CN1996605B - 互补金属氧化物半导体图像传感器及其制造方法 - Google Patents

互补金属氧化物半导体图像传感器及其制造方法 Download PDF

Info

Publication number
CN1996605B
CN1996605B CN2006101680972A CN200610168097A CN1996605B CN 1996605 B CN1996605 B CN 1996605B CN 2006101680972 A CN2006101680972 A CN 2006101680972A CN 200610168097 A CN200610168097 A CN 200610168097A CN 1996605 B CN1996605 B CN 1996605B
Authority
CN
China
Prior art keywords
image sensor
cmos image
light receiving
receiving element
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006101680972A
Other languages
English (en)
Other versions
CN1996605A (zh
Inventor
崔梁圭
金局奂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of CN1996605A publication Critical patent/CN1996605A/zh
Application granted granted Critical
Publication of CN1996605B publication Critical patent/CN1996605B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G25/00Household implements used in connection with wearing apparel; Dress, hat or umbrella holders
    • A47G25/14Clothing hangers, e.g. suit hangers
    • A47G25/28Hangers characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G1/00Mirrors; Picture frames or the like, e.g. provided with heating, lighting or ventilating means
    • A47G1/02Mirrors used as equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/814Group IV based elements and compounds, e.g. CxSiyGez, porous silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/954Of radiant energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明提供一种互补金属氧化物半导体(简称CMOS)图像传感器及其制造方法。该图像传感器其结构包括:光接收元件,光接收元件上部末端制成的纳米柱;制造该CMOS图像传感器的方法,其步骤如下:诱导出等离子发射,进而在光接收区域形成纳米颗粒,以纳米颗粒作为掩膜蚀刻光接收区域,然后去除纳米颗粒。

