CN1930843A - 用于无线多载波通信的帧结构 - Google Patents

用于无线多载波通信的帧结构 Download PDF

Info

Publication number
CN1930843A
CN1930843A CNA2005800079417A CN200580007941A CN1930843A CN 1930843 A CN1930843 A CN 1930843A CN A2005800079417 A CNA2005800079417 A CN A2005800079417A CN 200580007941 A CN200580007941 A CN 200580007941A CN 1930843 A CN1930843 A CN 1930843A
Authority
CN
China
Prior art keywords
channel
subchannel
field
throughput
channelization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800079417A
Other languages
English (en)
Other versions
CN1930843B (zh
Inventor
亚历山大·A·马尔特塞夫
阿里·S·萨德利
瓦迪姆·S·瑟奇耶夫
阿德里安·P·斯蒂芬斯
约翰·S·萨朵斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spreadtrum Communications Shanghai Co Ltd
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/810,771 external-priority patent/US7324605B2/en
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1930843A publication Critical patent/CN1930843A/zh
Application granted granted Critical
Publication of CN1930843B publication Critical patent/CN1930843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • H04L1/0051Stopping criteria
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • H03M13/1114Merged schedule message passing algorithm with storage of sums of check-to-bit node messages or sums of bit-to-check node messages, e.g. in order to increase the memory efficiency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • H03M13/1117Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using approximations for check node processing, e.g. an outgoing message is depending on the signs and the minimum over the magnitudes of all incoming messages according to the min-sum rule
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1128Judging correct decoding and iterative stopping criteria other than syndrome check and upper limit for decoding iterations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3707Adaptive decoding and hybrid decoding, e.g. decoding methods or techniques providing more than one decoding algorithm for one code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)
  • Radio Transmission System (AREA)

