CN201839223U - 无刷直流电机的零电压转换逆变电路 - Google Patents

无刷直流电机的零电压转换逆变电路 Download PDF

Info

Publication number
CN201839223U
CN201839223U CN2010205511157U CN201020551115U CN201839223U CN 201839223 U CN201839223 U CN 201839223U CN 2010205511157 U CN2010205511157 U CN 2010205511157U CN 201020551115 U CN201020551115 U CN 201020551115U CN 201839223 U CN201839223 U CN 201839223U
Authority
CN
China
Prior art keywords
bridge
circuit
inverter
phase rectification
zero voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010205511157U
Other languages
English (en)
Inventor
贺虎成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Science and Technology
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN2010205511157U priority Critical patent/CN201839223U/zh
Application granted granted Critical
Publication of CN201839223U publication Critical patent/CN201839223U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

本实用新型公开了一种无刷直流电机的零电压转换逆变电路,包括控制电路、直流电源和逆变桥,直流电源的输出端接分压电路,逆变桥各相的中点和分压电路的中点间连接有零电压转换辅助电路,零电压转换辅助电路由三个单向辅助开关、三个单相整流桥和一个电感构成;三个单向辅助开关的两端分别与三个单相整流桥的直流输出端相接;三个单相整流桥的一个交流端连接在一起,然后与电感的一端相接;三个单相整流桥的另一个交流端分别与逆变桥各相的中点相接;电感的另一端与分压电路的中点相接。本实用新型结构简单,控制便捷,降低了开关损耗,器件选择方便,附加成本低,谐振单元消耗能量少,实现了软性关断,克服了反向恢复问题,便于推广使用。