Description

互补金属氧化物半导体图像传感器及其制造方法
一、技术领域
本发明系一种互补金属氧化物半导体(CMOS)图像传感器,更确切地说,是一种具有高感光性CMOS图像传感器及其制造方法,属于图像传感器领域。
二、背景技术
电荷耦合器件(CCD)图像传感器因电路简单、音像画质优良而被广泛使用。然而,因移动式设备需低功耗、集成度高,使得满足该要求的CMOS图像传感器引起了人们的注意。
CMOS图像传感器系将光学图像转换为电信号的一种半导体器件。CMOS图像传感器由光探测部分、将已探测光转化为电信号的数据运算逻辑电路部分组成。CMOS图像传感器使用此种转换方式,即运用CMOS技术提供一种与相素值相匹配的MOS晶体管,继而用该MOS晶体管探测某一输出信号。
用传统CMOS晶体管工艺制造的CMOS图像传感器,其优点为:低功耗、低价格且集成度高。因此,多年的深入研究,使得CMOS图像传感器在许多应用方面有望替代CCD图像传感器。
然而,尽管有较低电耗并有高集成度的优点,但由于暗电流,较传统CCD图像传感器,该CMOS图像传感器缺陷在于其感光性更小。为解决该缺陷,许多研究正在进行中。
下面将描述传统CMOS图像传感器。
图1是传统CMOS图像传感器的平面图。图2是图1中从长线2-2’处所取的截面图。
下面将仅以图示进行描述:为接收光的光接收区域和将已接收光转换为电信号的晶体管区域。
在传统CMOS图像传感器中,光接收元件106和108(如光电二极管)被制成在置于硅基底101上的光接收区域中,在其两边均有P型掺杂区域102。浮动扩散器件104被平行制成在光接收元件106和108的一侧并置于晶体管区域中。转换门103被置于浮动扩散器件104之上。沿着硅基底101一侧制成浅沟槽隔离带105,使得以上装置与其它装置绝缘分开。
CMOS图像传感器还包括:与浮动扩散器件104相连接的一复位晶体管(Rx)、一驱动晶体管(Dx)与一选择晶体管(Sx)。
一氧化薄膜107不再描述。
如图2所示,传统CMOS图像传感器中,为了有效接收大量光线,光接收元件106和108被制成一个大的面积。光接收元件106和108其结构为:含有P型掺杂的磷离子(P+)掺杂区域106被层列在含有N型掺杂的氮(N)掺杂区域108上,并且成为无掩蔽光接收区域类型中的一种。
光接收元件106和108组成的光接收区域系用晶体硅制成扁平状。由于其形状为扁平状,传统光接收元件106和108在接收光能力方面有如下缺陷。
首先,光接收元件106和108中接收光的部分晶体硅对可见光吸收系数小。一般来说,材料对光波的吸收度取决于该材料的带隙。晶体硅作为光接收元件106和108中的光接收部分,其间接带隙为1.12电子伏,因此其仅吸收等于或小于1.1微米波长的光线。因此,晶体硅吸收系数,使得其对波长等于或小于1.1微米的可见光不能产生足够(转送到浮动扩散器件104)载波。所以,光接收部分中的晶体硅,其吸收系数对于产生足够载波来说太小。
第二,未被吸收的光被晶体硅(即光接收部分)反射出去。光接收元件106和108上的一些光线促使光的产生并形成流向浮动扩散器件104的载波,但其他光则被反射并因未被再次吸收而浪费。众所周知,被反射和浪费的光量比促使光产生的光量要大的多。
第三,CMOS图像传感器中接收光的面积不超过该CMOS图像传感器的面积。在传统CMOS图像传感器中,光接收元件106和108是CMOS图像传感器的局部组成部分,因此,光接收元件106和108的面积不超过该CMOS图像传感器的面积。因集成度高,CMOS图像传感器的元件尺寸被缩小,光接收元件106和108的面积被缩小使得CMOS图像传感器接收光的能力随之减小。
三、发明内容
本发明的目的在于:提供一新型结构的CMOS图像传感器,即在高集成CMOS图像传感器中,该结构也能增强其感光性。
本发明的另一目的在于:提供了一种高感光性CMOS图像传感器的制造方法。
本发明提供了一种具有光接收元件的CMOS(互补金属氧化物半导体)图像传感器,包括一半导体衬底;形成于所述半导体衬底上的光接收元件;形成与所述光接收元件的纳米柱;形成所述半导体上的一浮动扩散器件,其与所述光接收元件平行;一转换门,其顶部位于所述光接收元件和所述浮动扩散器件之间;一晶体管区域,用于对检测到的从所述光接收元件进入电信号的光进行数据处理。
制造CMOS图像传感器,至少包括下列特征中的一种。如所述光接收元件包括含有N型掺杂的氮(N)掺杂区域和含有P型掺杂的磷离子(P+)掺杂区域,其被层列在所述氮(N)掺杂区域上。所述晶体管区域包括一复位晶体管,一驱动晶体管及一选择晶体管。还包括位于所述转换门下面的一氧化物薄膜。纳米柱可以为晶体硅。