Abstract

用于在高吞吐量通信信道上进行通信的帧结构包括作为当前数据单元的部分的信道化字段,以指示所述当前数据单元的后续部分的频率和空间配置。

Description

用于无线多载波通信的帧结构
相关申请的交叉引用:本申请要求2004年1月12日递交、序列号为No.60/536,071的美国临时专利申请和2004年3月26日递交、序列号为No.10/810,771的美国专利申请的优先权,并且通过引用将所述申请包括在本文中。
技术领域
本发明的实施方案涉及电子通信,具体来说涉及无线通信,并且在一些实施方案中,涉及使用正交频分复用(Orthogonal Frequency Division Multiplexed,OFDM)信号的无线通信。
背景
包括无线局域网(WLAN)的很多现代数字通信系统正使用多载波通信来帮助信号在具有多径反射和/或强干扰的环境中继续有效。使用多载波传送技术的常规系统的一个问题在于,信道带宽受到所采用的帧结构的限制。
附图简要说明
所附权利要求书针对本发明的各种实施方案中的一些。然而,当结合附图来考虑时,详细描述呈现了对本发明的实施方案更完整的理解,在所有的附图中,相同的标号指类似的项(item),并且:
图1是根据本发明的一些实施方案的发射机的框图;
图2A到2D是根据本发明的一些实施方案的各种高吞吐量通信信道的子信道和空间信道的频率-空间图;
图3根据本发明的一些实施方案示出旋转的二相相移键控(Binary Phase Shift Keying,BPSK)调制;
图4A和4B根据本发明的一些实施方案示出训练帧格式;
图5A和5B根据本发明的一些实施方案示出反馈帧格式;
图6A和6B根据本发明的一些实施方案示出数据帧格式;
图7根据本发明的一些实施方案示出纯宽带帧格式;
图8根据本发明的一些实施方案示出短兼容性宽带帧格式;
图9根据本发明的一些实施方案示出长兼容性宽带帧格式;
图10根据本发明的一些实施方案示出用于通过空间信道的长训练序列发射的空间信道训练;以及
图11根据本发明的一些实施方案示出训练符号发射。
详细描述
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的组件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,本发明的这些实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。
图1是根据本发明的一些实施方案的发射机的框图。发射机100可以是无线通信设备的部分,并且可以发射多载波通信信号。在一些实施方案中,发射机100可以发射正交频分复用(例如OFDM)通信信号,尽管本发明的范围在此方面不受限制。在一些实施方案中,发射机100可以是高吞吐量通信站的部分,并且可以在高吞吐量(High-throughput,HT)通信信道上发射分组(packet)。如下面进一步描述的,高吞吐量通信信道可以包括一条或更多条子信道以及一条或更多条空间信道。
根据本发明的实施方案,发射机100可以采用可以包括多个字段的帧结构,所述多个字段包括作为当前数据单元的部分的信道化字段(Channelization Field,CHF)。信道化字段可以指示当前数据单元的后续部分的频率和空间配置。在这些实施方案中,跟随所述信道化字段的至少一些字段可以根据信道化字段中指示的频率和空间配置被发射。在一些实施方案中,信道化字段可以指示发射机是否正操作在利用宽带信道的宽带(Wideband,WB)模式、利用MIMO信道的多输入多输出(Multiple-Input-Multiple-Output,MIMO)模式,或者利用WB-MIMO信道的WB-MIMO模式下。
图2A到2D是根据本发明的一些实施方案的高吞吐量通信信道的子信道和空间信道的频率空间(frequency-space)图。图2A示出可以包括单条子信道211的MIMO信道202,所述子信道211具有多至四条的空间子信道210。MIMO信道202的每条空间信道210可以具有在其上发射的相异数据流,尽管本发明的范围在此方面不受限制。图2B示出可以包括两条或更多条频率分开的子信道212的WB-MIMO信道204,其中,每条子信道具有两条或更多条空间信道214。WB-MIMO信道204的每条子信道212和每条空间信道214可以具有在其上发射的相异数据流,尽管本发明的范围在此方面不受限制。图2C和2D示出可以具有多至四条或更多条频率分开的子信道216的宽带信道206和208。宽带信道206和/或宽带信道208的每条子信道216可以具有在其上发射的不同数据流,尽管本发明的范围在此方面不受限制。
在一些实施方案中,宽带信道可以具有高达80MHz连续(contiguous)或者非连续频率空间的宽带信道带宽,并且可以包括多至四条或更多条的子信道,尽管本发明的范围在此方面不受限制。在一些实施方案中,子信道可以是非重叠的正交频分复用信道,并且可以利用分离的频带。在一些实施方案中,每条子信道可以具有约20MHz的子信道带宽,尽管本发明的范围在此方面不受限制。在一些实施方案中,子信道可以是来自U-NII带的20MHz信道。在一些实施方案中,每条子信道可以包括多个正交子载波。
在一些实施方案中,空间信道可以是与子信道中的一条相关联的非正交信道(例如频率上重叠),其中空间信道之间的正交性可以通过接收机和/或发射机波束形成(Beamforming)和/或天线分集来获得。在一些实施方案中,空间信道可以与所述子信道中的一条相关联。在一些实施方案中,空间信道可以与相关联子信道的其他空间信道利用所述相关联子信道的相同频率子载波。
参照图1,在一些实施方案中,发射机100可以利用多于一个的空间分集天线114和/或波束形成器113来将一条或更多条子信道“划分”成一条或更多条空间信道。在这些实施方案中,可以使用多于一个的天线114来发射用于每条空间信道的信号,所述天线114具有用于特定空间信道的波束形成系数。在一些实施方案中,用于空间信道的信号被复用,从而用于子信道的所有空间信道的信号可以被基本上同时地发射。
在一些实施方案中,每条空间信道可以与发射天线114(图1)中的一个相关联,尽管本发明的范围在此方面不受限制。在一些实施方案中,每条空间信道可以运载OFDM符号的分离的子符号。在其他实施方案中,空间信道可以运载相同的数据,尽管本发明的范围在此方面不受限制。
在一些实施方案中,每条子信道可以包括多至48或更多个数据子载波,所述数据子载波可以是间隔紧密的OFDM子载波,尽管本发明的范围在此方面不受限制。子信道可以是频分复用的(即在频率上是分开的),并且可以在预先确定的频谱内。在这些实施方案中,为了帮助在间隔紧密的子载波之间获得正交性,特定子信道的子载波可以在所述子信道的其他子载波的基本上中心频率处为零(null)。
在一些实施方案中,当发射机100在MIMO模式下通信时,每条空间信道可以被用来在与其他空间信道相同的子载波上传送单独的或独立的数据流,这允许通信额外的数据而不增加频率带宽。空间信道的使用可以利用信道的多径特性。
根据一些实施方案,用于发射的数据以位流101的形式被提供给发射机100。编码器102可以将前向纠错(Forward Error Correcting,FEC)码应用于位流101,以生成包括位流103的已编码位。在一些实施方案中,编码器102可以根据码率120编码位流101。码率120可以包括1/2、2/3以及3/4的码率,尽管本发明的范围在此方面不受限制。位交织器104可以对位块执行交织操作,以生成交织的位块105。位块105可以代表OFDM符号。解析器106可以将位块105解析成位组107。在一些实施方案中,组可以具有多个已编码位。在一些实施方案中,组的已编码位数目可以由与特定空间信道的特定子载波相关联的空间-频率子载波调制指派(modulation assignment)来确定。在一些实施方案中,解析器106可以包括串并转换,来以并行形式将位组107提供给子载波调制器108。
在一些实施方案中,取决于发射机100使用的高吞吐量通信信道的特性,子载波调制器108可以在OFDM子载波上一个一个单独地调制(例如正交幅度调制)位组107。在一些实施方案中,子载波调制器可以与子信道的每个子载波频率相关联。在一些实施方案中,调制器108可以根据来自系统控制器118的子载波调制指派生成符号调制子载波109,尽管本发明的范围在此方面不受限制。
在一些实施方案中,OFDM符号可以由所有符号调制子载波109的组合来表示。在这些实施方案的一些中,多个单独的子载波调制器108(例如每个子载波一个调制器)可以各自分开地调制各子载波。在一些实施方案中,子载波调制器108中的每一个可以调制用于不同空间信道的不同频率子载波的符号。例如,在MIMO信道202(图2)的情况下,第一个子载波调制器108可以调制用于每条空间信道210的具有第一频率的子载波,第二个子载波调制器108可以并发地调制用于每条空间信道210的具有第三频率的子载波,等等。
快速傅立叶逆变换(Inverse Fast Fourier transform,IFFT)电路110可以对符号调制子载波109执行IFFT,以生成OFDM符号的时域表示。几乎任意形式的离散傅立叶逆变换(Inverse Discrete Fourier Transform,IDFT)可以被用来执行逆变换操作。由IFFT电路110生成的时域采样的数目可以等于输入到其中频率分量的数目。在一些实施方案中,IFFT电路110可以从用于每条空间信道和/或子信道的符号调制子载波109的组合生成用于所述空间信道和/或子信道的时域波形。
IFFT电路110还可以将由IFFT操作生成的时域采样(可以是并行形式)转换成一个或更多个串行符号流111。IFFT电路110还可以添加周期扩展(或者保护间隔),以减少信道中的符号间干扰。射频(RF)电路112可以为串行符号流111中的每一个作好在相应的一条空间信道上进行RF传送的准备。
在一些实施方案中,空间分集天线114和/或波束形成器113可以被提供来自RF电路112中相关联一个的RF信号,用于在一条或更多条空间子信道或者一条或更多条子信道上发射。在一些实施方案中,空间分集天线114可以被分开一段距离。最小分开距离可以基于用于通信的频谱的波长。在一些实施方案中,分开几个厘米就足以帮助保证天线114间的多径差别。天线114可以包括一个或更多个定向的或全向的天线,包括例如双极天线、单极天线、环路天线、微带天线或适合于发射机100发送RF信号的其他类型的天线。
当发射机100操作于WB模式下并且在WB通信信道上传送数据单元的字段时,IFFT电路110和相关联的RF电路112中的每一个可以生成RF信号,以供在相关联子信道上发射。例如,当WB信道包括四条子信道时,四个IFFT电路110中的每一个和相关联的一个RF电路112可以生成用于子信道的RF信号。子信道216(图2C)示出当发射机100操作于WB模式下时WB信道的实施例。在该模式下,天线114中单独一个可以用于发射来自每条子信道的信号,尽管这不是要求的。在一些实施方案中,天线114中的几个或全部可以被用来在一条空间信道和/或子信道中发射信号,以在接收通信站处获得更高的信噪比。
当发射机100操作于MIMO模式并且在MIMO信道上传送数据单元的至少一些字段时,每个IFFT电路110和相关联RF电路112中相关联的一个可以生成RF信号,以供在相关联的空间信道上发射。在该模式下,RF电路112可以在用于该相关联空间信道的相同频谱中生成RF信号。在一些实施方案中,波束形成器113可以生成波束形成系数,以允许使用天线114的每条空间信道进行发射。在一些实施方案中,发射机100可以发射多至四条空间信道——每个IFFT电路110和相关联RF电路112使用一条空间信道,尽管本发明的范围在此方面不受限制。空间信道210(图2A)示出当发射机100操作于MIMO模式下时MIMO信道的实施例。
当发射机100操作于WB-MIMO模式下并且在WB-MIMO信道上传送数据单元的至少一些字段时,IFFT电路110的一些和相关联的一个RF电路112可以生成RF信号,以用于相关联空间信道(例如空间信道214(图2B))的发射,并且IFFT电路110的一些和相关联的多个RF电路112可以生成RF信号,以用于相关联子信道(例如子信道212(图2B))的发射。在一些实施方案中,发射机100可以在包括多至两条子信道的高吞吐量信道上进行发射,每条所述子信道具有多至两条空间信道。在这些实施方案中,每个IFFT电路110和相关联RF电路112可以与每个空间信道—子信道组合相关联。在一些实施方案中,一个或更多个天线114也可以与每个空间信道—子信道组合相关联,尽管本发明的范围在此方面不受限制。在其他实施方案中,波束形成器113可以被用来允许通过两个或更多个天线114的多于一条空间信道的发射。
在一些实施方案中,波束形成器113可以被用来将天线波束导向接收通信站。在一些实施方案中,波束形成器可以生成波束形成系数,来以预先确定的天线模型(antennapattern)来发射帧的特定字段。这在下面更详细地描述。
在一些实施方案中,当接收站和发射站各自具有多于一个天线时,可以由接收站和/或发射站通过应用波束形成系数来建立空间流。当接收站或者发射站之一具有一个天线时,只有一个空间流可以被使用。在该情况下,波束形成可以被应用在具有多于一个天线的那端,以增加接收机处的信噪比,从而增加链路的可靠性和/或增加数传率(data transferrate)。例如,当接收站具有一个接收天线并且发射站具有多于一个发射天线时,发射站可以通过应用使用波束形成器113的发射波束形成来在接收机处集中它的发射(emission)。当发射站100具有单个发射天线并且接收站具有多于一个接收天线时,接收站能够通过应用接收波束形成来组合从不同接收天线接收到的信号。
在一些实施方案中,位交织器104可以将可变数目的位流103的已编码位输入到交织器104的交织器矩阵中。在一些实施方案中,所述可变数目的已编码位可以包括一个OFDM符号,并且可以包括每个OFDM符号的已编码位的数目(Ncbps)。
在一些实施方案中,系统控制器118可以如示出地生成并向发射机100的一个或更多个其他部件提供传输格式参数122。传输格式参数122可以包括空间频率(spatial-frequency)子载波调制指派以及每个OFDM符号的已编码位的数目。传输格式参数也可以包括其他信息,以指明OFDM符号如何被调制。在一些实施方案中,除了每个OFDM符号的已编码位的数目之外,传输格式参数可以包括每个空间流上要被调制的位的数目。在一些实施方案中,子载波调制指派也可以被提供给交织器104,尽管在本发明的范围此方面不受限制。
在一些实施方案中,解析器106可以将表示OFDM符号的位块解析成具有可变数目的已编码位的组,并且子载波调制器108可以根据空间频率子载波调制指派分别地调制OFDM子载波上的位组,以生成符号调制子载波109。IFFT电路110可以从符号调制子载波为在空间信道上进行的后续RF发射生成时域波形。在这些实施方案中,位组的数目可以等于空间信道数目乘以信道的OFDM子载波数目。
在一些实施方案中,发射机100可以包括用于每条空间信道和/或子信道的RF链。RF链可以包括用于每条空间信道和/或子信道的RF电路112中的一个和IFFT电路110中相关联的一个。尽管为每个RF链示出了天线114中的一个,但是这不是一个要求的。另一方面,调制器108可以与特定的子载波相关联,而不是与空间信道或子信道相关联,从而使得任意一个调制器可以调制每一条空间信道的相应子载波(即具有相同子载波频率的子载波),和/或调制正被使用的每条子信道的子载波。对于每个子载波,多个符号可以由调制器108中的一个来处理。
在一些实施方案中,解析器106可以是空间频率解析器,以将可变大小的位块解析成位的空间频率组。每个空间频率组可以与空间信道—子信道组合以及高吞吐量通信信道的相关联空间信道—子信道组合的子载波频率相关联。
在一些实施方案中,交织器104和解析钱106的功能可以以不同于上面描述的顺序执行。例如,解析可以在交织之前被执行,尽管本发明的范围在此方面不受限制。在这些实施方案中,符号交织器可以在解析之后被使用。在一些实施方案中,可以为每个空间信道—子信道组合分别地执行交织,尽管本发明的范围在此方面不受限制。在一些实施方案中,编码器102可以使用一种并非总是需要交织操作的码,如低密度奇偶校验码(Low-densitypartiy check code,LDPC)。
在一些实施方案中,发射机100可以包括空间频率交织器。在一些实施方案中,交织可以在解析之前、期间或之后被执行,并且可以在任意位组上执行,以帮助保证相邻位被至少两个子载波分开。
根据一些实施方案,发射机100可以根据各子载波调制指派来对子载波进行符号调制。这可以被称为自适应位加载(Adaptive Bit Loading,ABL)。因此,一个或更多个位可以由在子载波上调制的符号来表示。用于各空间信道和/或子信道的调制指派可以基于所述子载波的信道特性或信道条件,尽管本发明的范围在此方面不受限制。
在一些实施方案中,子载波调制指派范围可以从每符号零位到高达每符号十位或更多位。根据调制级别(modulation level),子载波调制指派可以包括每符号传送一位的二相相移键控(BPSK)、每符号传送二位的四相相移键控(Quadrature Phase Shift Keying,QPSK)、每符号传送三位的8PSK、每符号传送四位的16正交幅度调制(Quadrature AmplitudeModulation,QAM)、每符号传送五位的32-QAM、每符号传送六位的64-QAM、每符号传送七位的128-QAM,以及每符号传送八位的256-QAM。也可以使用具有每子载波更高数据通信率的调制阶数(order)。
