CN1967883A - High power LED flip-chip and its manufacturing method - Google Patents

High power LED flip-chip and its manufacturing method Download PDF

Info

Publication number
CN1967883A
CN1967883A CNA2005101104742A CN200510110474A CN1967883A CN 1967883 A CN1967883 A CN 1967883A CN A2005101104742 A CNA2005101104742 A CN A2005101104742A CN 200510110474 A CN200510110474 A CN 200510110474A CN 1967883 A CN1967883 A CN 1967883A
Authority
CN
China
Prior art keywords
layer
electrode
chip
power led
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005101104742A
Other languages
Chinese (zh)
Other versions
CN100483755C (en
Inventor
靳彩霞
董志江
许亚兵
丁晓民
黄素梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Shanghai Blue Light Technology Co Ltd
Original Assignee
East China Normal University
Shanghai Blue Light Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University, Shanghai Blue Light Technology Co Ltd filed Critical East China Normal University
Priority to CNB2005101104742A priority Critical patent/CN100483755C/en
Publication of CN1967883A publication Critical patent/CN1967883A/en
Application granted granted Critical
Publication of CN100483755C publication Critical patent/CN100483755C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The invention relates to a high-power LED face-down chip, formed by P-N electrode extending sheet and silicon substrate with reflective layer, wherein the P-N electrodes have inactivate layer between; the characteristic semi-conductive silicon substrate has electric insulated layer above; the metal reflective layer is above the insulated layer; the P-N electrode extending sheet and the silicon substrate with reflective layer are face-down welded to form high-power LED face-down chip. And its production comprises that: on silicon substrate, using PECVD to deposit one layer of P-N electrode electric insulated layer as SiO<SUB>2</SUB> or Si<SUB>3</SUB>N<SUB>4</SUB> insulated layer at 50-100nm thick; then using magnetic-control splash or electron beam to evaporate one layer of metal reflective layer at 200-300nm made from TiAl or TiAg. The invention can improve the lighting efficiency and radiation efficiency.