另一方面,本发明提供了一种CMOS图像传感器的制造方法,该方法包括诱导出等离子体放电,并在光接收区域中制成纳米柱;以纳米颗粒作为掩膜蚀刻光接收区域;然后除去纳米颗粒。
本发明CMOS图像传感器制造方法,其至少包括下列特征中的一种:如诱导等离子放电步骤包括向光接收区域注入等离子气体。
在诱导等离子放电过程中,在诱导等离子放电的同时,等离子气体和光线接收元件复合形成纳米颗粒。
光接收元件可以是硅。
等离子气体可以是卤素化合物和氧气。
该纳米颗粒为纳米级或更小。
另一方面,本发明提供了一种CMOS图像传感器的制造方法。该方法还包括在光接收区域排列纳米粒子;用该粒子作为掩膜蚀刻光接收区域;然后去除该粒子。
本发明提供了一种CMOS图像传感器的制造方法,其至少包括下列特征中的一种。如该粒子可以由聚合物制成。
蚀刻形成的纳米柱,其直径取决于该粒子的直径。
蚀刻形成的纳米柱直径为纳米级或更小。
该粒子可以是球状物。
前面综合性描述及其后的细节说明可以被理解为:均是本发明的一个示例说明,及本发明权利要求的进一步诠释。
本发明一种互补金属氧化物半导体图像传感器(简称CMOS),其优点在于:具有许多能提高光接收能力的特征;能提高其分辨率,从而实现高集成,低电压,低功耗,并能增加其在移动装置中的应用范围。
四、附图说明
图1是传统CMOS图像传感器的平面图。
图2是图1中2-2’截面图。
图3是本发明CMOS图像传感器的平面图。
图4是图3中截面图。
图5是根据本发明第一具体实施例说明制造CMOS图像传感器方法的流程图。
图6是用扫描电镜拍摄的如图5所示方法制造CMOS图像传感器的过程图。
图7是根据本发明另一具体实施例说明制造CMOS图像传感器方法的流程图。
图8是用扫描电镜拍摄的由图7所示的方法制造CMOS图像传感器的照片。
五、具体实施方式
下面将用图具体说明本发明第一具体实施例。
图3是说明本发明互补金属氧化物半导体图像传感器的平面图。图4是图3中沿4-4直线所取的截面图。
下面只对光接收区域及晶体管区域进行描述。
本发明中,CMOS图像传感器包含一半导体基底201;光接收区域的光接收元件206和208;与光接收元件206和208平行制成的浮动扩散器件204;顶部位于光接收元件206、208与浮动扩散器件204之间的转换门203;及用于数据处理的晶体管区域(该区域将光接收区域的探测光转换为电信号)。
如图4,晶体管区域包含一复位晶体管(Rx),驱动晶体管(Dx)及一与浮动扩散器件204相连的选择晶体管(Sx)。
复位晶体管(Rx)放出存储在浮动扩散器件204中的电荷由此完成复位。驱动晶体管(Dx)作为驱动缓冲放大器的源极。选择晶体管(Sx)用来完成转换与选址。
半导体基底由硅制成。半导体基底201有一两边均掺杂的P型掺杂区域202。
沿半导体基底201的边缘制成浅沟槽隔离带(STI)205以使成型于半导体基底201之上的各装置彼此隔离。
光接收元件206、208及光电二极管置于光接收区域内,用来接收光线。如图3所示,为有效接收大量光线,光接收元件206及208被制成大面积。光接收元件206及208的结构为:含有P型掺杂的磷离子(P+)掺杂区域206被层列在含有N型掺杂的氮(N)掺杂区域208上,在磷离子(P+)掺杂区域206上以预设间距制成纳米柱209。
就如光接收的表面,纳米柱209由晶体硅制成。纳米柱209的尺寸是纳米量级或更小,其结构为在内部光接收区域可延伸为三维空间。制成纳米柱209的方法稍后将详述。
转换门203位于光接收元件206、208与浮动扩散器件204之间。一氧化膜207位于转换门203下面以将由光接收元件206、208接收的光电荷转移到浮动扩散器件204。
本发明新型CMOS图像传感器与传统的CMOS图像传感器相比有许多能提高光接收能力的特征。
首先,可在光接收元件206、208上制备无数的晶体硅纳米柱209,因此可大幅度地提高光吸收系数至等于或小于1.1μm可见光波。换言之,由于光接收元件206、208表面的纳米柱209具有很小的体积,本发明中的光接收元件206、208有效地与短波光作用。因此,光接收元件206、208对于波长等于或小于1.1μm的光能充分吸收,而且比传统光吸收元件106、108具有更高的感光性。
