CN201096611Y - Aspheric lens eccentric measuring apparatus - Google Patents
Aspheric lens eccentric measuring apparatus Download PDFInfo
- Publication number
- CN201096611Y CN201096611Y CNU2007201263211U CN200720126321U CN201096611Y CN 201096611 Y CN201096611 Y CN 201096611Y CN U2007201263211 U CNU2007201263211 U CN U2007201263211U CN 200720126321 U CN200720126321 U CN 200720126321U CN 201096611 Y CN201096611 Y CN 201096611Y
- Authority
- CN
- China
- Prior art keywords
- lens
- aspheric
- measuring device
- image sensor
- laser tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
所属技术领域:Technical field:
本实用新型涉及光学元件检测技术领域,具体涉及一种非球面透镜的偏心测量装置。The utility model relates to the technical field of optical element detection, in particular to an eccentricity measuring device of an aspheric lens.
背景技术:Background technique:
目前国内的非球面透镜生产产家对于批量生产的非球面透镜进行偏心测量时,主要采用千分表进行接触式测量,经常会损伤零件的表面,如果在千分表的探头与非球面接触面之间加一层保护层(如薄纸),由于纸有弹性就不能保证测量的精度。为了克服上述的缺点,非接触式测量装置成为研究的方向,在特开平8-233686号公报中记载了一种非球面透镜的偏心测定装置,它就是一种非接触式测量装置,其工作原理是:被检测透镜绕着机械旋转轴旋转时,由位移测定装置记录经非球面反射的激光光斑在CCD上的二维坐标变化,根据变化量与非球面面形计算相应的偏心量,它存在的问题是:因激光在非球面表面的入射点到CCD的距离很短,因此测量的精度受到限制。At present, domestic aspheric lens manufacturers mainly use dial gauges for contact measurement when measuring the eccentricity of mass-produced aspheric lenses, which often damages the surface of the parts. If the probe of the dial gauge contacts the aspheric surface Add a protective layer (such as thin paper) in between, and the accuracy of the measurement cannot be guaranteed due to the elasticity of the paper. In order to overcome the above-mentioned shortcomings, non-contact measuring devices have become the direction of research. In JP-A-8-233686, an aspheric lens eccentricity measuring device is described. It is a non-contact measuring device. Its working principle Yes: When the detected lens rotates around the mechanical rotation axis, the displacement measurement device records the two-dimensional coordinate change of the laser spot reflected by the aspheric surface on the CCD, and calculates the corresponding eccentricity according to the change amount and the aspheric surface shape. It exists The problem is: because the distance from the incident point of the laser on the aspheric surface to the CCD is very short, the accuracy of the measurement is limited.
发明内容:Invention content:
本实用新型要提供一种非球面透镜的偏心测量装置,以克服现有技术存在的测量精度不够高的问题。The utility model provides an aspheric lens eccentricity measurement device to overcome the problem of insufficient measurement accuracy in the prior art.
为克服现有技术存在的问题,本实用新型的技术方案是:一种非球面透镜的偏心测量装置,包括激光管1和单面为非球面的被检测透镜3,被检测透镜3的球面一侧固定于四维调节架4上,四维调节架4与精密旋转轴系5联接,透镜3的非球面与激光管1同侧,其特殊之处在于:在激光管1和被检测透镜3之间设置有束腰变换透镜2,在被检测透镜3的反射面方向上设置有与反射激光的峰值光强轴线相垂直的图像传感器13;在被检测透镜3的球面一侧还顺序设置有由透镜6、透镜7组成的显微物镜、半透半反镜8和图像传感器9,在半透半反镜8的上方顺序设置有分划板10、毛玻璃11和光源12,分划板10位于透镜7的焦平面上。In order to overcome the problems existing in the prior art, the technical solution of the present utility model is: a kind of eccentricity measuring device of an aspheric lens, comprising a laser tube 1 and a detected
上述图像传感器13和图像传感器9是CCD。The
上述激光管1可以设置多个,对应的束腰变换透镜2和图像传感器13也对应的设置有多组。The above-mentioned laser tubes 1 can be provided in multiples, and corresponding beam
与现有技术相比,本实用新型的优点是:Compared with the prior art, the utility model has the advantages of:
灵敏度高,测量精度好:本设备让激光通过束腰变换透镜,使CCD能在足够远的距离仍可接收到较小的激光光斑,提高了检测灵敏性,有效提高了测量精度。High sensitivity and good measurement accuracy: This device allows the laser to pass through the beam waist transformation lens, so that the CCD can still receive a small laser spot at a long enough distance, which improves the detection sensitivity and effectively improves the measurement accuracy.