在一些实施方案中,OFDM符号可以被视为在包括高吞吐量信道的空间信道—子信道组合的各子载波上调制的符号的组合。因为每符号调制子载波的位的可变数目和可以包括高吞吐量通信信道的空间信道—子信道组合的可变数目。在这些实施方案的一些中,每OFDM符号的位数可以在很大程度上不同。
在一些实施方案中,发射机100可以根据具体通信标准(例如包括IEEE 802.11(a)、802.11(b)、802.11(g/h)、802.11(n)和/或802.16标准的电气和电子工程师学会(IEEE)标准)来发射射频(RF)通信,尽管发射机100还可以根据包括陆地数字视频广播(DVB-T)广播标准和高性能无线电局域网(HiperLAN)标准的其他技术来适合地发射通信。
虽然可以在802.11x实现(例如,802.11a、802.11g、802.11HT等)的示例性背景中讨论本发明的一些实施方案,但是权利要求书没有被这样地限制。确实,本发明的实施方案可以适当地被实现为使用多载波无线通信信道的任何无线系统(例如,正交频分复用(OFDM)、离散多音调制(Discrete Multi-tone Modulation,DMT)等)的部分,例如可以用于无线个人区域网(Wireless Personal Area Network,WPAN)、无线局域网(WirelessLocal Area Network,WLAN)、无线城域网(Wireless Metropolitan Area Network,WMAN)、无线广域网(Wireless Wide Area Network,WWAN)、蜂窝网络、第三代(3G)网络、第四代(4G)网络、通用移动电话系统(Universal Mobile Telephone System,UMTS)和相似的通信系统中,而不受限制。
在一些实施方案中,用于宽带信道的频谱可以包括在5GHz频谱或者在2.4GHz频谱中的子信道。在这些实施方案中,5GHz频谱可以包括范围约从4.9到5.9GHz的频率,并且2.4GHz频谱可以包括范围约从2.3到2.5GHz的频率,尽管本发明的范围在此方面不受限制,因为其他频谱可以同样适用。
在一些实施方案中,发射机100可以是无线通信设备100的部分,所述无线通信设备可以包括个人数字助理(PDA)、具有无线连网通信能力的膝上型或便携式计算机、网络手写板(web tablet)、无线电话、无线头戴式耳机和送话器(headset)、寻呼机、即时消息设备、数码相机、接入点或可以无线接收和/或发射信息的其他设备。
尽管发射机100被示出为具有几个分离的功能部件,但是所述功能部件中的一个或更多个可以被组合,并且可以通过软件配置的部件(例如包括数字信号处理器(Digital SignalProcessors,DSP)的处理部件)和/或其他硬件部件的组合来实现。例如,示出的一个或更多个部件可以包括一个或更多个微处理器、DSP、专用集成电路(Application SpecificIntegrated Circuits,ASIC),以及用于执行至少本文描述的功能的各种硬件和逻辑电路的组合。
图3根据本发明的一些实施方案示出旋转的二相相移键控(BPSK)调制。在一些实施方案中,发射机100(图1)可以在以旋转的BPSK调制302在兼容性信道上发射数据单元的信道化字段(下面更详细地讨论)。在这些实施方案中,兼容性信道的子载波可以在相位上旋转。兼容性信道可以包括多条子信道中的一条子信道。在一些实施方案中,兼容性信道可以是预先确定的信道,并且在一些实施方案中,可以包括U-NII带的信道,尽管本发明的范围在此方面不受限制。在这些实施方案中,旋转的BPSK调制302可以包括基本上+90度或者-90度的相移RF信号。另一方面,常规BPSK调制304包括以0或180度的相移信号。相移的信号可以包括表示包括信道化字段的数据的数字位流的位。在一些实施方案中,“零”位(zero bit)可以导致RF信号的-90度的相移,而“一”位(one bit)可以导致RF信号的+90度的相移,尽管本发明的范围在此方面不受限制。
在一些实施方案中,旋转的BPSK调制302可以包括将表示包括信道化字段的数据的符号星座图(constellation)从常规BPSK调制的符号星座图旋转基本上+90度或者-90度,尽管本发明的范围在此方面不受限制。在一些实施方案中,旋转符号星座图来生成旋转的BPSK调制302的操作可以由子载波调制器108(图1)执行,尽管本发明的范围在此方面不受限制。
在一些实施方案中,在旋转BPSK调制和发射当前数据单元的信道化字段之前,编码器102(图1)可以以码率120(图1)编码数字位流101(图1),所述数字位流101表示包括信道化字段的数据。
图4A和4B根据本发明的一些实施方案示出训练帧格式。帧402和404可以被用作对空间信道—子信道组合的信道矩阵测量的初始训练,所述空间信道—子信道组合可以包括高吞吐量通信信道。在一些实施方案中,帧402和404可以被发射机100(图1)用来发射请求发送(Request-to-send,RTS)帧,尽管本发明的范围在此方面不受限制。
图5A和5B根据本发明的一些实施方案示出反馈帧格式。帧502和504可以被用于训练反馈,并且在一些实施方案中,可以被用于发射清除发送(Clear-to-send,CTS)帧,尽管本发明的范围在此方面不受限制。
图6A和6B根据本发明的一些实施方案示出数据单元帧格式。帧602和604可以被用来发射具有数据部分的帧,例如“数据”帧,尽管本发明的范围在此方面不受限制。
图7根据本发明的一些实施方案示出纯宽带帧格式。图8根据本发明的一些实施方案示出短兼容性宽带帧格式。图9根据本发明的一些实施方案示出长兼容性宽带帧格式。
参照图4A到图9,帧402、502和602示出可以与MIMO信道一起使用的帧格式,所述MIMO信道包括具有多至四条空间子信道的单个子信道。对于帧格式602的一些字段,空间信道被示为在z方向(即进入页面的方向)。这在下面详细地描述。帧404、504和604示出可以与宽带MIMO信道一起使用的帧格式,所述宽带MIMO信道包括两条或更多条频率分开的子信道,其中每条子信道可以具有两条或更多条空间信道。对于帧404、504以及604的一些字段,子信道被垂直地示为在y方向,而不同的空间信道被示为在z方向。这在下面更详细地描述。
帧402、404、502、504、602、604、702、802以及902可以包括标准部分和高吞吐量部分。标准部分可以包括训练字段(例如训练字段406、408、506、508、606、608、706、708、806、808、906和908)、信令字段(Signaling Field,SF)(例如SF 410、510、610、710、810以及910)。训练字段和信令字段可以包括短兼容性字段(Short CompatibilityField,SCF)。在一些实施方案中,标准部分还可以包括长兼容性字段(Long CompabilityField,LCF),例如LCF 412、512以及912。在一些实施方案中,物理层会聚协议(PhysicalLayer Convergence Protocol,PLCP)可以被用来作为用于发射帧的物理层的部分,尽管本发明的范围在此方面不受限制。
在一些实施方案中,SCF可以被包括在所有帧中,并且LCF的出现可以取决于特定帧类型的类型。在一些实施方案中,SCF可以给非高吞吐量通信站(以及高吞吐量通信站)提供物理(Physical,PHY)层载波侦听(carrier sense),所述物理层载波侦听允许非高吞吐量通信站确定高吞吐量帧发射的开始,并且从信令字段确定它的持续时间。在一些实施方案中,帧的标准部分还可以给非高吞吐量通信站提供介质访问控制(Medium AccessControl,MAC)层载波侦听。标准部分还可以被高吞吐量通信站用来执行初步同步(preliminary synchronization)和信道估计等等。
根据帧类型,帧的高吞吐量部分可以包括信道化字段(CHF)(例如CHF 414、514、614、814以及914)、训练字段(例如训练字段416、516、616、816以及916)、高吞吐量头部字段(例如高吞吐量头部字段418、518、618、718、818以及918),以及高吞吐量数据字段(例如高吞吐量数据字段620、720以及820)。高吞吐量部分可以被用于训练过程以及以高数据率进行的数据发射。高吞吐量部分中的字段可以被提供来为WB、MIMO或WB-MIMO信道执行高吞吐量信道估计、精同步(fine synchronization)以及快速链路训练适应训练。高吞吐量数据字段的频率空间配置可以取决于高吞吐量站的操作模式。特定高吞吐量训练的类型可以取决于操作模式以及特定帧和MAC类型。
SCF可以提供与非高吞吐量通信站的PHY层兼容性。在一些实施方案中,除了信号字段之外,SCF可以包括可以根据IEEE 802.11a标准的OFDM PLCP前同步码,尽管本发明的范围在此方面不受限制。在一些实施方案中,前同步码可以包括短和长训练符号(例如406和408)。通过在覆盖高吞吐量数据交换的时间内使用信号字段中的长度和速率参数在PHY层预留一条或更多条子信道,SCF可以提供对已发射高吞吐量帧的PHY层保护,使其不受来自设备的不需要的干扰。
在一些实施方案中,训练符号还可以用于初步同步。在SCF的接收期间,接收站可以执行初步的自动增益控制(Automatic Gain Control,AGC)会聚、时序(timing)获取,和/或频率获取。取决于帧类型和干扰环境,SCF可以在兼容性信道上被发射。在可替换的实施方案中,SCF可以在频域中被复制,从而在几条或所有子信道上被发射。这可以减少用于纯WB模式的帧702中的开销(overhead)。
SCF的SF的长度和速率参数的值可以取决于LCF的出现。当LCF在帧中出现时,SCF的长度和速率参数可以用八位字节(octet)描述长度,并且描述LCF的比特率。否则,这些参数可以被挑选来覆盖具有与高吞吐量数据交换的持续时间对应的持续时间的虚拟帧,所述虚拟帧包括RTS帧、CTS帧、数据帧(例如DATA)以及确认(ACK)帧。在一些实施方案中,可以使用基本上全向的天线模型、使用波束形成器(图1)来发射SCF。
在一些实施方案中,LCF可以具有服务子字段、物理服务数据单元(Physical ServiceData Unit,PSDU)子字段、尾部位以及填充位,并且可以在兼容性信道上被发射。当LCF被包括在帧内时,它可以运载介质访问控制(MAC)协议数据单元(Medium Access ControlProtocol Data Unit,MPDU)。当LCF未被包括在帧内时,帧的高吞吐量部分可以包括MPDU。LCF可以被用于发射MAC类型控制和管理帧,并且可以运载合适的MPDU。对于MAC类型的“数据”帧,LCF还可以被用来运载MPDU(例如处于操作的兼容性模式),尽管本发明的范围在此方面不受限制。
在一些实施方案中,通过将其他设备的网络分配矢量(Network Allocation Vector,NAV)设置为覆盖高吞吐量数据交换,LCF可以提供对所述已发射高吞吐量OFDM帧的MAC层保护,保护其不受来自其他设备的不需要的干扰。当LCF出现在分组中时,SCF的信号字段中的长度和速率值可以被设置为指示LCF中发射的数据率和PSDU长度。在一些实施方案中,可以用基本上全向的天线模型、使用波束形成器113(图1)来发射LCF,尽管本发明的范围在此方面不受限制。
在一些实施方案中,CHF可以指示在它之后发射的物理协议数据单元(PhysicalProtocol Data Unit,PPDU)的频率空间配置。可以用子载波的旋转的BPSK调制302(图3)来执行对单个OFDM符号上的CHF的编码。旋转的BPSK调制可以允许高吞吐量站区分不同格式的帧。
在一些实施方案中,CHF可以包括信道化掩码(mask),所述信道化掩码可以是描述所使用的子信道的4位掩码。在一些实施方案中,掩码中的每个“1”可以指示对应的子信道。在一些实施方案中,掩码中的第一元素可以对应于具有最低频率的子信道。在一些实施方案中,CHF还可以包括指示所使用的发射天线数目的参数。在一些实施方案中,该参数可以包括两位无正负号整数。在一些实施方案中,CHF还可以包括指示所使用的空间信道数目的参数。在一些实施方案中,该参数可以包括两位无正负号的整数。
在一些实施方案中,CHF还可以包括指示高吞吐量训练类型的参数。在一些实施方案中,该参数可以包括指示高吞吐量训练类型用于MIMO模式还是WB模式的一个位。当所使用的空间信道数目参数指示使用多于一个的空间信道,并且指示为WB训练时,可以执行空间信道训练。在下面参考图10更详细地描述空间信道训练的实施例。在一些实施方案中,CHF还可以包括指示高吞吐量头部的调制的参数。在一些实施方案中,该参数可以包括指示在高吞吐量头部中是否使用例如BPSK、QPSK、16-QAM或者64-QAM的参数。
在纯WB操作模式下,帧702的SCF可以在多于一条子信道上被发射,以指示繁忙子信道,并且帧702的CHF可以被省略,因为SCF被接收所在子信道的频率信道化可以是暗含的(implicit),并且MIMO信息可以是不必要的。在一些实施方案中,高吞吐量接收站可以执行CHF的检测,以区分纯WB格式的帧和WB-MIMO格式的帧。
高吞吐量训练字段(例如高吞吐量训练字段416、516、616、816以及916)可以被用来允许接收站执行信道获取。取决于操作模式(例如WB模式、MIMO模式或WB-MIMO模式),高吞吐量训练字段可以包括不同的训练序列。
WB训练字段(例如WB训练字段516、616、816以及916(图9))可以被高吞吐量站用来估计单个空间子信道的信道传递函数。在一些实施方案中,每条子信道可以被用于发射长训练序列,所述操作可以根据IEEE标准802.11a,尽管本发明的范围在此方面不受限制。在一些实施方案中,用于长训练序列的每条子载波的相位可以被旋转一角度,所述角度可以取决于频率信道化。该相位旋转可以减少峰均功率比(Peak-to-average PowerRatio,PAPR)。
下表(表1)列出用于旋转WB训练字段的长训练序列的相位角的实施例。
表1
  频率信道化   相位旋转
  4个连续子信道   将较高信道中的相位旋转约180度
  3个连续子信道   将一条信道中的相位顺时针旋转约90度
  2个连续子信道   将较高信道中的相位顺时针旋转约90度
  1个连续子信道   无相位旋转
  非连续信道化   实现相关
MIMO初始训练字段416(图4A和4B)可以被接收站用来为在发射站(例如发射站100(图1))所使用的每个发射天线和接收站使用的每个接收天线之间的信道估计信道矩阵。在一些实施方案中,接收站可以计算发射波束形成系数和接收波束形成系数,并且可以利用波束形成器来形成正交空间信道。MIMO初始训练符号可以从具有某种信道化的高吞吐量训练符号确定。在一些实施方案中,WB训练符号的子载波可以在发射天线之间传播。MIMO初始训练字段中WB训练符号的数目可以等于发射天线的数目,尽管本发明的范围在此方面不受限制。
在一些实施方案中,高吞吐量头部(例如高吞吐量头部418、518、618、718、818以及918)可以包括用于快速链路适应、WB模式操作以及MIMO模式操作的参数。取决于操作模式和特定帧类型,高吞吐量头部可以包括不同的参数集,并且可以具有不同长度。在高吞吐量头部中发射的实际参数集可以在参数掩码中被指示,所述参数掩码可以在高吞吐量头部中首先被发射。在一些实施方案中,参数集可以取决于帧格式,并且可以在帧类型指示符中以信号形式被信令。在一些实施方案中,高吞吐量头部可以是高吞吐量PLCP头部,尽管本发明的范围在此方面不受限制。
在一些实施方案中,高吞吐量头部的参数掩码可以指示高吞吐量头部中特定字段的出现。在一些实施方案中,高吞吐量头部的参数掩码可以是14位长的掩码,尽管这不是要求。表2(下面示出)根据本发明的实施方案示出用于参数掩码中特定位的实施例。在一些实施方案中,掩码中的每个“1”可以指示对应字段出现在高吞吐量头部中,并且位“1”可以指示数据单元中的高吞吐量数据字段的出现。在一些实施方案中,可以给参数掩码提供循环冗余校验(Cyclic Redundancy Check,CRC)和尾部位,以允许它与头部中的其他部分分开解码。
表2用于高吞吐量头部的参数掩码
  位#   对应参数的出现
  0   数据单元中的高吞吐量数据字段
  1   每条子信道的位加载
  2   每条信道的功率加载
  3   编码率
  4   长度
  5   发射功率水平
  6   可获得的功率发射水平
  7   频率信道化请求
  8   空间子信道数目请求
  9   每条子信道的位加载请求
  10   每条子信道的功率加载请求
  11   编码率请求
  12   发射功率请求
  13   波束形成请求
  14   持续时间建议
在一些实施方案中,高吞吐量头部的参数掩码可以不必要描述用于整个头部、头部尾部(header tail)以及填充位字段的CRC的出现。在一些实施方案中,参数掩码还可以不必要指示服务参数的出现,所述服务参数的出现可以由跟随的高吞吐量数据字段确定(例如由位#0指示)。
在一些实施方案中,每条子信道的位加载(由位#1指示)可以由无正负号整数阵列表示,所述无正负号整数阵列可以描述用于发射的每条空间/频率子信道的调制类型。可以为由CHF中的频率信道化参数和空间子信道的数目指示的信道描述调制类型。在一些实施方案中,可以从较低到较高频率并且从第一个到最后一个空间子信道为子信道指派编号。图2中示出了这个实施例。