第二,在光接收元件206、208表面制备无数个晶体硅纳米柱209,从而可将光吸收区域扩展为三维而克服了传统光吸收元件的二维吸收面。因此本发明能克服当CMOS图像传感器的元件尺寸减小时光吸收区域及感光性减小的缺陷,并能使光吸收区域比CMOS图像传感器的存储单元的宽度宽。
第三,在光接收元件206、208表面制备无数个晶体硅纳米柱209,从而有利地再吸收从传统光接收元件106、108反射回来或未被吸收的光线。
第四,光接收元件206、208上的纳米柱209呈突起状,因此光接收元件206和208可与光线在各方向发生作用。
本发明制造具有高感光性CMOS图像传感器时制备纳米柱的方法以下将根据图5至图8作详细介绍。
第一具体实施例
图5是根据本发明第一具体实施例制造CMOS图像传感器的流程图。图5中,(a)是向光吸收区域注入等离子气体的过程图,(b)是注入等离子体之后制备纳米颗粒的过程图,(c)是等离子体放电后制备纳米柱的过程图。
图6是用扫描电镜拍摄的如图5所示的方法制造CMOS图像传感器的过程图。
本发明第一具体实施例中制造CMOS图像传感器的方法运用了等离子体放电及蚀刻过程,而并非传统的光蚀刻过程来制成纳米柱。
如图5中a所示,在硅基底301上制成一抗蚀剂302作为光接收元件。之后在抗蚀剂302的基础上向形成纳米柱的区域注入用于等离子放电的等离子气体。等离子气体是卤族化合物与氧气的混合物。卤族化合物使用最多的是HBr和Cl2.
如图5中(b)所示,当注入等离子气体后在光接收区域产生的等离子体,将与以预定深度蚀刻的硅基底301结合,因此形成具有纳米尺度的纳米颗粒303。当HBr(或Cl2)与氧气一起作为等离子体被注入后,被蚀刻的硅与等离子体射线相结合而形成纳米颗粒303如SixBryOz(或SixClyOz).纳米颗粒303成为稳定的化合物,在刻蚀室外部不放电并位于硅基底301之上。因此,纳米颗粒303作为形成纳米柱的掩膜,这在下面会描述。
如图5(c)所示,刻蚀过程用硅基底301上单个或多个纳米颗粒303作为掩膜,从而形成纳米柱。之后移除纳米颗粒303。
在被蚀刻的硅基底301上的一部分(该部分正是纳米颗粒303所在部位)制成纳米柱304。如图6,纳米柱304可向三维空间延展,其直径为纳米量级或更小。
纳米柱304的直径可通过纳米颗粒303的结合程度来控制。
第二具体实施例
图7是根据本发明另一具体实施例制造CMOS图像传感器方法的流程图。图7(a)是在光吸收区域内制成球状物的过程图,(b)是用该球状物作为掩膜的蚀刻过程,(c)是完成蚀刻过程后的光接收元件图。
图8是扫描电镜拍摄的由图7所示的方法制造CMOS图像传感器的照片。
本发明第二具体实施例中制造CMOS图像传感器的方法包括:用来制成纳米柱的纳米球光刻法,与传统的光刻法相比其优点是超越了光刻法分辨率的局限性。
如图7(a)所示,在硅基底401上制成抗蚀剂402,具有纳米量级的球状物403在以抗蚀剂402为基础的纳米柱成型区域形成单层结构。球状物403由聚合物为基础的化合物组成,并在稍后所述的刻蚀过程中作为掩膜。本发明第二具体实施例中,球状物403作为纳米量级的掩膜。由此可见,纳米尺寸的微粒并不限于球形。下面将以球形为例进行描述。
如图7(b),蚀刻过程在球状物403作为掩膜的情况下完成(球状物403被规则地排在预定位置上)。这样,只有球状物403下面才形成排列规则并具有同样尺寸的纳米柱404。
完成刻蚀之后,作为掩膜的球状物403被移除,含有纳米柱404的光接收元件形成(如图7(c))。
如图8,纳米柱404的直径为纳米尺寸,并形成三维空间,从而扩展了光接收区域。
纳米柱404的直径取决于纳米尺寸的球状物403的直径。因此制成的纳米柱404可以超越传统光刻法分辨率的局限性。
如上所述,本发明CMOS图像传感器较传统CMOS图像传感器(传统CMOS图像传感器只有二维的光接收区域)对于可见光具有更高的吸收系数,从而提高了感光性。
本发明CMOS图像传感器运用纳米柱将光接收区域扩展为三维空间,从而克服了光接收区域不能超过CMOS图像传感器元件总尺寸的局限性,较传统的二维光接收区域具有可靠的更大光接收区域。
由于纳米柱突起在光接收元件的表面,本发明中的CMOS图像传感器可与光线在各个方向发生相互作用,还能与从传统的光接收元件反射回来的光线反射作用。因此,本发明能显著地提高感光性。
并且,本发明中的CMOS图像传感器还能提高其分辨率,从而实现高集成,低电压,低功耗,并能增加其在移动装置中的应用范围,因此,今后能吸引更多的关注。
显然,本发明可以用很多方式改变,而这些改变都不会背离本发明的权利要求书的范围,所有这些修改都包含在权利要求书当中。