Description

无刷直流电机的零电压转换逆变电路
技术领域
本实用新型涉及一种开关变换电路,尤其是涉及一种无刷直流电机的零电压转换逆变电路。
背景技术
随着稀土永磁材料和电力电子技术的发展,永磁无刷直流电机高功率密度、高转矩/电流比、宽调速范围的优势越来越突出,已广泛应用于航空航天、家用电器及电动车辆等众多场合。然而,无刷直流电机通常采用硬开关逆变器驱动,硬开关逆变器的系统效率较低,开关器件的电压、电流应力大,散热器的体积和重量较大,而且硬性通/断产生的过高du/dt和di/dt给系统带来非常严重的电磁干扰,影响电机的绝缘寿命,功率开关器件开通和关断瞬间的电压和电流尖峰可能使功率器件的运行轨迹超出安全工作区,从而导致功率开关器件的损坏,影响系统的可靠性。因此,硬开关逆变器限制了大功率无刷直流电机驱动系统功率密度和性能的进一步提高,控制器效率、电磁干扰、体积重量问题日益突显,成为制约其快速发展的主要因素。为了解决硬开关逆变器的诸多问题,人们将更多的努力投向了软开关技术。专利200610105134.5实现了无刷直流电机的软开关逆变器驱动,但谐振直流环节有1个功率开关位于直流母线的主回路,当逆变桥的任意1个开关管需要开关动作时,整个母线电压必须谐振到零,使母线电压出现很多零电压凹槽,既影响了谐振频率的进一步提高,又增加了导通功耗。专利200710017363.6解决了谐振直流环节带来的不利因素,但无刷直流电机的PWM调制方式只能选用HON_LPWM,即上桥侧开关器件在导通的120°区间保持恒通,下桥侧开关在导通的120°区间工作于PWM调制频率,当逆变桥功率开关选用自举电路驱动时,无刷直流电机将不能正常工作。
实用新型内容
本实用新型所要解决的技术问题在于针对上述现有技术中的不足,提供一种无刷直流电机的零电压转换逆变电路,其结构简单,控制便捷,提高了PWM开关频率,降低了开关损耗,器件选择方便,附加成本低,谐振单元消耗能量少,实现了软性关断,克服了反向恢复问题,便于推广使用。
为解决上述技术问题,本实用新型采用的技术方案是:一种无刷直流电机的零电压转换逆变电路,包括控制电路、直流电源和将直流电转换成交流电的逆变桥,所述直流电源的输出端接分压电路,所述逆变桥与控制电路相接,所述逆变桥的各下桥臂带有缓冲电容,其特征在于:所述逆变桥各相的中点和分压电路的中点间连接有零电压转换辅助电路,所述零电压转换辅助电路由三个单向辅助开关Tr1、Tr2和Tr3,三个单相整流桥和一个电感Lr构成;所述三个单相整流桥分别为由二极管Da1、Da2、Da3和Da4构成的单向整流桥一,由二极管Db1、Db2、Db3和Db4构成的单向整流桥二以及由二极管Dc1、Dc2、Dc3和Dc4构成的单向整流桥三;所述单向辅助开关Tr1、Tr2和Tr3的两端分别与单相整流桥一、单相整流桥二和单相整流桥三的直流输出端相接;单相整流桥一的一个交流端、单相整流桥二的一个交流端和单相整流桥三的一个交流端连接在一起,然后与电感Lr的一端相接;单相整流桥一的另一个交流端、单相整流桥二的另一个交流端和单相整流桥三的另一个交流端分别与逆变桥各相的中点相接;电感Lr的另一端与分压电路的中点相接;所述零电压转换辅助电路与控制电路相接并由控制电路发出的信号dTr1、dTr2和dTr3控制单向辅助开关Tr1、Tr2和Tr3的导通和关断。
所述单向辅助开关Tr1、Tr2和Tr3是全控性器件。
所述单向辅助开关Tr1、Tr2和Tr3是功率晶体管、绝缘栅双极晶体管、功率场效应晶体管或智能功率模块。
所述二极管Da1、Da2、Da3、Da4、Db1、Db2、Db3、Db4、Dc1、Dc2、Dc3和Dc4均为快恢复二极管或高频二极管。
本实用新型与现有技术相比具有以下优点:
1、本实用新型零电压转换辅助电路由三个单向辅助开关、三个单相整流桥和一个电感构成,结构简单,控制便捷。
2、本实用新型逆变桥开关器件的PWM调制开通与关断均在零电压开关条件下进行,因而可提高PWM开关频率和降低开关损耗。
3、本实用新型零电压转换辅助电路的开关均在零电流开关条件下进行开通与关断,且其电压应力仅为直流母线电压的一半,有利于器件选择和降低附加成本。
4、本实用新型谐振过程所用的时间较短且只用一个电感,谐振单元消耗的能量较小。
5、本实用新型逆变桥中的续流二极管实现了软性关断,克服了反向恢复问题。