Description

High power LED flip-chip and preparation method thereof
Technical field
The present invention relates to the preparation method of the high power LED flip-chip of a kind of gallium nitride (GaN) semiconductor fabrication, especially relate to the technology that dispel the heat with raising light extraction efficiency and improvement in the evaporation metal reflector on silicon substrate.
Background technology
The luminous efficiency particularly low and heat-sinking capability difference of light extraction efficiency is the major technique bottleneck that great power LED faces.Traditional positive assembling structure LED light extraction efficiency mainly is subjected to the influence of following factor: 1) P-GaN semi-transparent metals contact electrode layer is 70%-80% to the optical transmission rate; 2) bonding welding point and the shield of lead-in wire on the P electrode to light; 3) GaN material relative index of refraction is higher, and light repeatedly reflects and absorbs between sapphire and semi-transparent metals electrode.Above various factors causes present LED light extraction efficiency can only reach a few percent.
Great power LED is generally operational under the 350mA electric current, heat radiation is vital to device performance, if the heat that electric current produces can not be shed timely, keep the PN junction temperature in allowed band, can't obtain stable light and export and keep normal device lifetime.For the LED of GaN base, its active layer is away from radiator, and Sapphire Substrate also is the non-conductor of heat, and heat dissipation problem is with even more serious.
At the problems referred to above, main solution comprises the following aspects at present:
1) aspect chip design, great power LED is not simply to increase light-emitting area, but by the optimised devices structure, adopts novel slotting filament, micro-structural and photonic crystal etc. to improve the internal current expansion, reduce reflection and the absorption of light, improve the extraction efficiency of light at the GaN material internal.
2) traditional LED adopts positive assembling structure, and the light that active area produces is sent by the front by the transparency conducting layer electrode, and its main shortcoming is that nearly 30% light is absorbed by the P electrode.In addition, usually apply one deck epoxy resin above during the formal dress construction packages, and the capacity of heat transmission of epoxy resin is very poor, and following substrate sapphire also is the non-conductor of heat, therefore two aspects all cause the difficult problem of heat radiation before and after, have influenced the performance parameter and the reliability of device.Adopt after the upside-down mounting, light is sent by transparent Sapphire Substrate, has avoided the absorption of electrode pair light.Heat radiation aspect, active area more approach radiator, and led chip is connected on the silicon substrate by the salient point upside-down mounting, with the transition heat carrier of silicon as chip and fin, realize low thermal resistance, have reduced the influence of thermal stress to device reliability simultaneously.Inverted structure efficiently solves the absorption and the heat dissipation problem of P electrode pair light, makes big electric current high-power LED become possibility, and than traditional positive assembling structure, inverted structure can improve 70% with the light efficiency of LED.
3) high transmission/high reflecting metal electrode system.Will take into account low ohmic contact resistance and high two aspects of light extraction efficiency in the great power LED electrode design process, the factor of restriction P electrode ohmic contact has two: the one, and the P-GaN doping content is difficult to reach the level that the hole can the tunnelling Schottky barrier; The 2nd, lack work function metal or the metal system higher than P-GaN work function.Before making device, at first P-GaN is activated, improve carrier concentration; Reduce the influence of surface state simultaneously by GaN surface treatment and wet method passivating technique, further reduce metal-semiconductor contact potential barrier.Thereby need be to multiple metal system, especially the metal system that work function is high experimentizes, and seeks preferred plan.P electrode (transparency conducting layer) generally adopts the higher thin electrodes metal system of coefficient of transparency, such as Ni/Au (nickel/gold), and PdAu (porpezite), PtAu (platinum), NiCrAu (nickel chromium triangle gold), PtMgPdAu (platinum magnesium porpezite), ITO (indium tin oxide), ZnNiAu (zinc-nickel gold) etc.For flip LED, light sends from transparent Sapphire Substrate, to the demanding light transmittance of transparency conducting layer, the metal reflective layer is required to have high reflectivity.Ag in visible wavelength range (silver) and Al (aluminium) are best speculums, to the light of 470nm-520nm wavelength, 1.2 * 10 -7Ag that m is thick (silver) and Al (aluminium) reflectivity are about 96% and 84%, are to improve the effective way of reflectivity so select Ag (silver) and Al (aluminium) Base Metal system.