在一些实施方案中,每条子信道的功率加载可以被执行。在这些实施方案中,功率加载(由位#2指示)可以由无正负号整数阵列表示,所述无正负号整数阵列可以为每条空间/频率子信道描述功率加载,所述功率加载可以在响应分组的发射期间被应用。可以为由CHF中的频率信道化参数和空间信道的数目指示的信道描述功率水平。可以从较低到较高频率并且从第一个到最后一个空间子信道完成对子信道的编号,尽管本发明的范围在此方面不受限制。
在一些实施方案中,编码率(由位#3指示)可以为编码器102(图1)所使用的纠错码指示编码率,所述编码器102用于编码当前数据单元。在一些实施方案中,长度(由位#4指示)可以是指示数据单元中的八位字节数目的无正负号整数,MAC层当前正请求PHY层发射所述八位字节。该值可以被PHY层用来确定在接收请求开始发射之后以在MAC层和PHY层之间发生的八位字节传递的数目,尽管本发明的范围在此方面不受限制。
在一些实施方案中,发射功率水平参数(由位#5指示)可以是可以指示功率水平的无正负号整数,当前分组以所述功率水平被发射。在一些实施方案中,功率水平可以用从可获得发射功率水平参数指示的最大可获得值开始以3dB步长减小的值来描述,尽管本发明的范围在此方面不受限制。在一些实施方案中,可获得的发射功率水平(由位#6指示)可以是无正负号整数,并且可以指示用于发射站的最大功率水平,分组可以以所述功率水平被发射,尽管本发明的范围在此方面不受限制。
在一些实施方案中,频率信道化请求(由位#7指示)可以包括标准子信道的位掩码,所述标准子信道可以被用于响应分组的发射。该参数的长度可以是四位。该位掩码中的每个“1”可以请求要被用于响应发射的对应子信道,尽管本发明的范围在此方面不受限制。
在一些实施方案中,空间子信道数目请求(由位#8指示)可以指示要在响应分组的发射期间被使用的空间子信道的数目。每个子信道的位加载请求(由位#9指示)可以是无正负号整数阵列,所述无正负号整数阵列可以描述要在响应分组的发射期间被应用的每条子信道的调制类型。可以为子信道请求调制类型,所述调制类型被请求来由频率信道化请求参数和空间子信道数目请求参数使用,尽管本发明的范围在此方面不受限制。
在一些实施方案中,每条子信道的功率加载请求(由位#10指示)可以是无正负号整数阵列,所述无正负号整数阵列可以请求要在响应分组的发射期间被应用的每条子信道的功率水平。可以为所有信道请求功率水平,所述功率水平被请求来由频率信道化请求参数和空间子信道数目请求参数使用。在一些实施方案中,可以从较低到较高频率并从第一条到最后一条空间子信道给子信道指派编号,尽管本发明的范围在此方面不受限制。
在一些实施方案中,编码率请求(由位#11指示)可以指示要在响应分组中使用的编码率,尽管本发明的范围在此方面不受限制。在一些实施方案中,发射功率请求(由位#12指示)可以是可以请求响应分组被请求发射所使用的整体功率水平的无正负号整数。功率水平可以用从最大可获得值开始以3dB步长减小的值来描述。
在一些实施方案中,波束形成请求(由位#13指示)可以包括发射波束形成矩阵。该矩阵可以包括用于由信道化请求参数所请求的子信道的子载波(或者子载波组)的权重(weighting)系数。在一些实施方案中,可以在接收站处从空子信道数目请求参数的值计算该参数的大小,尽管本发明的范围在此方面不受限制。
在一些实施方案中,持续时间建议(由位#14指示)可以是无正负号整数,并且可以包括响应分组的建议持续时间,所述建议持续时间可以以200微秒为单位,尽管本发明的范围在此方面不受限制。
在一些实施方案中,还可以包括可以是扰频器(scrambler)初始化的服务字段,并且当高吞吐量数据字段出现时所述服务字段可以出现在帧中。在一些实施方案中,可以在从参数掩码开始的所有在前字段上计算CRC。在一些实施方案中,头部尾部可以被设置为零,并且可以被用来将编码器驱动为零状态。头部填充位可以被用来填高吞吐量头部的最后一个OFDM符号,尽管本发明的范围在此方面不受限制。
参照图7,纯WB帧格式的帧702在具有高吞吐量通信站的网络中可以是有用的(例如当与非高吞吐量站没有重叠时)。在这些实施方案中,几乎任意MAC类型的帧可以以纯WB帧格式被发射。纯WB帧格式可以具有比其他帧格式少的开销,并且可以包括一些与其他帧格式相同的字段,所述字段包括训练字段706和708、SF 710、高吞吐量头部718以及高吞吐量数据字段720。在一些实施方案中,SCF可以允许子信道中的信道估计,以及传输中的(on the fly)时序同步和频率偏移估计。
在一些实施方案中,SF 710可以在频域中与预先确定的信道化相乘,LCF 712、CHF714以及高吞吐量训练字段716可以不存在于纯WB帧格式702中。在一些实施方案中,对于RTS和数据帧,纯WB帧格式702的高吞吐量头部718可以包括:
●每条子信道的位加载
●每条子信道的功率加载
●编码率
●长度
●发射功率水平
●可获得的发射功率水平
●CRC
●尾部
在一些实施方案中,对于CTS和ACK帧,高吞吐量头部718可以包括:
●每条子信道的位加载
●每条子信道的功率加载
●编码率
●长度
●发射功率水平
●可获得的发射功率水平
●每条子信道的位加载请求
●每条子信道的功率加载请求
●编码率请求
●发射功率请求
●持续时间建议
●CRC
●尾部
在一些实施方案中,高吞吐量数据字段720还可以出现在用于具有任意MAC类型的CTS和ACK帧的帧702中,尽管本发明的范围在此方面不受限制。
参照图8,当可以不必要提供与非高吞吐量通信站的MAC层兼容性时,具有短兼容性WB帧格式的帧802可以被高吞吐量站使用。在一些实施方案中,当可能需要物理层兼容性(即载波侦听)但是MAC级别的兼容性不是必定需要时,该格式可以被使用。例如,可能仅需要发射数据帧。对于RTS和CTS类似帧,长兼容性帧格式902(图9)也可以是合适的。
在一些实施方案中,短兼容性WB帧格式802可以包括可以在兼容性信道上被发射的训练字段806和808、SF 810和CHF 814。在一些实施方案中,LCF可以不存在于短兼容性WB帧格式802中。
在一些实施方案中,CHF 814可以包括:
●可以指示在帧802的高吞吐量部分中使用的信道化的频率信道化。
●空间信道的数目可以等于1。
●可以指示所使用发射天线的实际数目的发射天线数目。
●高吞吐量训练类型可以指示WB训练。
●高吞吐量头部调制可以指示BPSK。
在一些实施方案中,高吞吐量训练字段816可以包括具有在CHF 814中由频率信道化参数指示的信道化的WB训练,尽管本发明的范围在此方面不受限制。
在一些实施方案中,高吞吐量头部818可以包括用于数据帧的参数,并且可以包括:
●每条子信道的位加载
●每条子信道的功率加载
●编码率
●长度
●发射功率水平
●可获得的发射功率水平
●CRC
●尾部
在一些实施方案中,高吞吐量数据字段820可以出现在运载MPDU的分组中,尽管本发明的范围在此方面不受限制。
参照图9,长兼容性帧格式的帧902可以被用来发射MAC类型控制帧(例如RTS、CTS以及ACK帧)和一些类型的数据帧。长兼容性帧格式可以包括可以在兼容性信道发射的训练字段906和908、SF 910和LCF 912,以及包括WB训练字段916和高吞吐量头部918的短高吞吐量部分。长兼容性帧格式在MAC层可以被非高吞吐量通信站理解,并且同时,长兼容性帧格式902可以为高吞吐量通信站提供训练能力。
在一些实施方案中,SF 910可以指示在LCF 912中使用的速率,并且可以指示LCF 912的长度。在一些实施方案中,MPDU可以被包括在LCF 902中。CHF 914可以包括以下参数:
●频率信道化,所述频率信道化指示用于帧的高吞吐量部分的信道化。
●空间信道的数目可以等于1。
●发射天线数目可以指示发射天线的实际数目。
●高吞吐量训练类型可以指示WB训练。
●高吞吐量头部调制可以指示BPSK调制。
●CRC
●尾部
在一些实施方案中,WB训练字段916可以指示具有在CHF 914中由频率信道化参数指示的信道化的WB训练,尽管本发明的范围在此方面不受限制。
在一些实施方案中,对于RTS帧,高吞吐量头部918可以包括以下参数:
●发射功率水平
●可获得的发射功率水平
●CRC
●尾部
在一些实施方案中,对于CTS和ACK帧,高吞吐量头部908可以包括以下参数:
●每条子信道的位加载请求
●每条子信道的功率加载请求
●编码率请求
●发射功率请求
●持续时间建议
在一些实施方案中,高吞吐量数据字段可以不存在于帧格式902中,尽管本发明的范围在此方面不受限制。
参照图4A和4B,具有初始MIMO训练帧格式的帧402和404可以被用于信道矩阵测量,以确定空间信道。初始MIMO训练帧格式可以被用于RTS帧的发射。在一些实施方案中,SF 410可以在兼容性信道上被发射。SF 410可以指示LCF 412中使用的速率,并且可以指示LCF 412的长度。LCF 412也可以在兼容性信道上被发射,并且可以包括MPDU。在一些实施方案中,CHF 414可以包括以下参数:
●可以指示高吞吐量训练字段的信道化的频率信道化,在一些实施方案中,所述信道化可以为多至两条子信道。
●空间信道的数目等于1。
●发射天线数目可以指示用于发射的发射天线的实际数目。
●高吞吐量训练类型可以指示MIMO训练。
●高吞吐量头部调制可以指示BPSK调制。
在一些实施方案中,高吞吐量训练字段416可以是用于帧格式402的初始MIMO训练,可能需要所述初始MIMO训练来估计信道矩阵,尽管本发明的范围在此方面不受限制。将来自高吞吐量头部418的信息和所估计的信道矩阵一起使用,可以确定空间子信道,并且还可以计算发射波束形成系数和接收波束形成系数。字段416的信道化可以由CHF414中的频率信道化参数指示。
在一些实施方案中,使用与SCF和LCF 412相同的天线模型,高吞吐量头部418可以在兼容性信道上被发射而与高吞吐量训练字段416的信道化无关,尽管本发明的范围在此方面不受限制。在一些实施方案中,对于RTS帧,高吞吐量头部418可以包括以下参数:
●发射功率水平
●可获得的发射功率水平
●CRC
●尾部
在一些实施方案中,对于具有初始MIMO训练格式的RTS帧,高吞吐量数据字段可以不存在,尽管本发明的范围在此方面不受限制。
参照图5A和5B,训练反馈MIMO帧格式502和504可以被用于在支持MIMO的站之间发射CTS帧。在一些实施方案中,SCF可以在兼容性信道上被发射。SF 510可以指示LCF 512中使用的速率,并且可以指示LCF 512的长度。LCF 512也可以在兼容性信道上被发射,并且可以包括MPDU。在一些实施方案中,CHF 514可以包括以下参数:
●可以指示帧的高吞吐量训练部分的信道化的频率信道化。
●空间信道的数目等于1。
●发射天线数目可以指示所使用的发射天线的实际数目。
●高吞吐量训练类型可以指示WB训练。
●高吞吐量头部调制可以指示BPSK或者QPSK调制。
在一些实施方案中,高吞吐量训练字段516可以包括WB训练字段,并且可以与在CHF 514中的频率信道化参数指示的信道化一起发射,尽管本发明的范围在此方面不受限制。
在一些实施方案中,高吞吐量头部518可以用BPSK来调制,然而,如果站打算在MIMO模式下仅使用兼容性信道来通信,则发射机可以使用逆MRC技术在接收天线处增加SNR,从而允许高吞吐量头部字段518的QPSK调制,尽管本发明的范围在此方面不受限制。
在一些实施方案中,对于CTS帧,高吞吐量头部参数可以包括:
●发射功率水平
●可获得的发射功率水平
●空间信道数目请求
●每条子信道的位加载请求
●每条子信道的功率加载请求
●编码率请求
●发射功率请求
●持续时间建议
●CRC
●尾部
在一些实施方案中,高吞吐量数据字段可以不存在于CTS帧中,尽管本发明的范围在此方面不受限制。
参加图6A和6B,高吞吐量MIMO帧格式602和604可以适于被支持MIMO的站用来发射数据帧。使用高吞吐量MIMO帧格式602和604的接收站和发射站可以确定波束形成模型(beamforming pattern),以供在解耦合空间信道操作中使用。为了改进每条空间子信道的信道估计,WB训练可以在高吞吐量头部618之前在每条空间子信道上被发送。在一些实施方案中,SCF可以以基本上全向的天线模型在兼容性信道上被发射,并且LCF可以不存在。在一些实施方案中,CHF 614可以包括以下参数:
●指示帧的高吞吐量部分的已用信道化的频率信道化。
●空间信道数目可以指示已用空间信道的数目。
●发射天线数目可以指示所使用的发射天线的实际数目。
●高吞吐量训练类型可以指示WB训练。
●高吞吐量头部调制可以指示BPSK调制。
在一些实施方案中,高吞吐量训练可以被用来在每条空间信道中执行WB训练。训练的信道化由CHF 614中的频率信道化参数指示,尽管本发明的范围在此方面不受限制。
在一些实施方案中,对于数据帧,高吞吐量头部618可以包括以下参数:
●每条子信道的位加载
●编码率
●长度
●发射功率水平
●可获得的发射功率水平
●CRC
●尾部
在一些实施方案中,高吞吐量数据字段620可以在几条空间子信道上被同时发射。用于每条频率空间子信道的位加载和功率加载可以由高吞吐量头部618中对应的参数指示,尽管本发明的范围在此方面不受限制。
图10根据本发明的一些实施方案示出用于通过空间信道发射长训练序列的空间信道训练。空间信道训练可以被用来获得特定子信道的空间信道之间正交性。在这些实施方案中,空间信道训练可以被用来在接收站1004处的接收空间信道1018上估计并解耦合数据流,所述数据流在发射站1002处的发射空间信道1014上被分开发射。接收站1004可以估计信道,所述信道可以包括波束形成单元1006使用的系数、从对应发射天线接收的信号1016、大气环境1008对信号1016的影响以及接收波束形成单元1010使用的系数。在一些实施方案中,信道估计可以包括在一条或更多条频率分开的子信道中通过每条空间子信道1014发送训练序列1012。在一些实施方案中,正交MIMO初始训练字段616(图6A和6B)可以用于训练序列的发射,尽管本发明的范围在此方面不受限制。在一些实施方案中,发射站1002可以对应发射站100(图1)。
图11根据本发明的一些实施方案示出训练符号发射。初始MIMO训练可以包括在MIMO初始训练字段(例如字段416(图4A和4B))的发射期间在发射天线之间传播的训练符号1100。在一些实施方案中,训练符号可以在时间间隔1002期间在一些子载波1104和某些天线上被发射。例如用于第一天线(例如天线#1)的训练符号可以在第一时间间隔1114期间在第一子载波组1106上被发射,接着用于第一天线的训练符号可以在第二时间间隔1116期间在第二子载波组1108上被发射,接着用于第一天线的训练符号可以在第三时间间隔1118期间在第三子载波组1110上被发射,并且接着用于第一天线的训练符号可以在第四时间间隔1120期间在第四子载波组1112上被发射。四个子载波组可以一起包括子信道的所有子载波。如所示出的,对于每个发射天线,可以重复该模型。
在一些实施方案中,MIMO初始训练可以被接收站用来估计从信道发射侧上的每个发射天线到信道接收侧上的每个接收天线的信道矩阵。在一些实施方案中,基于信道矩阵,接收站可以为多至四个空间信道—子信道组合计算发射波束形成系数和接收波束形成系数。在一些实施方案中,MIMO初始训练符号可以包括具有某种信道化的WB训练符号,并且WB训练符号的子载波可以在发射天线(例如图11中所示出的所述天线)之间被传播。在一些实施方案中,MIMO初始训练中OFDM符号的数目可以等于发射天线的数目,尽管本发明的范围在此方面不受限制。
除非另外具体陈述,术语比如处理、计算、运算、确定、显示等等可以指一个或更多个处理或者计算系统、或类似设备的动作和/或过程,所述动作和/或过程将表示为处理系统的寄存器或存储器内的物理(如电子)量的数据操作和转换成为类似地表示为处理系统的存储器、寄存器或者其他此类信息存储、发射或者显示设备内的物理量的其他数据。此外,使用在这里,计算设备包括与计算机可读存储器耦合的一个或更多个处理部件,所述存储器可以是易失性或非易失性存储器,或者它们的组合。此外,使用在这里,数据指一个或更多个储存数据要素,它可以包括文档的部分、单个文档、文档扩展、数据库、储存设备分区、卷、卷集等等。数据不必要驻留在单个储存设备上,并且可以跨越多个储存设备。
本发明的实施方案可以用硬件、固件和软件之一或它们的组合来实现。本发明的实施方案也可以被实现为存储在机器可读介质上的指令,这些指令可以被至少一个处理器读取和执行,以完成这里所描述的操作。机器可读介质可以包括用于存储或发送具有机器(例如计算机)可读形式的信息的任何机制。例如,机器可读介质可以包括只读存储器(ROM)、随机访问存储器(RAM)、磁盘存储介质、光盘存储介质、闪存存储器设备、电、光、声或其他形式的传播信号(例如载波、红外线信号、数字信号等),以及其他介质。
摘要是遵照37C.F.R§1.72(b)而提供的,37C.F.R§1.72(b)要求可以让读者很快弄清本技术公开的性质和主旨的摘要。摘要的提交被赋予这样的理解,即不会使用它来解释或者限制本权利要求书的范围或含义。
在上述的详细描述中,各种特征一起组合在单个的实施方案中,以简化本公开。不应该将这种公开方法解释为反映了这样的意图,即,所要求保护的主题的实施方案需要比清楚地在每个权利要求中所陈述的特征更多的特征。相反,如所附的权利要求书所反映的那样,本发明处于比所公开的单个实施方案的全部特征少的状态。因此,所附的权利要求书特此清楚地被并入详细描述中,其中每项权利要求独自作为本发明单独的优选实施方案。