该装置也可采用多束激光同时入射到被检测透镜的非球面表面,将接收到的图像通过计算处理,得到非球面对称轴的偏离方向,可以指导非球面的对称轴与机械旋转轴的重合的调整方向,有效提高透镜偏心的检测速度。The device can also use multiple laser beams to be incident on the aspheric surface of the detected lens at the same time, and the received image can be calculated and processed to obtain the deviation direction of the symmetry axis of the aspheric surface, which can guide the coincidence of the symmetry axis of the aspheric surface and the mechanical rotation axis The adjustment direction can effectively improve the detection speed of lens eccentricity.
附图说明:Description of drawings:
图1是被检测透镜的示意图;Fig. 1 is the schematic diagram of detected lens;
图2是本实用新型的结构示意图。Fig. 2 is a schematic structural view of the utility model.
附图标记说明如下:The reference signs are explained as follows:
1-激光管,2-束腰变换透镜,3-被检测透镜,4-四维调节架,5-精密旋转轴系,6-透镜,7-透镜,8-半透半反镜,9-图像传感器,10-十字分划板,11-毛玻璃,12-光源,13-图像传感器,14-计算机。1-laser tube, 2-beam waist conversion lens, 3-lens to be detected, 4-four-dimensional adjustment frame, 5-precision rotating shaft, 6-lens, 7-lens, 8-half-transparent mirror, 9-image Sensor, 10-cross reticle, 11-frosted glass, 12-light source, 13-image sensor, 14-computer.
具体实施方式:Detailed ways:
下面将结合附图和实施例对本实用新型进行详细说明。The utility model will be described in detail below in conjunction with the accompanying drawings and embodiments.
参见图1,图中所示为单面是非球面的被检测透镜3,被检测透镜3的第一面3a为非球面,第二面3b为球面,ia是非球面3a的对称轴。被检测透镜3在理想情况下,其球面3b的球心3ob应该落在非球面3a的对称轴ia上,此时ia即被检测透镜3的光轴,然而实际上很难制造这样的透镜。通常球面3b的球心3ob与非球面3a的对称轴ia存在着如图1所示的偏离量t,这个偏离量t就代表了被检测透镜3本身固有的偏心。Referring to FIG. 1 , the figure shows a
参见图2,一种非球面透镜的偏心测量装置,包括激光管1和单面为非球面的被检测透镜3,将被检测透镜3的球面一侧3b固定于四维调节架4上,四维调节架4与精密旋转轴系5联接,透镜3的非球面3a与激光管1同侧。激光管1和被检测透镜3之间设置有束腰变换透镜2,在被检测透镜3的反射面方向上设置有与反射激光的峰值光强轴线相垂直的图像传感器13,本实施例中图像传感器13选用CCD。在被检测透镜3的球面一侧还顺序设置有显微物镜、半透半反镜8和接收球心反射像的图像传感器9,本实施例中图像传感器9选用CCD,显微物镜由透镜6、透镜7组成,在半透半反镜8的上方设置有分划板10,毛玻璃11和光源12,分划板10位于透镜7的焦平面上。Referring to Fig. 2 , an aspheric lens eccentricity measuring device includes a laser tube 1 and a tested
图像传感器9和图像传感器13均与计算机14相接。Both the
本实用新型的工作原理是:由激光管1发出的激光束经束腰变换透镜2入射到被检测非球面透镜3的表面,经透镜3的非球面3a反射,由图像传感器13接收反射激光的束腰,透镜2的作用是使激光的束腰变换到图像传感器13的光敏面上。通过精密旋转轴系5使被检测透镜3绕着该精密轴系的机械旋转轴k旋转,通过计算机计算处理检测到激光光斑中心位置的也偏摆转动,通过四维调节架4调节被检测透镜3的位置,直到激光光斑的中心位置不随着透镜的旋转而变化,说明非球面3a的对称轴ia与精密旋转轴系统5的机械旋转轴k重合。The working principle of the utility model is: the laser beam sent by the laser tube 1 is incident on the surface of the detected
本实用新型中由透镜6、透镜7、半透半反镜、8图像传感器9、分划板10、毛玻璃11和光源12组成球面的偏心测量仪。当非球面3a的对称轴ia与精密旋转轴系统5的机械旋转轴k重合时,调整球面偏心测量仪的位置,使得从十字分划板10发出的光束经显微物镜后会聚于球面3b的球心3ob附近,光束经球面3b自准直反射后在CCD9上得到球面3b的球心反射像,如果球心3ob落在精密旋转轴系5的机械旋转轴k(也即非球面3a的对称轴ia)上,通过精密旋转轴系5旋转被检测透镜3,此时球心反射像是不动的。如果球心3ob与机械旋转轴k存在着偏离,则球心反射像在图像传感器9的光敏面上绘出一个圆,图像传感器9将采集到的信息输入到计算机14,通过计算处理得到球面3b的球心3ob对机械旋转轴k的偏离量,即球心3ob相对于非球面3a的对称轴ia的偏离量t,这个偏离量就是被检测透镜3本身固有的偏心量。In the utility model, a spherical eccentricity measuring instrument is composed of a
激光管1可以设置多个,束腰变换透镜2和图像传感器13对应的设置有多组。多个图像传感器13均与计算机14相接。Multiple laser tubes 1 can be provided, and multiple sets of beam