Summary of the invention
Technical problem to be solved by this invention provides a kind of high power LED flip-chip, and it can effectively improve the luminous efficiency and the heat-sinking capability of high power LED flip-chip; The present invention also will provide a kind of process of making this chip for this reason.
For solving the problems of the technologies described above, high power LED flip-chip of the present invention is made up of P-N electrode epitaxial wafer and the silicon substrate that has the reflector;
P-N electrode epitaxial wafer comprises Sapphire Substrate, the N-GaN layer that on Sapphire Substrate, forms, at P-GaN layer that forms on the N-GaN layer and luminescent layer (luminescent layer is between N-GaN layer and P-GaN layer), the metal level that helps the electric current diffusion that forms in the deposit of P-GaN laminar surface is a transparency conducting layer, by the P-N electrode that P-GaN layer and N-GaN layer are drawn respectively, the passivation layer of between the P-N electrode, growing;
The described silicon substrate that has the reflector is included in the electric isolation layer that forms on the intrinsic semiconductor silicon substrate, the metallic reflector that forms on this electric isolation layer;
Described P-N electrode epitaxial wafer carries out the upside-down mounting welding with the silicon substrate that has the reflector and forms high power LED flip-chip.
Described P-N electrode adopts the metallic combination (silver/nickel/gold) of Ti/Al/Ti/Au (titanium/aluminium/titanium/gold) or Ti/Al/Ni/Au (titanium/aluminium/nickel/gold) or Cr/Ag/Ti/Au (chromium/silver/titanium/gold) or Cr/Ag/Ni/Au (chromium/silver/nickel/gold) or Al/Ti/Au (aluminium/titanium/gold) or Al/Ni/Au (aluminium/nickel/gold) or Ag/Ti/Au (silver/titanium/gold) or Ag/Ni/Au, Au (gold) is the ultra-sonic welded metal, and TiAl/Al (titanium aluminium/aluminium) and CrAg/Ag (chromium silver/silver) are as the light reflective metals.
High power LED flip-chip process for making of the present invention comprises the steps:
At first make P-N electrode epitaxial wafer, comprise the steps: on Sapphire Substrate, to adopt ICP (coupling ion etching) or RIE (reactive ion etching) equipment utilization chloride ion and argon ion to carry out dry etching, form P-GaN layer and luminescent layer, and P-GaN layer and luminescent layer and the N-GaN layer below it are formed electrically contact, during etching with photoresist or SiO 2Make mask; The metal level that adopts vacuum electronic beam evaporation formation one deck to help the electric current diffusion on the surface of P-GaN layer is a transparency conducting layer; Adopt magnetron sputtering or electron beam evaporation to form the P-N electrode of drawing respectively by P-GaN layer and N-GaN layer; Between the P-N electrode, adopt the SiO of PECVD (plasma-reinforced chemical vapour deposition) growth one deck 70nm-120nm 2Passivation layer;
Make the silicon substrate that has the reflector then, comprise the steps: to utilize the electric isolation layer of PECVD deposit one deck P-N electrode on the intrinsic semiconductor silicon substrate, this electric isolation layer is SiO 2Or Si 3N 4Insulating barrier, thickness are 50nm-100nm, are the metallic reflector of 200nm-300nm with magnetron sputtering or electron beam evaporation one layer thickness then, and this metallic reflector adopts TiAl or TiAg;
At last, the P-N electrode epitaxial wafer of making is divided into the device of 1000 μ m * 1000 μ m, the silicon substrate in the band reflector made is divided into the device of 1400 μ m * 1200 μ m, both are carried out flip chip bonding and be connected together with Die Bond (upside-down mounting welding) and Wire Bond (spun gold welding) equipment.
Because high power LED flip-chip of the present invention has increased high reflectance and the good reflector of heat conduction on silicon substrate, thereby it can be led the heat of pn knot to thermal conductivity coefficient high metal Ti Al or TiAg by the P-N electrode and lead to the high silicon substrate of thermal conductivity coefficient, and radiating effect has improvement greatly.
Because Al and Ag metal have high reflectivity and thermal conductivity, P-N electrode of the present invention adopts the metallic combination (silver/nickel/gold) of Ti/Al/Ti/Au (titanium/aluminium/titanium/gold) or Ti/Al/Ni/Au (titanium/aluminium/nickel/gold) or Cr/Ag/Ti/Au (chromium/silver/titanium/gold) or Cr/Ag/Ni/Au (chromium/silver/nickel/gold) or Al/Ti/Au (aluminium/titanium/gold) or Al/Ni/Au (aluminium/nickel/gold) or Ag/Ti/Au (silver/titanium/gold) or Ag/Ni/Au, Au (gold) is the ultra-sonic welded metal, and TiAl/Al (titanium aluminium/aluminium) and CrAg/Ag (chromium silver/silver) are as the light reflective metals; The heat radiation aspect, active area more approaches radiator, adopt this structure the heat of the pn of led chip knot directly can be passed on the high metallic reflector of thermal conductivity coefficient by the high argent of thermal conductivity coefficient (thermal conductivity coefficient is 427W/mK) or aluminium (thermal conductivity coefficient is 236W/mK) and golden (thermal conductivity coefficient is 315W/mK) salient point (P-N electrode), realize low thermal resistance, reduced the influence of thermal stress simultaneously device reliability.