下面通过附图和实施例,对本实用新型的技术方案做进一步的详细描述。
附图说明
图1为本实用新型的结构示意图。
图2为本实用新型一个工作状态上管调制、下管恒通运行时的等效电路图。
图3为本实用新型一个工作状态上管调制、下管恒通运行时的时序波形图。
图4a为本实用新型一个工作状态上管调制、下管恒通运行时的动作模式a[t0~t1]的电路图。
图4b为本实用新型一个工作状态上管调制、下管恒通运行时的动作模式b[t1~t2]的电路图。
图4c为本实用新型一个工作状态上管调制、下管恒通运行时的动作模式c[t2~t3]的电路图。
图4d为本实用新型一个工作状态上管调制、下管恒通运行时的动作模式d[t3~t4]的电路图。
图4e为本实用新型一个工作状态上管调制、下管恒通运行时的动作模式e[t4~t5]的电路图。
图4f为本实用新型一个工作状态上管调制、下管恒通运行时的动作模式f[t5~t6]的电路图。
图5为本实用新型一个工作状态上管恒通、下管调制运行时的等效电路图。
图6为本实用新型一个工作状态上管恒通、下管调制运行时的时序波形图。
图7a为本实用新型一个工作状态上管恒通、下管调制运行时的动作模式M1[t10~t11]的电路图。
图7b为本实用新型一个工作状态上管恒通、下管调制运行时的动作模式M2[t11~t12]的电路图。
图7c为本实用新型一个工作状态上管恒通、下管调制运行时的动作模式M3[t12~t13]的电路图。
图7d为本实用新型一个工作状态上管恒通、下管调制运行时的动作模式M4[t13~t14]的电路图。
图7e为本实用新型一个工作状态上管恒通、下管调制运行时的动作模式M5[t14~t15]的电路图。
图7f为本实用新型一个工作状态上管恒通、下管调制运行时的动作模式M6[t15~t16]的电路图。
图8为本实用新型一个工作状态逆变桥中开关器件的相关仿真波形。
图9为本实用新型一个工作状态零电压转换辅助电路中单向辅助开关的相关仿真波形。
附图标记说明:
1-直流电源;2-分压电路;    3-零电压转换辅助电路;
4-逆变桥;  5-无刷直流电机;6-控制电路。
具体实施方式
如图1所示,本实用新型包括控制电路6、直流电源1和将直流电转换成交流电的逆变桥4,所述直流电源1的输出端接分压电路2,所述逆变桥4与控制电路6相接,所述逆变桥4的各下桥臂带有缓冲电容,其特征在于:所述逆变桥4各相的中点和分压电路2的中点间连接有零电压转换辅助电路3,所述零电压转换辅助电路3由三个单向辅助开关Tr1、Tr2和Tr3,三个单相整流桥和一个电感Lr构成;所述三个单相整流桥分别为由二极管Da1、Da2、Da3和Da4构成的单向整流桥一,由二极管Db1、Db2、Db3和Db4构成的单向整流桥二以及由二极管Dc1、Dc2、Dc3和Dc4构成的单向整流桥三;所述单向辅助开关Tr1、Tr2和Tr3的两端分别与单相整流桥一、单相整流桥二和单相整流桥三的直流输出端相接;单相整流桥一的一个交流端、单相整流桥二的一个交流端和单相整流桥三的一个交流端连接在一起,然后与电感Lr的一端相接;单相整流桥一的另一个交流端、单相整流桥二的另一个交流端和单相整流桥三的另一个交流端分别与逆变桥4各相的中点相接;电感Lr的另一端与分压电路2的中点相接;所述零电压转换辅助电路3与控制电路6相接并由控制电路6发出的信号dTr1、dTr2和dTr3控制单向辅助开关Tr1、Tr2和Tr3的导通和关断。
本实施例中,所述直流电源1采用电池串并联产生的直流电源E;所述分压电路2由两个电容CD1、CD2串接而成,分压电路2的两端连接直流电源1;所述逆变桥4为三相逆变桥,三相逆变桥每个桥臂由两个IGBT同向串联构成,每个IGBT包括一个功率开关器件Tx(x取值从1到6)和一个反向并联的续流二极管Dx(x取值从1到6),且各下桥臂的IGBT并联有缓冲电容Cra、Crb、Crc;所述功率开关器件Tx(x取值从1到6)是全控性器件;所述功率开关器件Tx(x取值从1到6)是功率晶体管(GTR)、绝缘栅双极晶体管(IGBT)、功率场效应晶体管(MOSFET)或智能功率模块(IPM),这样,开关电路完全由控制电路6直接控制,无须增加开通或关断辅助电路。逆变桥4桥臂的中点称之为极,三相逆变桥的三个极点与无刷直流电机5相连,由控制电路6发出的信号dTx(x取值从1到6)控制功率开关器件Tx(x取值从1到6)的导通和关断。