Claims (37)

1.一种在高吞吐量通信信道上进行通信的方法,包括:
将信道化字段作为当前数据单元的部分发射,所述信道化字段指示所述当前数据单元的后续部分的频率和空间配置;以及
根据所述信道化字段中指示的所述频率和空间配置发射高吞吐量训练字段,所述高吞吐量训练字段被接收站用来估计所述高吞吐量通信信道的信道矩阵。
2.如权利要求1所述的方法,其中,所述信道化字段指示所述高吞吐量通信信道是否包括以下中的一个:
具有多至四条频率分开的子信道的宽带信道;
包括单个子信道的多输入多输出(MIMO)信道,所述单个子信道具有多至四条空间子信道,其中多至四条相异数据流在所述空间子信道上被发射;以及
包括两条或更多条频率分开的子信道的宽带MIMO信道,其中,每条子信道具有两条或更多条空间信道。
3.如权利要求2所述的方法,其中,所述宽带信道具有高达80MHz的宽带信道带宽,并且包括多至四条子信道,
其中,所述子信道是非重叠的正交频分复用信道,
其中,每条子信道具有约20MHz的子信道带宽,并且包括多个正交子载波,并且
其中,所述空间信道是与所述子信道中的一条相关联的非正交频率信道,所述空间信道的正交性通过波束形成来获得。
4.如权利要求2所述的方法,其中,所述空间信道是用执行发射操作的发射站的多个发射天线生成的,每条空间信道运载包括正交频分复用符号的数据单元的单独数据部分。
5.如权利要求2所述的方法,其中,每条子信道包括多个正交频分复用的子载波,并且
其中,每个正交频分复用子载波在其他子载波的基本上中心频率处为零,以在所述相关联子信道的所述子载波之间获得基本上的正交性。
6.如权利要求2所述的方法,其中,所述信道化字段在兼容性信道上被发射,所述兼容性信道包括具有一条或更多条空间信道的单个子信道;并且
其中,发射所述信道化字段的所述操作包括在所述兼容性信道上用所述兼容性信道的子载波的旋转的二相相移键控(BPSK)调制发射所述信道化字段。
7.如权利要求6所述的方法,其中,所述旋转的BPSK调制包括响应于表示包括所述信道化字段的数据的数字位流的位,将RF信号相移基本上+90度或者-90度。
8.如权利要求6所述的方法,其中,所述旋转的BPSK调制包括将表示包括信道化字段的数据的符号星座图从常规BPSK调制的符号星座图旋转基本上+90度或者-90度。
9.如权利要求6所述的方法,还包括在旋转所述BPSK调制和发射所述当前数据单元的所述信道化字段之前,以1/2码率编码数字位流,所述数字位流表示包括所述信道化字段的数据。
10.如权利要求2所述的方法,其中,发射所述信道化字段的操作包括发射:
信道化掩码,所述信道化掩码指示当发射所述当前数据单元的后续部分时,哪些子信道被使用;
发射天线位,所述发射天线位指示当发射所述当前数据单元的所述后续部分时,所使用的发射天线数目;
空间信道位,所述空间信道位指示当发射所述当前数据单元的所述后续部分时,所使用的空间信道数目;
高吞吐量训练类型位,所述高吞吐量训练类型位指示是要估计所述宽带信道还是所述MIMO信道;以及
头部调制位,所述头部调制位指示用于所述当前数据单元的后续发射的字段的调制类型。
11.如权利要求1所述的方法,还包括在根据所述信道化字段中指示的调制类型被调制的所述信道化字段之后的物理层会聚协议(PLCP)头部字段,
其中,所述PLCP头部字段包括指示所述PLCP头部字段的多个字段的掩码,所述多个字段包括以下中的至少一些:每条子信道的位加载、编码率、长度、发射功率水平、可获得的发射功率水平、频率信道化请求、空间信道数目请求、子信道位加载请求、每条子信道的功率加载请求、编码率请求、发射功率请求以及持续时间建议。
12.一种发射机,包括:
RF电路,所述RF电路在兼容性子信道上发射信道化字段;以及
调制器,所述调制器调制数字位流,所述数字位流表示具有所述兼容性信道的子载波的旋转的二相相移键控(BPSK)调制的所述信道化字段,
其中,所述信道化字段是当前数据单元的部分,并且指示所述当前数据单元的后续部分的频率和空间配置。
13.如权利要求12所述的发射机,其中,所述信道化字段指示所述高吞吐量通信信道是否包括以下中的一个:
具有多至四条频率分开的子信道的宽带信道;
包括单个子信道的多输入多输出(MIMO)信道,所述单个子信道具有多至四条空间子信道,其中多至四条相异数据流在所述空间子信道上被发射;以及
包括两条或更多条频率分开的子信道的宽带MIMO信道,其中,每条子信道具有两条或更多条空间信道。
14.如权利要求13所述的发射机,其中,所述宽带信道具有高达80MHz的宽带信道带宽,并且包括多至四条子信道,
其中,所述子信道是非重叠的正交频分复用信道,
其中,每条子信道具有约20MHz的子信道带宽,并且包括多个正交子载波,并且
其中,所述空间信道是与所述子信道中的一条相关联的非正交频率信道,所述空间信道的正交性通过波束形成来获得。
15.如权利要求13所述的发射机,其中,所述空间信道是用执行发射操作的发射站的多个发射天线来生成的,并且
其中,每条空间信道运载包括正交频分复用符号的数据单元的单独数据部分。
16.如权利要求13所述的发射机,其中,每条子信道包括多个正交频分复用的子载波,并且
其中,每个正交频分复用子载波在其他子载波的基本上中心频率处为零,以在所述相关联子信道的所述子载波之间获得基本上的正交性。
17.如权利要求13所述的发射机,其中,所述旋转的BPSK调制由所述调制器生成,响应于表示包括所述信道化字段的数据的数字位流的位,所述调制器将RF信号相移基本上+90度或者-90度。
18.如权利要求13所述的发射机,其中,所述旋转的BPSK调制由所述调制器生成,所述调制器将表示包括信道化字段的数据的符号星座图从常规BPSK调制的符号星座图旋转基本上+90度或者-90度。
19.如权利要求13所述的发射机,还包括编码器,所述编码器在所述调制器旋转所述BPSK调制之前,以1/2码率编码数字位流,所述数字位流表示包括所述信道化字段的数据。
20.如权利要求13所述的发射机,其中,所述信道化字段包括:
信道化掩码,所述信道化掩码指示当发射所述当前数据单元的后续部分时,哪些子信道被使用;
发射天线位,所述发射天线位指示当发射所述当前数据单元的所述后续部分时,所使用的发射天线数目;
空间信道位,所述空间信道位指示当发射所述当前数据单元的所述后续部分时,所使用的空间信道数目;
高吞吐量训练类型位,所述高吞吐量训练类型位指示是要估计所述宽带信道还是所述MIMO信道;以及
头部调制位,所述头部调制位指示用于所述当前数据单元的后续发射的字段的调制类型。
21.如权利要求13所述的发射机,其中,所述RF电路还发射在根据所述信道化字段中指示的调制类型被调制器调制的所述信道化字段之后的物理层会聚协议(PLCP)头部字段,
其中,所述PLCP头部字段包括指示所述PLCP头部字段的多个字段的掩码,所述多个字段包括以下中的至少一些:每条子信道的位加载、编码率、长度、发射功率水平、可获得的发射功率水平、频率信道化请求、空间信道数目请求、子信道位加载请求、每条子信道的功率加载请求、编码率请求、发射功率请求以及持续时间建议。
22.一种用于数据单元的帧结构,包括:
信道化字段,所述信道化字段指示所述当前数据单元的后续部分的频率和空间配置;以及
根据所述信道化字段中指示的所述频率和空间配置的高吞吐量训练字段,所述高吞吐量训练字段被接收站用来估计所述高吞吐量通信信道的信道矩阵。
23.如权利要求22所述的帧结构,其中,所述信道化字段指示高吞吐量通信信道是否包括以下中的一个:
具有多至四条频率分开的子信道的宽带信道;
包括单个子信道的多输入多输出(MIMO)信道,所述单个子信道具有多至四条空间子信道,其中多至四条相异数据流在空间子信道上被发射;以及
包括两条或更多条频率分开的子信道的宽带MIMO信道,其中,每条子信道具有两条或更多条空间信道。
24.如权利要求23所述的帧结构,其中,所述信道化字段包括兼容性信道的子载波的旋转的二相相移键控(BPSK)调制,并且
其中,所述信道化字段包括:
信道化掩码,所述信道化掩码指示当发射所述当前数据单元的后续部分时,哪些子信道被使用;
发射天线位,所述发射天线位指示当发射所述当前数据单元的所述后续部分时,所使用的发射天线数目;
空间信道位,所述空间信道位指示当发射所述当前数据单元的所述后续部分时,所使用的空间信道数目;
高吞吐量训练类型位,所述高吞吐量训练类型位指示是要估计所述宽带信道还是所述MIMO信道;以及
头部调制位,所述头部调制位指示用于所述当前数据单元的后续发射的字段的调制类型。
25.如权利要求23所述的帧结构,还包括头部字段,所述头部字段包括指示所述头部字段的多个字段的掩码,所述多个字段包括以下中的至少一些:每条子信道的位加载、编码率、长度、发射功率水平、可获得的发射功率水平、频率信道化请求、空间信道数目请求、子信道位加载请求、每条子信道的功率加载请求、编码率请求、发射功率请求以及持续时间建议。
26.一种系统,包括:
一个或更多个基本上全向的天线;以及
包括RF电路和调制器的发射机,所述RF电路在兼容性子信道上使用所述天线发射信道化字段,所述调制器调制数字位流,所述数字位流表示具有所述兼容性信道的子载波的旋转的二相相移键控(BPSK)调制的所述信道化字段,
其中,所述信道化字段是当前数据单元的部分,以指示所述当前数据单元的后续部分的频率和空间配置。
27.如权利要求26所述的系统,其中,所述信道化字段指示所述高吞吐量通信信道是否包括以下中的一个:
具有多至四条频率分开的子信道的宽带信道;
包括单个子信道的多输入多输出(MIMO)信道,所述单个子信道具有多至四条空间子信道,其中多至四条相异数据流在所述空间子信道上被发射;以及
包括两条或更多条频率分开的子信道的宽带MIMO信道,其中,每条子信道具有两条或更多条空间信道,
并且其中,所述宽带信道具有宽带信道带宽并且包括多至四条所述子信道,其中,所述子信道是非重叠的正交频分复用信道,其中,每条子信道具有子信道带宽并且包括多个正交子载波,并且其中所述空间信道是与所述子信道中的一条相关联的非正交信道,所述空间信道的正交性通过波束形成来获得,
其中,所述空间信道是用所述至少两个天线来生成的,并且
其中,每条空间信道运载包括正交频分复用符号的数据单元的单独数据部分。
28.如权利要求26所述的系统,其中,所述发射机还包括波束形成器,当发射所述信道化字段来增加接收站接收到的信号的信噪比时,所述波束形成器应用波束形成系数。
29.一种提供指令的机器可读介质,当所述指令被一个或更多个处理器执行时,导致所述处理器执行操作,所述操作包括:
生成信道化字段作为当前数据单元的部分,所述信道化字段指示所述当前数据单元的后续部分的频率和空间配置;以及
根据所述信道化字段中指示的所述频率和空间配置生成高吞吐量训练字段,所述高吞吐量训练字段被接收站用来估计所述高吞吐量通信信道的信道矩阵。
30.如权利要求29所述的机器可读介质,其中,当所述指令被一个或更多个所述处理器进一步执行时,导致所述处理器执行操作,所述操作还包括生成所述信道化字段,来指示所述高吞吐量通信信道是否包括以下中的一个:
具有多至四条频率分开的子信道的宽带信道;
包括单个子信道的多输入多输出(MIMO)信道,所述单个子信道具有多至四条空间子信道,其中多至四条相异数据流在所述空间子信道上被发射;以及
包括两条或更多条频率分开的子信道的宽带MIMO信道,其中,每条子信道具有两条或更多条空间信道。
31.如权利要求28所述的机器可读介质,其中,当所述指令被一个或更多个所述处理器进一步执行时,导致所述处理器执行操作,所述操作还包括生成用于兼容性信道上的发射的所述信道化字段,所述兼容性信道包括单个子信道,并且
其中,所述生成所述信道化字段的操作包括旋转所述兼容性信道的子载波的二相相移键控(BPSK)调制。
32.一种在高吞吐量通信信道上进行通信的方法,包括:
将信道化字段和高吞吐量训练字段作为当前数据单元的部分发射,所述信道化字段指示所述当前数据单元的后续部分的频率和空间配置,所述高吞吐量训练字段是根据所述信道化字段中指示的所述频率和空间配置的,所述高吞吐量训练字段被接收站用来估计所述高吞吐量通信信道的信道矩阵。
33.如权利要求32所述的方法,其中,所述信道化字段指示高吞吐量通信信道是否包括以下中的一个:
具有多至四条频率分开的子信道的宽带信道;
包括单个子信道的多输入多输出(MIMO)信道,所述单个子信道具有多至四条空间子信道,其中多至四条相异数据流在所述空间子信道上被发射;以及
包括两条或更多条频率分开的子信道的宽带MIMO信道,其中,每条子信道具有两条或更多条空间信道。
34.如权利要求33所述的方法,其中,所述空间信道是用执行发射操作的发射站的多个发射天线生成的,每条空间信道运载包括正交频分复用符号的数据单元的单独数据部分,
其中,每条子信道包括多个正交频分复用的子载波,并且
其中,每个正交频分复用子载波在其他子载波的基本上中心频率处为零,以在所述相关联子信道的所述子载波之间获得基本上的正交性。
35.如权利要求34所述的方法,其中,所述信道化字段在兼容性信道上被发射,所述兼容性信道包括具有一条或更多条空间信道的单个子信道;并且
其中,所述发射所述信道化字段的操作包括在所述兼容性信道上用所述兼容性信道的子载波的旋转的二相相移键控(BPSK)调制发射所述信道化字段。
36.如权利要求34所述的方法,其中,发射操作包括:
首先将所述信道化字段作为所述当前数据单元的部分发射;以及
然后将所述高吞吐量训练字段作为所述当前数据单元的部分发射。
37.如权利要求34所述的方法,其中,发射操作包括将所述信道化字段和所述高吞吐量训练字段作为所述当前数据单元的单个发射的部分进行发射。
CN2005800079417A 2004-01-12 2005-01-12 用于无线多载波通信的帧结构 Active CN1930843B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US53607104P 2004-01-12 2004-01-12
US60/536,071 2004-01-12
US10/810,771 2004-03-26
US10/810,771 US7324605B2 (en) 2004-01-12 2004-03-26 High-throughput multicarrier communication systems and methods for exchanging channel state information
PCT/US2005/001032 WO2005071910A1 (en) 2004-01-12 2005-01-12 Frame structure for wireless multicarrier communication