Claims (8)

1.一种互补金属氧化物半导体图像传感器,其特征在于:其结构包括
一半导体衬底;
形成于所述半导体衬底上的光接收元件;
形成与所述光接收元件上的纳米柱;
形成所述半导体衬底上的一浮动扩散器件,其与所述光接收元件平行;
-转换门,其顶部位于所述光接收元件和所述浮动扩散器件之间;
-晶体管区域,用于对检测到的从所述光接收元件进入电信号的光进行数据处理。
2.根据权利要求1所述的互补金属氧化物半导体图像传感器,其特征在于:所述光接收元件包括含有N型掺杂的氮(N)掺杂区域和含有P型掺杂的磷离子(P+)掺杂区域,所述磷离子(P+)掺杂区域被层列在所述氮(N)掺杂区域上。
3.根据权利要求1所述的互补金属氧化物半导体图像传感器,其特征在于:所述晶体管区域包括一复位晶体管,一驱动晶体管及一选择晶体管。
4.根据权利要求1所述的互补金属氧化物半导体图像传感器,其特征在于:还包括位于所述转换门下面的一氧化物薄膜。
5.根据权利要求1所述的互补金属氧化物半导体图像传感器,其特征在于:所述纳米柱由晶体硅组成。
6.一种互补金属氧化物半导体图像传感器的制造方法,所述图像传感器包括在硅基底上由硅形成的纳米柱,其特征在于:其方法步骤如下:
向硅基底上形成纳米柱的区域注入等离子气体;
利用等离子气体产生等离子体,蚀刻硅基底至预定深度,被蚀刻的硅与等离子体射线相结合而形成纳米颗粒,且纳米颗粒位于硅基底之上;
以纳米颗粒作为掩膜蚀刻所述硅基底,以形成所述纳米柱;
然后去除纳米颗粒。
7.根据权利要求6所述的互补金属氧化物半导体图像传感器的制造方法,其特征在于:所述的等离子气体为卤素化合物和氧气。
8.根据权利要求6所述的互补金属氧化物半导体图像传感器的制造方法,其特征在于:所述的纳米颗粒为纳米级或更小。
CN2006101680972A 2006-01-05 2006-12-25 互补金属氧化物半导体图像传感器及其制造方法 Expired - Fee Related CN1996605B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0001335 2006-01-05
KR1020060001335A KR100767629B1 (ko) 2006-01-05 2006-01-05 높은 광감도를 갖는 cmos 이미지 센서 및 이의 제조방법
KR1020060001335 2006-01-05

Publications (2)

Publication Number Publication Date
CN1996605A CN1996605A (zh) 2007-07-11
CN1996605B true CN1996605B (zh) 2010-05-19

Family

ID=38251610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101680972A Expired - Fee Related CN1996605B (zh) 2006-01-05 2006-12-25 互补金属氧化物半导体图像传感器及其制造方法

Country Status (4)

Country Link
US (1) US7741664B2 (zh)
JP (1) JP2007184560A (zh)
KR (1) KR100767629B1 (zh)
CN (1) CN1996605B (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7382008B2 (en) * 2006-05-02 2008-06-03 Eastman Kodak Company Ultra-small CMOS image sensor pixel using a photodiode potential technique
US7868426B2 (en) * 2007-07-26 2011-01-11 University Of Delaware Method of fabricating monolithic nanoscale probes
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US8229255B2 (en) * 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8299472B2 (en) * 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US8384007B2 (en) * 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
DE102009036079A1 (de) * 2009-08-04 2011-02-17 Siemens Aktiengesellschaft Röntgendetektor und Herstellungsverfahren für einen Röntgendetektor
CN102169088B (zh) * 2010-12-31 2013-02-13 清华大学 单分子检测方法
CN102664185A (zh) * 2012-06-01 2012-09-12 上海中科高等研究院 Cmos图像传感器及其制作方法
BR112015013928A2 (pt) 2012-12-13 2017-07-11 California Inst Of Techn fabricação de eletrodos tridimensionais com área de superfície elevada
KR20150115811A (ko) 2013-02-06 2015-10-14 캘리포니아 인스티튜트 오브 테크놀로지 소형화된 이식가능 전기화학 센서 디바이스들
US9337229B2 (en) * 2013-12-26 2016-05-10 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof
KR102219199B1 (ko) 2014-04-29 2021-02-23 삼성전자주식회사 이미지 센서의 픽셀 어레이 및 이미지 센서
US10368788B2 (en) 2015-07-23 2019-08-06 California Institute Of Technology System and methods for wireless drug delivery on command
EP3812801B1 (en) 2019-10-23 2024-06-19 Samsung Electronics Co., Ltd. Image sensor including color separating lens array and electronic device including the image sensor
EP3812802A1 (en) 2019-10-23 2021-04-28 Samsung Electronics Co., Ltd. Image sensor including color separating lens array and electronic apparatus including the image sensor
US11664400B2 (en) 2019-10-24 2023-05-30 Samsung Electronics Co., Ltd. Image sensor and electronic apparatus including the same
US11652121B2 (en) 2019-11-28 2023-05-16 Samsung Electronics Co., Ltd. Color separation element and image sensor including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598694A (zh) * 2003-06-12 2005-03-23 韩国科学技术院 一种纳米图形以及碳纳米管生物纳米芯片的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271222B2 (ja) * 1994-02-22 2002-04-02 ソニー株式会社 固体撮像装置
KR100384836B1 (ko) * 1999-06-28 2003-05-22 주식회사 하이닉스반도체 이미지센서 및 그 제조방법
JP2003101069A (ja) * 2001-09-25 2003-04-04 Nagoya Industrial Science Research Inst Iii族窒化物量子ドットおよびその製造方法
KR20030056060A (ko) * 2001-12-27 2003-07-04 주식회사 하이닉스반도체 전하용량을 향상시키기 위한 이미지센서 및 그 제조 방법
KR20030057677A (ko) * 2001-12-29 2003-07-07 주식회사 하이닉스반도체 전하용량을 향상시키기 위한 이미지센서 및 그 제조 방법
EP1636853A4 (en) * 2003-06-12 2007-04-04 Sirica Corp STATIONARY NON-BALANCE DISTRIBUTION FREE CARRIER AND PHOTOENENERGY UPGRADING THEREFORE
KR100673950B1 (ko) * 2004-02-20 2007-01-24 삼성테크윈 주식회사 이미지 센서 모듈과 이를 구비하는 카메라 모듈 패키지
US20050265648A1 (en) * 2004-06-01 2005-12-01 Daniel Roitman Evanescent wave sensor containing nanostructures and methods of using the same
US20070105356A1 (en) * 2005-11-10 2007-05-10 Wei Wu Method of controlling nanowire growth and device with controlled-growth nanowire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598694A (zh) * 2003-06-12 2005-03-23 韩国科学技术院 一种纳米图形以及碳纳米管生物纳米芯片的制备方法