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007201263211U CN201096611Y (en) | 2007-11-08 | 2007-11-08 | Aspheric lens eccentric measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007201263211U CN201096611Y (en) | 2007-11-08 | 2007-11-08 | Aspheric lens eccentric measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201096611Y true CN201096611Y (en) | 2008-08-06 |
Family
ID=39923664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2007201263211U Expired - Fee Related CN201096611Y (en) | 2007-11-08 | 2007-11-08 | Aspheric lens eccentric measuring apparatus |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201096611Y (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104316002A (en) * | 2014-10-10 | 2015-01-28 | 中国科学院光电研究院 | Laser tracker optical axis and mechanical rotating shaft translation detection device and method |
CN106104247A (en) * | 2014-03-28 | 2016-11-09 | 柯尼卡美能达株式会社 | Aspheric method for measuring eccentricity quantity and shape analysis method |
CN107339955A (en) * | 2017-01-07 | 2017-11-10 | 深圳市灿锐科技有限公司 | A kind of inclined detecting instrument in high-precision lenses center and its measuring method |
CN108139205A (en) * | 2015-10-23 | 2018-06-08 | 卡驰诺光电系统股份有限公司 | Optical element characteristic detecting apparatus |
CN109239884A (en) * | 2018-09-18 | 2019-01-18 | 昆明北方红外技术股份有限公司 | The positioning system and method for guide rail in variable-power optical system |
CN109297683A (en) * | 2018-10-11 | 2019-02-01 | 广州博冠光电科技股份有限公司 | It is a kind of quickly to detect the inclined device and method in lens centre based on Digital Laser Hologram |
CN112697054A (en) * | 2020-12-10 | 2021-04-23 | 无锡鑫巨宏智能科技有限公司 | Microlens rise measuring device and method |
-
2007
- 2007-11-08 CN CNU2007201263211U patent/CN201096611Y/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106104247A (en) * | 2014-03-28 | 2016-11-09 | 柯尼卡美能达株式会社 | Aspheric method for measuring eccentricity quantity and shape analysis method |
CN106104247B (en) * | 2014-03-28 | 2018-07-20 | 柯尼卡美能达株式会社 | Aspherical method for measuring eccentricity quantity and shape analysis method |
CN104316002A (en) * | 2014-10-10 | 2015-01-28 | 中国科学院光电研究院 | Laser tracker optical axis and mechanical rotating shaft translation detection device and method |
CN108139205A (en) * | 2015-10-23 | 2018-06-08 | 卡驰诺光电系统股份有限公司 | Optical element characteristic detecting apparatus |
CN107339955A (en) * | 2017-01-07 | 2017-11-10 | 深圳市灿锐科技有限公司 | A kind of inclined detecting instrument in high-precision lenses center and its measuring method |
CN109239884A (en) * | 2018-09-18 | 2019-01-18 | 昆明北方红外技术股份有限公司 | The positioning system and method for guide rail in variable-power optical system |
CN109239884B (en) * | 2018-09-18 | 2021-05-04 | 昆明北方红外技术股份有限公司 | Positioning system and method for guide rail in zoom optical system |
CN109297683A (en) * | 2018-10-11 | 2019-02-01 | 广州博冠光电科技股份有限公司 | It is a kind of quickly to detect the inclined device and method in lens centre based on Digital Laser Hologram |