Publications (2)

Publication Number Publication Date
CN1930843A true CN1930843A (zh) 2007-03-14
CN1930843B CN1930843B (zh) 2012-08-08

Family

ID=37779383

Family Applications (5)

Application Number Title Priority Date Filing Date
CN2005800079169A Active CN1930825B (zh) 2004-01-12 2005-01-11 通过修改调制星座图来表明信息的方法和装置
CN2005800079154A Expired - Fee Related CN1930842B (zh) 2004-01-12 2005-01-12 在基于ofdm的无线局域网中传送额外的信令信息
CN2005800079421A Expired - Fee Related CN101112061B (zh) 2004-01-12 2005-01-12 用于在多天线系统中分离已发射信号的多载波接收机和方法
CN2005800052679A Active CN1922841B (zh) 2004-01-12 2005-01-12 用于选择数据率以提供多载波通信信道的子载波的均匀比特装载的系统和方法
CN2005800079417A Active CN1930843B (zh) 2004-01-12 2005-01-12 用于无线多载波通信的帧结构

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CN2005800079169A Active CN1930825B (zh) 2004-01-12 2005-01-11 通过修改调制星座图来表明信息的方法和装置
CN2005800079154A Expired - Fee Related CN1930842B (zh) 2004-01-12 2005-01-12 在基于ofdm的无线局域网中传送额外的信令信息
CN2005800079421A Expired - Fee Related CN101112061B (zh) 2004-01-12 2005-01-12 用于在多天线系统中分离已发射信号的多载波接收机和方法
CN2005800052679A Active CN1922841B (zh) 2004-01-12 2005-01-12 用于选择数据率以提供多载波通信信道的子载波的均匀比特装载的系统和方法

Country Status (5)

Country Link
US (2) US7395495B2 (zh)
CN (5) CN1930825B (zh)
ES (1) ES2366519T3 (zh)
MY (1) MY141800A (zh)
TW (1) TWI303521B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474488A (zh) * 2009-07-17 2012-05-23 高通股份有限公司 构造极高吞吐量长训练字段序列
WO2013083083A1 (en) * 2011-12-07 2013-06-13 Huawei Technologies Co., Ltd. System and method for preambles in a wireless communications network
US8917784B2 (en) 2009-07-17 2014-12-23 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
US10425513B2 (en) 2015-01-22 2019-09-24 Huawei Technologies Co., Ltd. Method and device for indicating transmission frame structure, and system