本实施例中,所述单向辅助开关Tr1、Tr2和Tr3是全控性器件。所述单向辅助开关Tr1、Tr2和Tr3是功率晶体管(GTR)、绝缘栅双极晶体管(IGBT)、功率场效应晶体管(MOSFET)或智能功率模块(IPM)。所述二极管Da1、Da2、Da3、Da4、Db1、Db2、Db3、Db4、Dc1、Dc2、Dc3和Dc4均为快恢复二极管或高频二极管。快恢复二极管和高频二极管不仅具有足够的耐压,而且其描述频率特性的反向恢复时间足够短。
本实用新型的工作过程是:逆变桥4开关需要开通时,零电压转换辅助电路3为逆变桥4开关器件创造零电压条件,在脉宽调制信号(PWM)的上升沿,控制电路6发信号使零电压转换辅助电路3开关动作,电感与电容谐振使逆变桥4开关的端电压降到零。在逆变桥4开关的端电压下降到零时,逆变桥4开关进行零电压开关开通。逆变桥4开关需要关断时,因缓冲电容的存在,可在PWM信号的下降沿直接零电压关断。
为了进一步说明本实用新型零电压转换辅助电路3的工作原理,取无刷直流电机5的a相和c相通电的一个工作状态(即电流从a相流入无刷直流电机5,c相流出无刷直流电机5来分析。由于电机电感远大于谐振电感,逆变开关状态过渡瞬间的负载电流可以认为是恒流源Io。
本实用新型的工作原理分为上管调制和下管调制工作状态。
在上管调制工作状态,T1管PWM调制、T2管常通的状态时段。此时逆变器过渡状态时的等效电路如图2所示,图中iLr为谐振电感Lr的电流。当T1要关断,关断一段时间后导通,其一个PWM开关过程的时序波形如图3所示,图中uCa为电容Cra两端电压。假定逆变桥4开关需要开关动作,当T1要PWM关断时,直接由控制电路6封锁T1的驱动信号dT1,由于电容Cra的作用,uCa不能立刻下降,所以T1两端电压不能立即上升,T1实现了零电压开关条件关断;当T1要PWM导通时,控制电路6输出Tr1驱动信号dTr1,由于电感Lr的作用,Tr1为零电流开关条件开通,电感与电容谐振使得T1两端电压下降到零,T1开关在控制电路6输出的驱动信号dT1下改变开关状态,使T1以零电压开关条件开通,开关过程结束后,当检测到Tr1的电流为零时控制电路6封锁Tr1驱动信号dTr1,完成一次PWM开关过程。下面分析图2的开关动作,它由6个工作模式组成,图4a-图4f给出了逆变器此状态过渡期间模式等效电路。
模式a[t0~t1]如图4a所示,假定这是电路的初始工作状态,T1、T2导通,辅助谐振电路不工作,和传统的硬开关逆变器驱动无刷直流电机工作情况相同,则有uCa(t)=E、iLr(t)=0,电源向负载提供能量,现期望T1管PWM调制关断。
模式b[t1~t2]如图4b所示,当t=t1时,直接关断T1,由于电容Cra的存在,uCa(t)电压不能突变,使得T1管两端电压不能立即上升,所以该关断为零电压开关条件。电容Cra向电机放电。
模式c[t2~t3]如图4c所示,当t=t2时,uCa(t)=0,续流二极管D4导通,此时完全等效于传统逆变器工作状态。
模式d[t3~t4]如图4d所示,当t=t3时,PWM逆变桥4需要开关操作,即T1管调制开通。零电压转换辅助电路3要为逆变桥4开关提供零电压开关条件,开通Tr1,由于电感电流不能突变,所以该开通为零电流开关条件。则电感电流正向线性增加,使流过续流二极管D4的电流线性减小。当t=t4时,电感电流和负载电流相等,使D4软关断。
模式e[t4~t5]如图4e所示,当t=t4时,电感电流和负载电流相等且继续增加,电感电流一部分和负载电流保持平衡,另一部分使得电感和电容Cra自然谐振,电容Cra电压上升。
模式f[t5~t6]如图4f所示,当t=t5时,iLr(t5)=I0、uCa(t5)=E,故电容Cra的充电停止,此时开通T1管则为零电压开关条件动作。T1管零电压开关条件开通后直流电源1向无刷直流电机5提供能量,则电感两端承受负电压使其正向电流迅速减小到零,然后即可零电流开关条件关断Tr1管。
当t=t6时,电路状态又回到模式a,完成了一次PWM运行。