Description of drawings
The present invention is further detailed explanation below in conjunction with accompanying drawing and embodiment:
Fig. 1 is a high power LED flip-chip structural representation of the present invention;
Fig. 2 is the brightness contrast (the chip wavelength is 465nm) of (light reflective metals titanium aluminium or titanium silver are arranged) after (unglazed reflective metals titanium aluminium or titanium silver) and the upside-down mounting before the upside-down mounting among the present invention;
Fig. 3 evaporates among the present invention on silicon substrate as the metallic reflector TiAl of light reflection and the graph of relation of TiAg reflectivity and wavelength;
Fig. 4 evaporates on P-N electrode epitaxial wafer among the present invention as the metal Ni/Au of transparency conducting layer or the graph of relation of ITO penetrance and wavelength;
Fig. 5 is as the thermal conductivity coefficient column diagram of the metal of P-N electrode and reflection layer among the present invention.
Embodiment
The wave-length coverage of high power LED flip-chip of the present invention is 430nm-530nm.
As shown in Figure 1, high power LED flip-chip of the present invention is made up of P-N electrode epitaxial wafer and the silicon substrate that has the reflector.
P-N electrode epitaxial wafer comprises Sapphire Substrate, and Sapphire Substrate has the characteristic that thermal conductivity coefficient is low and insulate.The N-GaN layer that forms on Sapphire Substrate is at P-GaN layer that forms on the N-GaN layer and luminescent layer (luminescent layer is between N-GaN layer and P-GaN layer), so that electrically contact with the formation of N-GaN layer.
For flip LED, light sends from transparent Sapphire Substrate, and to the demanding light transmittance of transparency conducting layer, because the limited conductivity of P-GaN layer, it is transparency conducting layer that the present invention precipitates the metal level that one deck helps the electric current diffusion again at the P-GaN laminar surface.This transparency conducting layer generally adopts the higher thin electrodes metal system of coefficient of transparency.The present invention requires transparency conducting layer that high penetrance and good electrical conductivity are arranged in order to reduce catoptrical absorption, utilizes the vacuum electronic beam evaporation at the 450nm-550nm wave band, and adopts light transmittance good metal film Ni/Au or ITO.Thickness is Ni 2nm-10nm, Au 5nm-12nm, or ITO 200nm-300nm.
Draw the P-N electrode respectively by P-GaN layer and N-GaN layer.In order to solve the problem of light extraction efficiency and heat radiation to greatest extent, because Al (aluminium) and Ag (silver) metal have high reflectivity and thermal conductivity, P-N electrode of the present invention (upside-down mounting weld metal or title metallic film) adopts the metallic combination (silver/nickel/gold) of Ti/Al/Ti/Au (titanium/aluminium/titanium/gold) or Ti/Al/Ni/Au (titanium/aluminium/nickel/gold) or Cr/Ag/Ti/Au (chromium/silver/titanium/gold) or Cr/Ag/Ni/Au (chromium/silver/nickel/gold) or Al/Ti/Au (aluminium/titanium/gold) or Al/Ni/Au (aluminium/nickel/gold) or Ag/Ti/Au (silver/titanium/gold) or Ag/Ni/Au, Au (gold) is the ultra-sonic welded metal, TiAl/Al (titanium aluminium/aluminium) and CrAg/Ag (chromium silver/silver) are as the light reflective metals, and the P-N electrode is formed by magnetron sputtering or electron beam evaporation.
For guaranteeing the electrical stability and the antistatic effect of device, must be at chip surface, one deck passivation layer (oxidation insulating layer) of promptly growing between the P-N electrode.Described passivation layer is SiO 2Oxidation insulating layer, thickness are 70nm-120nm.Not only chip surface had been carried out passivation but also strengthened light extraction efficiency.
The described silicon substrate that has the reflector is included in the electric isolation layer that forms on the intrinsic semiconductor silicon substrate, and described electric isolation layer is SiO 2Or Si 3N 4Insulating barrier, thickness are 50nm-100nm.The metallic reflector that on this electric isolation layer, forms.Described metallic reflector is TiAl or TiAg, and thickness is 200nm-300nm.
The physical dimension of described P-N electrode epitaxial wafer is 1000 μ m * 1000 μ m; The described physical dimension that has the silicon substrate in reflector is 1400 μ m * 1200 μ m.Described P-N electrode epitaxial wafer carries out the upside-down mounting welding with the silicon substrate that has the reflector and forms high power LED flip-chip.
Below in conjunction with a specific embodiment high power LED flip-chip process for making of the present invention is described:
For preparing above-mentioned high power LED flip-chip, preparation method of the present invention may further comprise the steps:
Utilization MOCVD (metal organic chemical vapor deposition) equipment epitaxial growth GaN based high-power LED structure extension sheet, substrate is sapphire (Al 3O 2).At first stroke road of etching N face step and chip size exposes the N-GaN table top, so that make N electrode and weld pad.N type table top reactive ion etching equipment RIE etching, reacting gas is Cl: Ar=10: 3.
Adopt ICP (coupling ion etching) or RIE (reactive ion etching) equipment utilization chloride ion and argon ion to carry out dry etching, the P-GaN layer and the luminescent layer that form, and P-GaN layer and luminescent layer and the N-GaN layer below it are formed electrically contact, during etching with photoresist or SiO 2Make mask.
Evaporation one layer thickness is the transparent conductive film ITO of 200nm-300nm on the P-GaN layer afterwards, as transparency conducting layer.
The metallic combination (silver/nickel/gold) of adopting magnetron sputtering or electron beam evaporation difference evaporation to form with Ti/Al/Ti/Au (titanium/aluminium/titanium/gold) or Ti/Al/Ni/Au (titanium/aluminium/nickel/gold) or Cr/Ag/Ti/Au (chromium/silver/titanium/gold) or Cr/Ag/Ni/Au (chromium/silver/nickel/gold) or Al/Ti/Au (aluminium/titanium/gold) or Al/Ni/Au (aluminium/nickel/gold) or Ag/Ti/Au (silver/titanium/gold) or Ag/Ni/Au by P-GaN layer and N-GaN layer is the P-N electrode and the weld pad of metallic combination.Electrode size is 90 μ m~120 μ m (when P-N electrode epitaxial wafer is of a size of 1000 μ m * 1000 μ m).
Between the P-N electrode, adopt the SiO of PECVD (plasma-reinforced chemical vapour deposition) growth one deck 80nm 2Passivation layer.Use chemico-mechanical polishing (CMP) equipment that sapphire is thinned to 90 μ m~150 μ m by 350 μ m~450 μ m then.
Utilize the electric isolation layer of PECVD (plasma-reinforced chemical vapour deposition) deposit one deck P-N electrode on 2 inches intrinsic semiconductor silicon substrates, this electric isolation layer is SiO 2Or Si 3N 4Insulating barrier, thickness are 50nm-100nm, are the metallic reflector of 200nm-300nm with magnetron sputtering or electron beam evaporation one layer thickness then, and this metallic reflector adopts TiAl or TiAg.
At last, the P-N electrode epitaxial wafer of making is divided into the device of 1000 μ m * 1000 μ m, the silicon substrate in the band reflector made is divided into the device of 1400 μ m * 1200 μ m with cutting machine.The P-N electrode epitaxial wafer that performs electrode is divided into the device of 1000 μ m * 1000 μ m with laser scribing means.Both are carried out flip chip bonding and be connected together with Die Bond (upside-down mounting welding) and Wire Bond (gold thread welding) equipment.
Fig. 2 is the brightness contrast (the chip wavelength is 465nm) of (light reflective metals titanium aluminium or titanium silver are arranged) after (unglazed reflective metals titanium aluminium or titanium silver) and the upside-down mounting before the upside-down mounting among the present invention.Improved more than 50% before the brightness ratio upside-down mounting after the upside-down mounting.
Fig. 3 has disclosed metallic reflector TiAl (titanium aluminium) that evaporation is reflected as light among the present invention and the reflectivity of TiAg (titanium silver) on silicon substrate.(440nm-470nm) the former reflectivity is more than 90% in the blue light wavelength scope as seen from the figure, and the latter is up to more than 95%.
Fig. 4 has disclosed among the present invention and has evaporated on P-N electrode epitaxial wafer as the metal Ni/Au of transparency conducting layer or the penetrance of ITO.(440nm-470nm) the former penetrance is 75%-80% in the blue light wavelength scope as seen from the figure, and the latter is up to more than 98%.Significantly improve the optical efficiency of getting of LED, thereby improved optical output power.
Fig. 5 is as the thermal conductivity coefficient of the metal of P-N electrode and reflection layer in the invention.Yin thermal conductivity coefficient is 427W/mK as seen from the figure, and the thermal conductivity coefficient of aluminium is 236W/mK, and the thermal conductivity coefficient of gold is 315W/mK, can effectively conduct the heat of the pn knot of led chip, realizes low thermal resistance, has reduced the influence of thermal stress to device reliability simultaneously.
The invention provides a kind of high power LED flip-chip and preparation method thereof.For flip LED, light sends from transparent Sapphire Substrate, and the metal reflective layer is required that high reflectivity is arranged, and Ag and Al are best speculums in visible wavelength range.
Traditional LED adopts positive assembling structure, and its main shortcoming is that nearly 30% light is absorbed by the P electrode.Adopt after the upside-down mounting, light is sent by transparent Sapphire Substrate, has solved the absorption and the heat dissipation problem of P electrode pair light in this structure is effective.