CN109297683B (en) * | 2018-10-11 | 2024-02-20 | 广州博冠光电科技股份有限公司 | Device and method for rapidly detecting lens center deviation based on digital laser holography |
CN112697054A (en) * | 2020-12-10 | 2021-04-23 | 无锡鑫巨宏智能科技有限公司 | Microlens rise measuring device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201096611Y (en) | Aspheric lens eccentric measuring apparatus | |
CN100410642C (en) | Detection method of the perpendicularity between the optical axis of the optical system and its installation base | |
CN104317030B (en) | The Optical devices of quick auxiliary centering are carried out using axial chromatic aberration | |
CN101038155B (en) | Apparatus and method for detecting aspheric surface shape | |
CN101666640B (en) | Method and system for measuring two-dimensional attitude angle | |
CN102175426A (en) | Method for fixing focus and measuring curvature radius by confocal interference | |
CN103123251B (en) | Differential confocal internal focusing method lens axis and method for measuring thickness | |
CN102062581B (en) | Measuring device based on radial runout of pyramid prism axis system | |
CN101526341A (en) | Differential confocal curvature radius measurement method and device | |
CN101373167A (en) | Lens eccentricity detection system and method | |
CN110455221B (en) | Optical path structure and equipment for rapidly measuring curvature radius of optical lens | |
CN111829448A (en) | An optical extensometer and uniform strain measurement method based on lens imaging and double prism reflection | |
CN102607472B (en) | Measuring device and measuring method for large-range flatness | |
CN108981593A (en) | Laser triangulation lens center thickness measuring device and its measurement method | |
CN113203553B (en) | A lens center error measuring system and measuring method | |
JP6000578B2 (en) | Aspherical surface measuring method, aspherical surface measuring device, optical element processing apparatus, and optical element manufacturing method | |
CN105444673A (en) | Device and method for determining center of optical element according to rotating translation absolute detection method | |
CN102944194B (en) | High-precision high-order aspheric lens eccentricity measurement system and method | |
CN102980534A (en) | Non-contact measuring method and system for verticality between hidden spindle and end face | |
CN105627945B (en) | Non-spherical element center and the measurement apparatus and measuring method of cylindrical center shift amount | |
CN107607050A (en) | Laser thickness measuring apparatus | |
CN106767555A (en) | A kind of shafting rocks the combination detection device and method with bounce | |
CN105444998B (en) | Device and method for measuring visual magnification of telescopic system | |
CN104422583B (en) | Optical system, optical detection device and method for detecting integrated refractometer | |
CN104807433A (en) | Optical auto-collimation principle based two-dimensional space turning angle detection method of spherical rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080806 Termination date: 20101108 |