechanical property testing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011204546435U CN202330188U (en) | 2011-11-16 | 2011-11-16 | Micro-torsion mechanical property testing device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202330188U true CN202330188U (en) | 2012-07-11 |
Family
ID=46442166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011204546435U Expired - Lifetime CN202330188U (en) | 2011-11-16 | 2011-11-16 | Micro-torsion mechanical property testing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202330188U (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103364115A (en) * | 2013-07-02 | 2013-10-23 | 中国矿业大学 | Tension and torque composite measuring device |
CN104297089A (en) * | 2014-10-15 | 2015-01-21 | 中国矿业大学 | Microcosmic frictional wear performance testing device |
CN105300809A (en) * | 2015-11-18 | 2016-02-03 | 浙江理工大学 | Automatic sample member exchange low-temperature mechanical testing apparatus and automatic sample member exchange low-temperature mechanical testing method |
CN105445001A (en) * | 2014-09-29 | 2016-03-30 | 比亚迪股份有限公司 | Measurement method and measurement device of micro-motion performance of fork lift truck operating handle |
CN106989853A (en) * | 2017-05-05 | 2017-07-28 | 北京航空航天大学 | A kind of micro- torque tester |
CN113324685A (en) * | 2021-06-25 | 2021-08-31 | 华中科技大学 | Non-contact torque sensor |
CN113504138A (en) * | 2021-07-15 | 2021-10-15 | 太原理工大学 | Silicon-based MEMS multi-environment torsion fatigue characteristic testing system and method |
CN117309595A (en) * | 2023-10-10 | 2023-12-29 | 深圳市鑫东泰电子有限公司 | Anti-compression anti-falling testing mechanism of lithium battery BMS detector |
CN118577934A (en) * | 2024-08-01 | 2024-09-03 | 华中科技大学 | Micron-level quartz wire welding device and method based on laser melting |
-
2011
- 2011-11-16 CN CN2011204546435U patent/CN202330188U/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103364115A (en) * | 2013-07-02 | 2013-10-23 | 中国矿业大学 | Tension and torque composite measuring device |
CN105445001A (en) * | 2014-09-29 | 2016-03-30 | 比亚迪股份有限公司 | Measurement method and measurement device of micro-motion performance of fork lift truck operating handle |
CN104297089A (en) * | 2014-10-15 | 2015-01-21 | 中国矿业大学 | Microcosmic frictional wear performance testing device |
CN105300809A (en) * | 2015-11-18 | 2016-02-03 | 浙江理工大学 | Automatic sample member exchange low-temperature mechanical testing apparatus and automatic sample member exchange low-temperature mechanical testing method |
CN105300809B (en) * | 2015-11-18 | 2018-06-12 | 浙江理工大学 | The automatic cryomechanics test method for exchanging sample coupon for |
CN106989853A (en) * | 2017-05-05 | 2017-07-28 | 北京航空航天大学 | A kind of micro- torque tester |
CN113324685A (en) * | 2021-06-25 | 2021-08-31 | 华中科技大学 | Non-contact torque sensor |
CN113504138A (en) * | 2021-07-15 | 2021-10-15 | 太原理工大学 | Silicon-based MEMS multi-environment torsion fatigue characteristic testing system and method |
CN117309595A (en) * | 2023-10-10 | 2023-12-29 | 深圳市鑫东泰电子有限公司 | Anti-compression anti-falling testing mechanism of lithium battery BMS detector |
CN118577934A (en) * | 2024-08-01 | 2024-09-03 | 华中科技大学 | Micron-level quartz wire welding device and method based on laser melting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202330188U (en) | Micro-torsion mechanical property testing device | |
CN102183418B (en) | Device for testing micro-torsion mechanical property of low-dimension material | |
CN103994929B (en) | Mechanics Performance Testing device and the method with this device to test micro structures mechanical characteristic | |
CN106680091A (en) | Testing device for mechanical strength of optical fiber grating | |
CN101281073A (en) | A mechanical sensor array calibration device and its working method | |
CN103335898A (en) | In-situ testing device for micro-mechanical properties of materials under tension-shear combined loading mode | |
CN104007028B (en) | Micro-member tensile test device | |
CN101241057A (en) | Film material micro tensile testing system | |
CN202869895U (en) | Load-displacement curve indentation testing device controlled by PC (Personal Computer) | |
CN104007015B (en) | Mechanics Performance Testing device and the method by this device to test micro structures natural frequency | |
CN2890890Y (en) | Micro-Nano Scale Mechanical Properties Tester | |
CN104019939A (en) | Multi-dimensional force loading and calibrating device of touch sensor | |
CN106769416A (en) | Portable crankling vibration test instrument | |
CN203758495U (en) | Clamping device suitable for rock deformation testing sensor calibration | |
Tian et al. | A novel compliant mechanism based system to calibrate spring constant of AFM cantilevers | |
CN103983526A (en) | Cross-scale micro-nano-scale in-situ shearing mechanical performance testing platform | |
CN103453832B (en) | A kind of Multipurpose deformation measurement mechanism and measuring method | |
CN206740383U (en) | A kind of fatigue strength tester | |
CN105136418B (en) | Micro- disturbance torque simulation system vibration characteristics device for testing and analyzing | |
CN104007014A (en) | Micro component comprehensive mechanical property test device | |
CN208012523U (en) | Exempt to destroy U-shaped strain gauge | |
CN108414355B (en) | Film stretching and loading unit with position locking function | |
CN112762851A (en) | Crack simulation calibration device based on fracture mechanics and optical fiber sensing | |
Chen et al. | Calibration technology of optical fiber strain sensor | |
Beutel et al. | Cell manipulation system based on a self-calibrating silicon micro force sensor providing capillary status monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20120711 Effective date of abandoning: 20130125 |
|
C20 | Patent right or utility model deemed to be abandoned or is abandoned |