Claims (7)

1, a kind of high power LED flip-chip is characterized in that: be made up of P-N electrode epitaxial wafer and the silicon substrate that has the reflector;
P-N electrode epitaxial wafer comprises Sapphire Substrate, the N-GaN layer that on Sapphire Substrate, forms, the P-GaN layer and the luminescent layer that on the N-GaN layer, form, the metal level that helps the electric current diffusion that forms in the deposit of P-GaN laminar surface is a transparency conducting layer, by the P-N electrode that P-GaN layer and N-GaN layer are drawn respectively, the passivation layer of between the P-N electrode, growing;
The described silicon substrate that has the reflector is included in the electric isolation layer that forms on the intrinsic semiconductor silicon substrate, the metallic reflector that forms on this electric isolation layer;
Described P-N electrode epitaxial wafer carries out the upside-down mounting welding with the silicon substrate that has the reflector and forms high power LED flip-chip.
2, high power LED flip-chip as claimed in claim 1 is characterized in that: the metal of described transparency conducting layer is Ni/Au or ITO, and thickness is Ni 2nm-10nm, Au 5nm-12nm, or ITO 200nm-300nm.
3, high power LED flip-chip as claimed in claim 1, it is characterized in that: described P-N electrode adopts the metallic combination of Ti/Al/Ti/Au or Ti/Al/Ni/Au or Cr/Ag/Ti/Au or Cr/Ag/Ni/Au or Al/Ti/Au or Al/Ni/Au or Ag/Ti/Au or Ag/Ni/Au, Au is the ultra-sonic welded metal, and TiAl/Al and CrAg/Ag are as the light reflective metals.
4, high power LED flip-chip as claimed in claim 1 is characterized in that: described passivation layer is SiO 2Oxidation insulating layer, thickness are 70nm-120nm.
5, high power LED flip-chip as claimed in claim 1 is characterized in that: described electric isolation layer is SiO 2Or Si 3N 4Insulating barrier, thickness are 50nm-100nm.
6, high power LED flip-chip as claimed in claim 1 is characterized in that: described metallic reflector is TiAl or TiAg, and thickness is 200nm-300nm.
7, a kind of high power LED flip-chip process for making as claimed in claim 1, it is characterized in that, at first make P-N electrode epitaxial wafer, comprise the steps: on Sapphire Substrate, to adopt ICP or RIE equipment utilization chloride ion and argon ion to carry out dry etching, form P-GaN layer and luminescent layer, and P-GaN layer and luminescent layer and the N-GaN layer below it are formed electrically contact, during etching with photoresist or SiO 2Make mask; The metal level that adopts vacuum electronic beam evaporation formation one deck to help the electric current diffusion on the surface of P-GaN layer is a transparency conducting layer; Adopt magnetron sputtering or electron beam evaporation to form the P-N electrode of drawing respectively by P-GaN layer and N-GaN layer; Between the P-N electrode, adopt the SiO of PECVD growth one deck 70nm-120nm 2Passivation layer;
Make the silicon substrate that has the reflector then, comprise the steps: to utilize the electric isolation layer of PECVD deposit one deck P-N electrode on the intrinsic semiconductor silicon substrate, this electric isolation layer is SiO 2Or Si 3N 4Insulating barrier, thickness are 50nm-100nm, are the metallic reflector of 200nm-300nm with magnetron sputtering or electron beam evaporation one layer thickness then, and this metallic reflector adopts TiAl or TiAg; At last, the P-N electrode epitaxial wafer of making is divided into the device of 1000 μ m * 1000 μ m, the silicon substrate in the band reflector made is divided into the device of 1400 μ m * 1200 μ m, both is carried out flip chip bonding with Die Bond and Wire Bond equipment be connected together.
CNB2005101104742A 2005-11-17 2005-11-17 High power LED flip-chip and its manufacturing method Expired - Fee Related CN100483755C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101104742A CN100483755C (en) 2005-11-17 2005-11-17 High power LED flip-chip and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101104742A CN100483755C (en) 2005-11-17 2005-11-17 High power LED flip-chip and its manufacturing method