在下管调制工作状态,T2管PWM调制、T1管常通的状态时段。此时逆变器过渡状态的等效电路如图5所示,图中Io为负载的等效电流。当T2要关断,关断一段时间后导通,其一个PWM开关过程的时序波形如图6所示,图中uCc为电容Crc两端的电压。假定逆变桥开关需要开关动作,当T2要PWM关断时,直接由控制电路6封锁T2的驱动信号dT2,由于电容Crc的作用,uCc不能立刻上升,所以T2两端电压不能立即上升至电源电压,T2实现了零电压开关条件关断;当T2要PWM导通时,控制电路6输出Tr3驱动信号dTr3,由于电感Lr的作用,Tr3为零电流开关条件开通,电感与电容谐振使得T2两端电压下降到零,T2开关在控制电路6输出的驱动信号dT2下改变开关状态,使T2以零电压开关条件开通,开关过程结束后,当检测到Tr3的电流为零时控制电路6封锁Tr3驱动信号dTr3,完成一次PWM开关过程。下面分析图5的开关动作,它由6个工作模式组成,图7a-图7f给出了逆变器状态过渡期间模式等效电路。
模式M1[t10~t11]如图7a所示,假定这是电路的初始工作状态,T1、T2导通,零电压转换辅助电路3不工作,和传统的硬开关逆变器驱动无刷直流电机工作情况相同,则有uCc(t)=0、iLr(t)=0。电源向负载提供能量,现期望T2管PWM调制关断。
模式M2[t11~t12]如图7b所示,当t=t11时,直接关断T2,由于电容Crc的存在,uCc(t)电压不能突变,使得T2管两端电压不能立即上升,所以该关断为零电压开关条件。无刷直流电机5电流向电容Crc充电。
模式M3[t12~t13]如图7c所示,当t=t12时,uCc(t)=E,续流二极管D5导通,此时完全等效于传统逆变器工作状态。
模式M4[t13~t14]如图7d所示,当t=t13时,逆变桥需要PWM开关操作,即T2管调制开通。开通Tr3,由于电感电流不能突变,所以该开通为零电流开关条件。则电感电流负向线性增加,使流过续流二极管D5的电流线性减小。当t=t14时,电感电流和负载电流相等,使D5软关断。
模式M5[t14~t15]如图7e所示,当t=t14时,电感电流和负载电流相等且继续增加,电感电流一部分和负载电流保持平衡,另一部分使得电感和电容Crc谐振,电容Crc放电电压下降。
模式M6[t15~t16]如图7f所示,当t=t15时,iLr(t15)=-I0、uCc(t5)=0,故电容Crc的放电停止,此时开通T2管则为零电压开关条件动作。T2管零电压开关条件开通后直流电源1向无刷直流电机5提供能量,则电感两端承受正电压使其反向电流迅速减小到零,然后可零电流开关条件关断Tr3管。
当t=t16时,电路状态又回到模式M1,完成了一次PWM运行。
以上为ac相通电的一个工作状态,开关器件完全实现了软开关运行,无刷直流电机其它5个工作状态开关器件的工作原理与其相同,此处不再赘述。
实际效果如下所述:
图8所示为本实用新型逆变器驱动无刷直流电机5时的逆变桥4功率开关器件Tx(x取值从1到6)的端电压uT、电流iT与驱动信号dT波形,由图可知,开通时当开关两端电压下降到零后驱动信号才产生,关断时在驱动信号完全消失后开关两端电压才斜线上升,开关端电压和电流无重叠,所以,逆变桥4功率开关器件Tx(x取值从1到6)实现了零电压开关条件的开通和关断。
图9所示为本实用新型逆变器驱动无刷直流电机5时的零电压转换辅助电路中单向辅助开关Tr1、Tr2和Tr3的驱动信号dTr、逆变桥4开关驱动信号dT与零电压转换辅助电路3中单向辅助开关Tr1、Tr2和Tr3的电流iTr波形,由图可知,零电压转换辅助电路3单向辅助开关Tr1、Tr2和Tr3的开通和关断都是在零电流开关条件下进行的。随逆变桥4主开关器件的开通,零电压转换辅助电路3开关器件中的电流迅速下降到零。
综上所述,本实用新型不仅结构简单,控制便捷;而且,逆变桥开关器件的PWM调制开通与关断均在零电压开关条件下进行,因而可提高PWM开关频率和降低开关损耗;零电压转换辅助电路开关器件的开通与关断均在零电流开关条件下进行,且其电压应力仅为直流母线电压的一半,有利于器件选择和降低附加成本;谐振过程所用的时间较短且只用一个电感,谐振单元消耗的能量较小;逆变桥中的续流二极管实现了软性关断,克服了反向恢复问题。
以上所述,仅是本实用新型的较佳实施例,并非对本实用新型作任何限制,凡是根据本实用新型技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本实用新型技术方案的保护范围内。