Also Published As

Publication number Publication date
KR20070073430A (ko) 2007-07-10
KR100767629B1 (ko) 2007-10-17
CN1996605A (zh) 2007-07-11
US7741664B2 (en) 2010-06-22
US20070152248A1 (en) 2007-07-05
JP2007184560A (ja) 2007-07-19

Similar Documents

Publication Publication Date Title
CN1996605B (zh) 互补金属氧化物半导体图像传感器及其制造方法
EP0887867B1 (en) Semiconductor device comprising an aggregate of semiconductor micro-needles
JP5172819B2 (ja) 固体撮像装置
TWI305414B (en) Multilayered semiconductor substrate and image sensor formed thereon for improved infrared response
US7154137B2 (en) Image sensor and pixel having a non-convex photodiode
US8120023B2 (en) Low crosstalk, front-side illuminated, back-side contact photodiode array
TW434898B (en) Method of forming a semiconductor image sensor and structure
US8629486B2 (en) CMOS image sensor having anti-absorption layer
TWI330893B (en) Optical sensor and method of making the same
TW200524147A (en) Photo-electric converting device and its driving method, and its manufacturing method, solid-state image pickup device and its driving method and its manufacturing method
US20080164501A1 (en) Image sensor pixel having photodiode with multi-dopant implantation
CN109216385B (zh) 具有增强近红外量子效率的cmos图像传感器
Kuroda et al. A highly ultraviolet light sensitive and highly robust image sensor technology based on flattened Si surface
TW201501277A (zh) 淺溝槽紋理化區域及相關方法
CN102939654A (zh) 使用多层通过量子排斥进行的表面钝化
CN104465679B (zh) 背照式图像传感器中的像素隔离结构
CN109216386A (zh) 具有增强近红外量子效率及调制传递函数的cmos图像传感器
TWI407577B (zh) 半導體裝置及其製造方法
CN109411490A (zh) 用于减少暗电流的凸起电极
Kuroda et al. Highly ultraviolet light sensitive and highly reliable photodiode with atomically flat Si surface
CN100472789C (zh) 固体摄像器件及摄像机
JP5535261B2 (ja) 固体撮像装置
US8759225B2 (en) Method to form a CMOS image sensor
CN110021614B (zh) 用于经增强图像传感器性能的源极跟随器装置
TWI237905B (en) Manufacturing method of photodiode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100519

Termination date: 20111225