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7020829B2 (en) 2002-07-03 2006-03-28 Hughes Electronics Corporation Method and system for decoding low density parity check (LDPC) codes
CA2454574C (en) * 2002-07-03 2008-12-09 Hughes Electronics Corporation Method and system for memory management in low density parity check (ldpc) decoders
US7577207B2 (en) * 2002-07-03 2009-08-18 Dtvg Licensing, Inc. Bit labeling for amplitude phase shift constellation used with low density parity check (LDPC) codes
US20040019845A1 (en) * 2002-07-26 2004-01-29 Hughes Electronics Method and system for generating low density parity check codes
US7864869B2 (en) 2002-07-26 2011-01-04 Dtvg Licensing, Inc. Satellite communication system utilizing low density parity check codes
JP2004355783A (ja) * 2003-05-30 2004-12-16 Sharp Corp 光情報記録媒体とその再生方法
US7315577B2 (en) * 2003-09-15 2008-01-01 Intel Corporation Multiple antenna systems and method using high-throughput space-frequency block codes
US7440510B2 (en) * 2003-09-15 2008-10-21 Intel Corporation Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
US7542453B2 (en) 2004-01-08 2009-06-02 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US7474608B2 (en) * 2004-01-12 2009-01-06 Intel Corporation Method for signaling information by modifying modulation constellations
KR100594818B1 (ko) * 2004-04-13 2006-07-03 한국전자통신연구원 순차적 복호를 이용한 저밀도 패리티 검사 부호의 복호장치 및 그 방법
US20050232139A1 (en) * 2004-04-20 2005-10-20 Texas Instruments Incorporated Dual length block codes for multi-band OFDM
US7165205B2 (en) * 2004-05-14 2007-01-16 Motorola, Inc. Method and apparatus for encoding and decoding data
US7508839B2 (en) * 2004-07-09 2009-03-24 Nokia Corporation Encapsulator and an associated method and computer program product for encapsulating data packets
US7395490B2 (en) * 2004-07-21 2008-07-01 Qualcomm Incorporated LDPC decoding methods and apparatus
US7346832B2 (en) * 2004-07-21 2008-03-18 Qualcomm Incorporated LDPC encoding methods and apparatus
CN101341659B (zh) * 2004-08-13 2012-12-12 Dtvg许可公司 用于多输入多输出通道的低密度奇偶校验码的码设计与实现的改进
EP1790083B1 (en) * 2004-08-13 2011-01-12 Dtvg Licensing, Inc Code design and implementation improvements for low density parity check codes for multiple-input multiple-output channels
AU2005273169B2 (en) * 2004-08-16 2008-09-11 Nokia Technologies Oy Apparatus and method for coding/decoding block low density parity check code with variable block length
US7996746B2 (en) * 2004-10-12 2011-08-09 Nortel Networks Limited Structured low-density parity-check (LDPC) code
US7752521B2 (en) * 2004-10-12 2010-07-06 Nortel Networks Limited Low density parity check (LDPC) code
US7752520B2 (en) * 2004-11-24 2010-07-06 Intel Corporation Apparatus and method capable of a unified quasi-cyclic low-density parity-check structure for variable code rates and sizes
US20060262758A1 (en) * 2005-05-17 2006-11-23 Sumeet Sandhu Distributed communications for wireless networks
US7958424B2 (en) * 2005-06-22 2011-06-07 Trident Microsystems (Far East) Ltd. Multi-channel LDPC decoder architecture
US7770090B1 (en) 2005-09-14 2010-08-03 Trident Microsystems (Far East) Ltd. Efficient decoders for LDPC codes
GB2431835A (en) * 2005-10-26 2007-05-02 Samsung Electronics Co Ltd Decoding low-density parity-check codes using subsets of bit node messages and check node messages
GB2431836A (en) * 2005-10-26 2007-05-02 Samsung Electronics Co Ltd Decoding low-density parity-check codes using subsets of bit node messages and check node messages
KR101021465B1 (ko) 2005-10-26 2011-03-15 삼성전자주식회사 저밀도 패리티 검사 코드를 사용하는 통신 시스템에서 신호수신 장치 및 방법
GB2431833B (en) * 2005-10-26 2008-04-02 Samsung Electronics Co Ltd Decoding low-density parity check codes
GB2431834A (en) * 2005-10-26 2007-05-02 Samsung Electronics Co Ltd Decoding low-density parity-check codes using subsets of bit node messages and check node messages
US7631246B2 (en) * 2006-01-09 2009-12-08 Broadcom Corporation LDPC (low density parity check) code size adjustment by shortening and puncturing
US20070180344A1 (en) * 2006-01-31 2007-08-02 Jacobsen Eric A Techniques for low density parity check for forward error correction in high-data rate transmission
KR100738983B1 (ko) * 2006-06-07 2007-07-12 주식회사 대우일렉트로닉스 저밀도 패리티 체크 부호의 복호화 방법 및 장치, 이를이용한 광정보 재생장치
US8069397B2 (en) * 2006-07-10 2011-11-29 Broadcom Corporation Use of ECC with iterative decoding for iterative and non-iterative decoding in a read channel for a disk drive
US7613981B2 (en) * 2006-10-06 2009-11-03 Freescale Semiconductor, Inc. System and method for reducing power consumption in a low-density parity-check (LDPC) decoder
TW200838159A (en) * 2007-01-24 2008-09-16 Qualcomm Inc LDPC encoding and decoding of packets of variable sizes
US8151171B2 (en) * 2007-05-07 2012-04-03 Broadcom Corporation Operational parameter adaptable LDPC (low density parity check) decoder
CN101312440B (zh) * 2007-05-24 2010-12-15 中国科学院微电子研究所 一种对正交频分复用通信系统信号信噪比进行估计的方法
CN101459429B (zh) * 2007-12-14 2010-07-14 中兴通讯股份有限公司 一种低密度生成矩阵码的译码方法
KR20090095432A (ko) * 2008-03-03 2009-09-09 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서채널부호/복호 방법 및 장치
US20090319860A1 (en) * 2008-06-23 2009-12-24 Ramot At Tel Aviv University Ltd. Overcoming ldpc trapping sets by decoder reset
US8370711B2 (en) * 2008-06-23 2013-02-05 Ramot At Tel Aviv University Ltd. Interruption criteria for block decoding
US8166364B2 (en) 2008-08-04 2012-04-24 Seagate Technology Llc Low density parity check decoder using multiple variable node degree distribution codes
US8181084B1 (en) * 2008-08-14 2012-05-15 Marvell International Ltd. Detecting insertion/deletion using LDPC code
US8413010B1 (en) 2009-03-12 2013-04-02 Western Digital Technologies, Inc. Data storage device employing high quality metrics when decoding logical block address appended to a data sector
JP5413071B2 (ja) * 2009-05-08 2014-02-12 ソニー株式会社 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US8516351B2 (en) * 2009-07-21 2013-08-20 Ramot At Tel Aviv University Ltd. Compact decoding of punctured block codes
US8516352B2 (en) * 2009-07-21 2013-08-20 Ramot At Tel Aviv University Ltd. Compact decoding of punctured block codes
US8375278B2 (en) * 2009-07-21 2013-02-12 Ramot At Tel Aviv University Ltd. Compact decoding of punctured block codes
US9397699B2 (en) * 2009-07-21 2016-07-19 Ramot At Tel Aviv University Ltd. Compact decoding of punctured codes
US8509329B2 (en) * 2009-11-06 2013-08-13 Samsung Electronics Co., Ltd. Data receiving apparatus for receiving data frame using constellation mapping scheme and data transmission apparatus for transmitting the date frame
US8687546B2 (en) 2009-12-28 2014-04-01 Intel Corporation Efficient uplink SDMA operation
CN102118218B (zh) * 2010-01-06 2013-11-06 华为技术有限公司 信道状态信息的反馈方法和用户设备
FR2957214B1 (fr) * 2010-03-08 2012-10-26 Astrium Sas Procede de transmission optique par signaux laser
JP5674015B2 (ja) * 2010-10-27 2015-02-18 ソニー株式会社 復号装置および方法、並びにプログラム
US8667360B2 (en) 2011-07-01 2014-03-04 Intel Corporation Apparatus, system, and method for generating and decoding a longer linear block codeword using a shorter block length
EP2547057A1 (en) * 2011-07-15 2013-01-16 ST-Ericsson SA A method for demodulating the HT-SIG field used in WLAN standard
WO2013032156A1 (en) * 2011-08-30 2013-03-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving information in a broadcasting/communication system
US8739004B2 (en) * 2012-05-10 2014-05-27 Lsi Corporation Symbol flipping LDPC decoding system
US8972826B2 (en) 2012-10-24 2015-03-03 Western Digital Technologies, Inc. Adaptive error correction codes for data storage systems
US9021339B2 (en) 2012-11-29 2015-04-28 Western Digital Technologies, Inc. Data reliability schemes for data storage systems
US9059736B2 (en) 2012-12-03 2015-06-16 Western Digital Technologies, Inc. Methods, solid state drive controllers and data storage devices having a runtime variable raid protection scheme
US9214963B1 (en) * 2012-12-21 2015-12-15 Western Digital Technologies, Inc. Method and system for monitoring data channel to enable use of dynamically adjustable LDPC coding parameters in a data storage system
US9794026B2 (en) * 2013-04-12 2017-10-17 Qualcomm Incorporated Adaptive data interference cancellation
JP6141521B2 (ja) * 2013-05-07 2017-06-07 華為技術有限公司Huawei Technologies Co.,Ltd. 符号化及び復号化方法及び装置並びにシステム
CN103354631B (zh) * 2013-06-27 2016-12-28 华为技术有限公司 复用通信系统资源的通信控制方法和装置
US9866297B2 (en) 2013-08-01 2018-01-09 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US11822474B2 (en) 2013-10-21 2023-11-21 Flc Global, Ltd Storage system and method for accessing same
EP3060993B1 (en) 2013-10-21 2023-03-08 FLC Global, Ltd. Final level cache system and corresponding method
US10097204B1 (en) * 2014-04-21 2018-10-09 Marvell International Ltd. Low-density parity-check codes for WiFi networks
TWI504162B (zh) * 2013-12-17 2015-10-11 Univ Yuan Ze A layer operation stop method for low density parity check decoding
WO2015137575A1 (ko) * 2014-03-13 2015-09-17 엘지전자 주식회사 무선 통신 시스템에서의 순방향 에러 정정을 위한 저밀도 패리티 체크 코드의 디코딩 방법 및 장치
WO2015168609A1 (en) 2014-05-02 2015-11-05 Marvell World Trade Ltd. Caching systems and methods for hard disk drives and hybrid drives
EP3154296B1 (en) * 2014-06-26 2018-10-03 Huawei Technologies Co., Ltd. Method, device and system for determining and adjusting modulation format and carrier power
CN104168031B (zh) * 2014-08-12 2017-08-01 西安电子科技大学 一种用于ldpc码的迭代译码方法
WO2017111559A1 (en) 2015-12-23 2017-06-29 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding channel in communication or broadcasting system
KR20170075627A (ko) * 2015-12-23 2017-07-03 삼성전자주식회사 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치
US20170222659A1 (en) * 2016-02-02 2017-08-03 Silicon Motion Inc. Power improvement for ldpc
EP3340554A1 (en) * 2016-12-21 2018-06-27 Institut Mines-Telecom Methods and devices for sub-block decoding data signals
US10491243B2 (en) * 2017-05-26 2019-11-26 SK Hynix Inc. Deep learning for low-density parity-check (LDPC) decoding
US10925092B2 (en) * 2018-03-01 2021-02-16 Apple Inc. Request to send (RTS)/clear to send (CTS) using a self-contained slot
TWI646783B (zh) * 2018-04-10 2019-01-01 大陸商深圳大心電子科技有限公司 解碼方法及儲存控制器
EP4345635A3 (en) 2018-06-18 2024-05-29 FLC Technology Group Inc. Method and apparatus for using a storage system as main memory
KR20200111943A (ko) * 2019-03-20 2020-10-05 에스케이하이닉스 주식회사 패리티 검사 행렬 관리 장치 및 방법
CN110337120B (zh) * 2019-04-29 2022-09-27 中国联合网络通信集团有限公司 一种上行吞吐量的计算方法和装置
US11265016B2 (en) * 2020-07-06 2022-03-01 Intel Corporation Decoding apparatus, device, method and computer program
US11921581B1 (en) 2022-08-15 2024-03-05 Micron Technology, Inc. Read recovery including low-density parity-check decoding
CN116436473B (zh) * 2023-06-09 2023-10-03 电子科技大学 一种基于校验矩阵的规则f-ldpc码参数盲识别方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274652B1 (en) * 2000-06-02 2007-09-25 Conexant, Inc. Dual packet configuration for wireless communications
FR2707128B1 (fr) * 1993-06-29 1995-08-18 Alcatel Telspace Dispositif de détection de mot unique modulé en BPSK adapté à un modem analogique fonctionnant en mode TMDA et procédé de détection mis en Óoeuvre dans un tel dispositif.
DE19609909A1 (de) * 1996-03-14 1997-09-18 Deutsche Telekom Ag Verfahren und System zur OFDM-Mehrträger-Übertragung von digitalen Rundfunksignalen
US5982807A (en) * 1997-03-17 1999-11-09 Harris Corporation High data rate spread spectrum transceiver and associated methods
US6189123B1 (en) * 1997-03-26 2001-02-13 Telefonaktiebolaget Lm Ericsson Method and apparatus for communicating a block of digital information between a sending and a receiving station
US6477669B1 (en) * 1997-07-15 2002-11-05 Comsat Corporation Method and apparatus for adaptive control of forward error correction codes
US6141788A (en) * 1998-03-13 2000-10-31 Lucent Technologies Inc. Method and apparatus for forward error correction in packet networks
ES2259227T3 (es) * 1998-04-03 2006-09-16 Agere Systems Inc. Decodificacion iterativa de señales.
US6260168B1 (en) * 1998-09-23 2001-07-10 Glenayre Electronics, Inc. Paging system having optional forward error correcting code transmission at the data link layer
US6331978B1 (en) * 1999-03-09 2001-12-18 Nokia Telecommunications, Oy Generic label encapsulation protocol for carrying label switched packets over serial links
US6711120B1 (en) * 1999-03-11 2004-03-23 Flarion Technologies, Inc. Orthogonal frequency division multiplexing based spread spectrum multiple access
US6259744B1 (en) * 1999-06-01 2001-07-10 Motorola, Inc. Method and apparatus for mapping bits to an information burst
US6928047B1 (en) * 1999-09-11 2005-08-09 The University Of Delaware Precoded OFDM systems robust to spectral null channels and vector OFDM systems with reduced cyclic prefix length
US6807648B1 (en) * 1999-09-13 2004-10-19 Verizon Laboratories Inc. Variable-strength error correction in ad-hoc networks
US6397368B1 (en) * 1999-12-06 2002-05-28 Intellon Corporation Forward error correction with channel adaptation
EP1240715B1 (en) * 1999-12-20 2008-11-12 Research In Motion Limited Hybrid automatic repeat request system and method
US6888897B1 (en) * 2000-04-27 2005-05-03 Marvell International Ltd. Multi-mode iterative detector
US7058141B1 (en) * 2000-06-02 2006-06-06 Nec Usa, Inc. MLSE decoding of PRS type inter-bin interference in receiver-end windowed DMT system
US20020042899A1 (en) 2000-06-16 2002-04-11 Tzannes Marcos C. Systems and methods for LDPC coded modulation
WO2002009300A2 (en) * 2000-07-21 2002-01-31 Catena Networks, Inc. Method and system for turbo encoding in adsl
CN1152539C (zh) * 2001-07-04 2004-06-02 华为技术有限公司 八相移相键控调制方法及装置
US6898441B1 (en) * 2000-09-12 2005-05-24 Lucent Technologies Inc. Communication system having a flexible transmit configuration
JP4389373B2 (ja) * 2000-10-11 2009-12-24 ソニー株式会社 2元巡回符号を反復型復号するための復号器
CN1148017C (zh) * 2000-10-26 2004-04-28 华为技术有限公司 利用训练序列快速进行信道估计的方法和装置
US6518892B2 (en) * 2000-11-06 2003-02-11 Broadcom Corporation Stopping criteria for iterative decoding
US20020150167A1 (en) * 2001-02-17 2002-10-17 Victor Demjanenko Methods and apparatus for configurable or assymetric forward error correction
US6567465B2 (en) * 2001-05-21 2003-05-20 Pc Tel Inc. DSL modem utilizing low density parity check codes
US6633856B2 (en) * 2001-06-15 2003-10-14 Flarion Technologies, Inc. Methods and apparatus for decoding LDPC codes
US6895547B2 (en) * 2001-07-11 2005-05-17 International Business Machines Corporation Method and apparatus for low density parity check encoding of data
US6757122B1 (en) * 2002-01-29 2004-06-29 Seagate Technology Llc Method and decoding apparatus using linear code with parity check matrices composed from circulants
US6829308B2 (en) * 2002-07-03 2004-12-07 Hughes Electronics Corporation Satellite communication system utilizing low density parity check codes
US7630456B2 (en) * 2002-09-09 2009-12-08 Lsi Corporation Method and/or apparatus to efficiently transmit broadband service content using low density parity code based coded modulation
US6785863B2 (en) * 2002-09-18 2004-08-31 Motorola, Inc. Method and apparatus for generating parity-check bits from a symbol set
US7103818B2 (en) * 2002-09-30 2006-09-05 Mitsubishi Electric Research Laboratories, Inc Transforming generalized parity check matrices for error-correcting codes
US7702986B2 (en) 2002-11-18 2010-04-20 Qualcomm Incorporated Rate-compatible LDPC codes
US7296216B2 (en) * 2003-01-23 2007-11-13 Broadcom Corporation Stopping and/or reducing oscillations in low density parity check (LDPC) decoding
JP2005011464A (ja) * 2003-06-20 2005-01-13 Toshiba Corp 半導体記憶装置、テストシステム及びテスト方法
US7222284B2 (en) * 2003-06-26 2007-05-22 Nokia Corporation Low-density parity-check codes for multiple code rates
US7103825B2 (en) * 2003-08-19 2006-09-05 Mitsubishi Electric Research Laboratories, Inc. Decoding error-correcting codes based on finite geometries
US7149953B2 (en) * 2004-02-03 2006-12-12 Broadcom Corporation Efficient LDPC code decoding with new minus operator in a finite precision radix system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9756526B2 (en) 2009-07-17 2017-09-05 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
US10153933B2 (en) 2009-07-17 2018-12-11 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
US8917784B2 (en) 2009-07-17 2014-12-23 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
US8917785B2 (en) 2009-07-17 2014-12-23 Qualcomm Incorporated Constructing very high throughput long training field sequences
CN102474488B (zh) * 2009-07-17 2015-03-25 高通股份有限公司 构造极高吞吐量长训练字段序列
CN104735015A (zh) * 2009-07-17 2015-06-24 高通股份有限公司 构造极高吞吐量长训练字段序列
CN102474488A (zh) * 2009-07-17 2012-05-23 高通股份有限公司 构造极高吞吐量长训练字段序列
CN104735015B (zh) * 2009-07-17 2018-09-18 高通股份有限公司 构造极高吞吐量长训练字段序列
US9071489B2 (en) 2011-12-07 2015-06-30 Futurewei Technologies, Inc. System and method for preambles in a wireless communications network
CN107612603A (zh) * 2011-12-07 2018-01-19 华为技术有限公司 无线通信网络中用于前导码的系统和方法
US9713031B2 (en) 2011-12-07 2017-07-18 Huawei Technologies Co., Ltd. System and method for preambles in a wireless communications network
WO2013083083A1 (en) * 2011-12-07 2013-06-13 Huawei Technologies Co., Ltd. System and method for preambles in a wireless communications network
US10285091B2 (en) 2011-12-07 2019-05-07 Huawei Technologies Co., Ltd. System and method for preambles in a wireless communications network
US10945157B2 (en) 2011-12-07 2021-03-09 Huawei Technologies Co., Ltd. System and method for preambles in a wireless communications network
US10425513B2 (en) 2015-01-22 2019-09-24 Huawei Technologies Co., Ltd. Method and device for indicating transmission frame structure, and system