Publications (2)

Publication Number Publication Date
CN1967883A true CN1967883A (en) 2007-05-23
CN100483755C CN100483755C (en) 2009-04-29

Family

ID=38076510

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101104742A Expired - Fee Related CN100483755C (en) 2005-11-17 2005-11-17 High power LED flip-chip and its manufacturing method

Country Status (1)

Country Link
CN (1) CN100483755C (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117845A1 (en) * 2008-03-25 2009-10-01 Lattice Power (Jiangxi) Corporation Semiconductor light-emitting device with double-sided passivation
CN101308838B (en) * 2008-06-06 2010-06-02 广州南科集成电子有限公司 Flip LED integrated chip with high break-over voltage and production method
CN102034925A (en) * 2010-10-28 2011-04-27 山东华光光电子有限公司 Flat FCB (Flip Chip Bonding) GaN-based LED (Light-Emitting Diode) chip structure
CN102055053A (en) * 2009-11-04 2011-05-11 中国科学院半导体研究所 Bonding technology based method for manufacturing microwave transmission line
CN101599522B (en) * 2009-06-30 2011-05-25 厦门市三安光电科技有限公司 Vertical LED adopting insulating medium barrier layer and preparation method thereof
CN101330080B (en) * 2008-07-23 2011-09-07 广州南科集成电子有限公司 High on-stage voltage right-handed LED integrated chip and manufacturing method thereof
CN101207173B (en) * 2007-11-30 2012-10-03 中国计量学院 Light emitting diode with one-dimensional photon crystal
CN102800764A (en) * 2011-05-26 2012-11-28 华夏光股份有限公司 Semiconductor light emitting device and method for manufacturing the same
CN101904018B (en) * 2007-12-18 2013-01-02 首尔Opto仪器股份有限公司 Light emitting device and method of manufacturing the same
CN103972223A (en) * 2013-04-16 2014-08-06 朱慧琴 LED multi-cup integration COB light source and encapsulating method thereof
CN105331940A (en) * 2014-07-24 2016-02-17 北京北方微电子基地设备工艺研究中心有限责任公司 Method for depositing metal membrane on substrate and LED device
CN106530992A (en) * 2016-12-28 2017-03-22 歌尔股份有限公司 Single-color LED display screen and manufacturing process thereof
WO2019227691A1 (en) * 2018-05-31 2019-12-05 东泰高科装备科技(北京)有限公司 Flexible nitride thin-film solar cell and manufacturing method therefor
CN111261766A (en) * 2020-01-21 2020-06-09 厦门乾照光电股份有限公司 Flip film LED chip structure and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207173B (en) * 2007-11-30 2012-10-03 中国计量学院 Light emitting diode with one-dimensional photon crystal
CN101904018B (en) * 2007-12-18 2013-01-02 首尔Opto仪器股份有限公司 Light emitting device and method of manufacturing the same
CN102017193B (en) * 2008-03-25 2012-05-30 晶能光电(江西)有限公司 Semiconductor light-emitting device with double-sided passivation
WO2009117845A1 (en) * 2008-03-25 2009-10-01 Lattice Power (Jiangxi) Corporation Semiconductor light-emitting device with double-sided passivation
CN101308838B (en) * 2008-06-06 2010-06-02 广州南科集成电子有限公司 Flip LED integrated chip with high break-over voltage and production method
CN101330080B (en) * 2008-07-23 2011-09-07 广州南科集成电子有限公司 High on-stage voltage right-handed LED integrated chip and manufacturing method thereof
CN101599522B (en) * 2009-06-30 2011-05-25 厦门市三安光电科技有限公司 Vertical LED adopting insulating medium barrier layer and preparation method thereof
CN102055053A (en) * 2009-11-04 2011-05-11 中国科学院半导体研究所 Bonding technology based method for manufacturing microwave transmission line
CN102034925B (en) * 2010-10-28 2013-04-03 山东华光光电子有限公司 Flat FCB (Flip Chip Bonding) GaN-based LED (Light-Emitting Diode) chip structure
CN102034925A (en) * 2010-10-28 2011-04-27 山东华光光电子有限公司 Flat FCB (Flip Chip Bonding) GaN-based LED (Light-Emitting Diode) chip structure
CN102800764A (en) * 2011-05-26 2012-11-28 华夏光股份有限公司 Semiconductor light emitting device and method for manufacturing the same
CN102800764B (en) * 2011-05-26 2016-06-22 华夏光股份有限公司 Semiconductor light-emitting apparatus and manufacture method thereof
CN103972223A (en) * 2013-04-16 2014-08-06 朱慧琴 LED multi-cup integration COB light source and encapsulating method thereof
CN105331940A (en) * 2014-07-24 2016-02-17 北京北方微电子基地设备工艺研究中心有限责任公司 Method for depositing metal membrane on substrate and LED device
CN106530992A (en) * 2016-12-28 2017-03-22 歌尔股份有限公司 Single-color LED display screen and manufacturing process thereof
WO2019227691A1 (en) * 2018-05-31 2019-12-05 东泰高科装备科技(北京)有限公司 Flexible nitride thin-film solar cell and manufacturing method therefor
CN111261766A (en) * 2020-01-21 2020-06-09 厦门乾照光电股份有限公司 Flip film LED chip structure and preparation method thereof