Claims (4)

1.一种无刷直流电机的零电压转换逆变电路,包括控制电路(6)、直流电源(1)和将直流电转换成交流电的逆变桥(4),所述直流电源(1)的输出端接分压电路(2),所述逆变桥(4)与控制电路(6)相接,所述逆变桥(4)的各下桥臂带有缓冲电容,其特征在于:所述逆变桥(4)各相的中点和分压电路(2)的中点间连接有零电压转换辅助电路(3),所述零电压转换辅助电路(3)由三个单向辅助开关Tr1、Tr2和Tr3,三个单相整流桥和一个电感Lr构成;所述三个单相整流桥分别为由二极管Da1、Da2、Da3和Da4构成的单向整流桥一,由二极管Db1、Db2、Db3和Db4构成的单向整流桥二以及由二极管Dc1、Dc2、Dc3和Dc4构成的单向整流桥三;所述单向辅助开关Tr1、Tr2和Tr3的两端分别与单相整流桥一、单相整流桥二和单相整流桥三的直流输出端相接;单相整流桥一的一个交流端、单相整流桥二的一个交流端和单相整流桥三的一个交流端连接在一起,然后与电感Lr的一端相接;单相整流桥一的另一个交流端、单相整流桥二的另一个交流端和单相整流桥三的另一个交流端分别与逆变桥(4)各相的中点相接;电感Lr的另一端与分压电路(2)的中点相接;所述零电压转换辅助电路(3)与控制电路(6)相接并由控制电路(6)发出的信号dTr1、dTr2和dTr3控制单向辅助开关Tr1、Tr2和Tr3的导通和关断。
2.按照权利要求1所述的无刷直流电机的零电压转换逆变电路,其特征在于:所述单向辅助开关Tr1、Tr2和Tr3是全控性器件。
3.按照权利要求2所述的无刷直流电机的零电压转换逆变电路,所述单向辅助开关Tr1、Tr2和Tr3是功率晶体管、绝缘栅双极晶体管、功率场效应晶体管或智能功率模块。
4.按照权利要求1所述的无刷直流电机的零电压转换逆变电路,其特征在于:所述二极管Da1、Da2、Da3、Da4、Db1、Db2、Db3、Db4、Dc1、Dc2、Dc3和Dc4均为快恢复二极管或高频二极管。
CN2010205511157U 2010-09-29 2010-09-29 无刷直流电机的零电压转换逆变电路 Expired - Fee Related CN201839223U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010205511157U CN201839223U (zh) 2010-09-29 2010-09-29 无刷直流电机的零电压转换逆变电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010205511157U CN201839223U (zh) 2010-09-29 2010-09-29 无刷直流电机的零电压转换逆变电路