Also Published As

Publication number Publication date
TWI303521B (en) 2008-11-21
CN101112061A (zh) 2008-01-23
CN1930825B (zh) 2011-05-18
US20050154958A1 (en) 2005-07-14
ES2366519T3 (es) 2011-10-21
US7395495B2 (en) 2008-07-01
TW200534600A (en) 2005-10-16
CN1922841B (zh) 2010-11-03
CN1930842B (zh) 2011-07-06
US7263651B2 (en) 2007-08-28
CN101112061B (zh) 2012-03-28
CN1930842A (zh) 2007-03-14
CN1930843B (zh) 2012-08-08
MY141800A (en) 2010-06-30
CN1922841A (zh) 2007-02-28
CN1930825A (zh) 2007-03-14
US20050154957A1 (en) 2005-07-14

Similar Documents

Publication Publication Date Title
CN1930843A (zh) 用于无线多载波通信的帧结构
TWI749352B (zh) 無線區域網路(wlan)中的混合自動重傳請求(harq)
US9350430B2 (en) Multi-user null data packet (MU-NDP) sounding within multiple user, multiple access, and/or MIMO wireless communications
US9622247B2 (en) Preamble and header bit allocation for power savings within multiple user, multiple access, and/or MIMO wireless communications
US9204337B2 (en) Bandwidth mechanisms and successive channel reservation access within multiple user, multiple access, and/or MIMO wireless communications
US9337986B2 (en) Scheduled clear to send (CTS) for multiple user, multiple access, and/or MIMO wireless communications
EP1733523B1 (en) Frame structure for wireless multicarrier communication
US8861447B2 (en) Group identification and definition employing look up table (LUT) within multiple user, multiple access, and/or MIMO wireless communications
US11737123B2 (en) Communication based on a multi-resource unit in wireless local area network system
CN1674572A (zh) 正交频分多路复用通信系统中的副载波分配的设备和方法
CN1832480A (zh) 在多入多出通信系统中传递信息的方法和系统
US11984960B2 (en) Apparatus and method for diversity transmission in a wireless communications system
US20240243764A1 (en) Multi-user interleaving and modulation in a wireless network
CN1757213A (zh) 使用多种码元长度的多载波传输
CN1914842A (zh) 用于无线通信的系统、方法、设备和计算机程序
CN1902874A (zh) 用于在包括单天线通信装置的无线局域网中通信的多天线通信系统和方法
CN1448015A (zh) Ofdm系统的实时服务和非实时服务的多路复用
CN1668039A (zh) 使用不同协议的无线台之间无线通信的方法及系统
JP2018512827A (ja) 無線lanシステムにおける追加の復号処理時間についてのサポート
US11558819B2 (en) Power save for multi-user (MU) operation
JP2022009349A (ja) 通信装置、通信方法、及び、集積回路
US20240015715A1 (en) Apparatus and method of communication based on extended bandwidth and multi-resource unit in wireless local area network system
US20230017257A1 (en) Method and apparatus for receiving ppdu through multiple rus in wireless lan system
CN1722723A (zh) 多输入多输出的无线局域网通讯
KR20210118134A (ko) 통신장치, 정보 처리장치, 통신방법, 및, 프로그램

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20181031

Address after: 1 floor, exhibition hall, 2288 lane, Nong Chong Road, Pudong New Area, Shanghai

Patentee after: Zhanxun Communication (Shanghai) Co., Ltd.

Address before: American California

Patentee before: Intel Corporation

TR01 Transfer of patent right