Also Published As

Publication number Publication date
CN100483755C (en) 2009-04-29

Similar Documents

Publication Publication Date Title
CN100483755C (en) High power LED flip-chip and its manufacturing method
US8643039B2 (en) Lateral semiconductor Light Emitting Diodes having large area contacts
CN109244197B (en) Light emitting diode chip with flip structure and preparation method thereof
TWI324401B (en) Fabrication method of high-brightness light emitting diode having reflective layer
US8581280B2 (en) Optoelectronic semiconductor chip
CN102270633B (en) High-power flip-chip array LED chip and manufacturing method thereof
CN1860621A (en) Semiconductor light emitting element
TW200913318A (en) Semiconductor light emitting device
CN1731592A (en) Flip-chip bonded structure light-emitting diode and its manufacture method
CN112164742A (en) Light-emitting diode
CN105720140A (en) GaN-based LED (Light-Emitting Diode) vertical chip structure and preparation method
CN103378244A (en) Light emitting diode device and manufacturing method thereof
CN1851947A (en) Efficient full-bright all-reflection light-emitting-diode and making method
CN101043059A (en) Upside-down mounting structural Luminous diode manufacturing method with substrate surface roughening technology
CN101075654A (en) Process for reversing pure-golden Au alloy bonding LED
CN106409997A (en) LED chip and formation method thereof
KR20090079122A (en) Reflective structure and light emitting device
CN101075653A (en) Process for producing quasi-vertical hybrid N-type GaN LED reversed chip with high-doping performance
CN214313229U (en) Flip LED chip
CN113066910B (en) Blue light semiconductor device and preparation method thereof
CN112768582B (en) Flip LED chip comprising high-reflection n-GaN ohmic contact and manufacturing method thereof
CN211654851U (en) LED chip for improving external quantum efficiency
CN108365056A (en) A kind of light emitting diode with vertical structure and its manufacturing method
JP2008226866A (en) Gallium nitride based light-emitting diode element and light-emitting device
CN100449797C (en) Method for fabricating tube core of light emitting diode in gallium nitride substrate through technique of reverse filling welding

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090429

CF01 Termination of patent right due to non-payment of annual fee