Publications (1)

Publication Number Publication Date
CN201839223U true CN201839223U (zh) 2011-05-18

Family

ID=44009324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010205511157U Expired - Fee Related CN201839223U (zh) 2010-09-29 2010-09-29 无刷直流电机的零电压转换逆变电路

Country Status (1)

Country Link
CN (1) CN201839223U (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944436A (zh) * 2014-05-15 2014-07-23 西安科技大学 一种三相容错逆变电路及其控制方法
CN107332449A (zh) * 2016-04-28 2017-11-07 中兴通讯股份有限公司 一种三相电路装置及其实现整流的方法
CN108155794A (zh) * 2016-12-02 2018-06-12 比亚迪股份有限公司 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
CN108155805A (zh) * 2016-12-02 2018-06-12 比亚迪股份有限公司 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
CN112260568A (zh) * 2020-10-29 2021-01-22 南通大学 零电压软开关单相升压逆变器及控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944436A (zh) * 2014-05-15 2014-07-23 西安科技大学 一种三相容错逆变电路及其控制方法
CN107332449A (zh) * 2016-04-28 2017-11-07 中兴通讯股份有限公司 一种三相电路装置及其实现整流的方法
CN108155794A (zh) * 2016-12-02 2018-06-12 比亚迪股份有限公司 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
CN108155805A (zh) * 2016-12-02 2018-06-12 比亚迪股份有限公司 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
CN108155805B (zh) * 2016-12-02 2019-11-22 比亚迪股份有限公司 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
CN108155794B (zh) * 2016-12-02 2019-12-27 比亚迪股份有限公司 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
CN112260568A (zh) * 2020-10-29 2021-01-22 南通大学 零电压软开关单相升压逆变器及控制方法

Similar Documents

Publication Publication Date Title
CN106533224B (zh) 一种新型谐振直流环节软开关逆变器及其调制方法
CN100576707C (zh) 单向dc-dc变换器
CN100574080C (zh) 应用于无刷直流电机的谐振极软开关逆变电路的控制方法
CN107493025B (zh) 一种谐振直流环节三相逆变器的负载自适应换流控制方法
CN201839223U (zh) 无刷直流电机的零电压转换逆变电路
CN203289117U (zh) 高效率整流逆变一体化能量回馈系统
CN102097970B (zh) 一种软开关逆变电路及其控制方法
CN103701356A (zh) 一种双辅助谐振极型三相软开关逆变器
CN105958836A (zh) 一种带开关续流电容的交直交变频器及其控制方法
CN111342693B (zh) 一种升降压型光伏并网逆变器
CN100438304C (zh) 一种谐振直流环节软开关逆变电路
CN1852021A (zh) L源逆变器
CN108736756A (zh) 一种改进型双辅助谐振极型三相软开关逆变电路
CN203827175U (zh) 一种新型软开关双向dc-dc变换器
CN205377786U (zh) 一种双降压式光伏发电系统
CN102290807B (zh) 宽电压输入范围的小型风力发电控制器
CN110401369A (zh) 高效率高功率密度GaN全桥逆变器模块
CN202094816U (zh) 太阳能逆变电路及装置
CN100490296C (zh) 一种无刷直流电机专用谐振极软开关逆变电路
CN107332456B (zh) 一种三相无源软开关逆变电路
CN108809137A (zh) 一种结构简单的辅助谐振极逆变电路
CN105978372B (zh) 一种拓扑电路以及半桥拓扑电路以及三相全桥拓扑电路
CN201904737U (zh) 一种谐振直流环节逆变器
CN110277934A (zh) 一种结构简单的双辅助谐振极型逆变电路及其调制方法
CN108566111A (zh) 新型双辅助谐振极型三相软开关逆变电路及其调制方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110518

Termination date: 20110929