CN1929985A - 纵向取向的多层薄膜 - Google Patents

纵向取向的多层薄膜 Download PDF

Info

Publication number
CN1929985A
CN1929985A CNA2005800075581A CN200580007558A CN1929985A CN 1929985 A CN1929985 A CN 1929985A CN A2005800075581 A CNA2005800075581 A CN A2005800075581A CN 200580007558 A CN200580007558 A CN 200580007558A CN 1929985 A CN1929985 A CN 1929985A
Authority
CN
China
Prior art keywords
film
gram
draw ratio
cubic centimetre
hdpe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800075581A
Other languages
English (en)
Inventor
D·R·布里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equistar Chemicals LP
Original Assignee
Equistar Chemicals LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equistar Chemicals LP filed Critical Equistar Chemicals LP
Publication of CN1929985A publication Critical patent/CN1929985A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0625LLDPE, i.e. linear low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0641MDPE, i.e. medium density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Abstract

本发明公开了一种制造薄膜的方法。该方法包括在多层薄膜的落镖冲击强度随牵伸比的增加而提高的牵伸比纵向取向该多层薄膜。该多层薄膜包含至少一层线形低密度聚乙烯和至少一层高密度聚乙烯或中密度聚乙烯。

Description

纵向取向的多层薄膜
技术领域
本发明涉及聚乙烯薄膜。更具体地说,本发明涉及纵向取向的多层薄膜。
背景技术
聚乙烯可分为高密度聚乙烯(HDPE,密度为0.941克/立方厘米或以上)、中密度聚乙烯(MDPE,密度为0.926-0.940克/立方厘米)、低密度聚乙烯(LDPE,密度为0.910-0.925克/立方厘米)和线形低密度聚乙烯(LLDPE,密度为0.910-0.925克/立方厘米)。见ASTMD4976-98:聚乙烯塑料模塑和挤塑材料标准规范。聚乙烯也可按分子量分类。例如,超高分子量聚乙烯是指重均分子量(Mw)大于3000000的聚乙烯。见美国专利6265504。高分子量聚乙烯通常指Mw为130000-1000000的聚乙烯。
聚乙烯(HDPE、MDPE、LLDPE和LDPE)的一种主要用途是薄膜领域的应用,如杂品袋、公共饮食业和消费者用的罐头内衬、商品袋、运输袋、食品包装膜、多层袋衬、生产用袋、熟食品外包装、拉伸包装膜和收缩包装膜。聚乙烯薄膜的主要物理性能包括撕裂强度、冲击强度、拉伸强度、刚度和透明度。薄膜的刚度可用模量来量度。模量是薄膜在应力作用下的抗变形性能。
纵向取向(MDO)对于聚烯烃工业来说是已知的。当聚合物在单轴应力作用下发生应变时,聚合物分子会沿拉伸方向取向。例如,美国专利6391411介绍了高分子量(Mn和Mw都高于1000000)HDPE薄膜的MDO。然而,由于这类薄膜难以拉伸至高牵伸比,因而高分子量HDPE薄膜的MDO是受限制的。
目前聚乙烯薄膜通常需兼顾各种性能如模量、屈服强度和断裂强度,以满足包装对落镖冲击强度的要求。对于不能兼顾这些性能的聚合物薄膜,则需要改进以符合包装袋的性能要求,并提高与制造和装填包装袋有关的经济性。例如,通过提高薄膜的模量和屈服强度可制造较大的包装袋,这种大袋可包装大量的物品,并被顾客提在手中时仍能保持其形状。具有较高模量的包装袋还可使物品包装生产线的运行速度加快,从而提高整个包装过程的经济效益。
提高薄膜的屈服强度,则有可能降低包装袋在应力作用下的伸长,从而能保持其初始形状和尺寸。这样可减少薄膜因在荷重下发生屈服、变薄而引起的破裂量。同时,包装袋的印刷表面也不会发生变形,仍能保持包装的美学质量,从而提高顾客对商标的认知度。
此外,还应使不能兼顾上述性能的薄膜厚度降低从而进一步提高与该产品有关的经济效益。这些新措施是所有重载荷运输袋工业所希望的,以便制造出既具有良好性能又具有经济效益的新产品。
发明内容
本发明方法包括在能使薄膜的落镖冲击强度随牵伸比增加而提高的牵伸比下对多层薄膜进行纵向取向(MD)。该多层薄膜包括至少一层线形低密度聚乙烯(LLDPE)和至少一层高密度聚乙烯(HDPE)或中密度聚乙烯(MDPE)。
当薄膜被拉伸时,其落镖冲击强度通常会随膜变薄而降低。出乎意料地发现,当多层膜在纵向取向超过一定牵伸比时,膜的落镖冲击强度会随牵伸比的增加而提高,且取向膜的最终落镖冲击强度值高于初始薄膜的落镖冲击强度值。因此,本发明提供一种制造纵向取向(MDO)、具有高模量、高拉伸强度和高落镖冲击强度的多层薄膜的方法。
具体实施方式
本发明方法包括在能使薄膜的落镖冲击强度随牵伸比增加而提高的牵伸比下对多层薄膜进行纵向取向(MD)。该多层膜包括至少一层线形低密度聚乙烯(LLDPE)和至少一层高密度聚乙烯(HDPE)或中密度聚乙烯(MDPE)。
适用的LLDPE优选为乙烯与5重量%-15重量%长链α-烯烃如1-丁烯、1-己烯和1-辛烯的共聚物。适用的LLDPE包括密度为约0.910克/立方厘米-约0.925克/立方厘米的聚乙烯。适用的LLDPE也包括所谓很低密度聚乙烯(VLDPE)。适用的VLDPE的密度为0.865克/立方厘米-0.910克/立方厘米。
适用MDPE的优选密度为约0.926克/立方厘米-约0.940克/立方厘米,更优选为约0.930克/立方厘米-约0.940克/立方厘米。优选的MDPE为包含约85重量%-约98重量%乙烯重复单元与约2重量%-约15重量%C3-C10α-烯烃重复单元的共聚物。适用的C3-C10α-烯烯包括丙烯、1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯和1-辛烯等,以及它们的混合物。
优选的是,MDPE呈双峰分子量分布或多峰分子量分布。制备双峰或多峰MDPE的方法是已知的。例如,美国专利6486270介绍了多段工艺制备MDPE的方法。
适用HDPE的优选密度为约0.941克/立方厘米-约0.970克/立方厘米,更优选为约0.945克/立方厘米-约0.965克/立方厘米,最优选为0.958克/立方厘米-约0.962克/立方厘米。
优选的是,LLDPE、MDPE和HDPE的MI2为约0.01-约1.5分克/分钟,更优选为约0.01-约1.0分克/分钟。优选的是,LLDPE、MDPE和HDPE的MFR为约50-约300。熔体指数(MI2)通常用来量度聚合物的分子量,熔体流动比率(MFR)常用来量度分子量分布。MI2较高表示分子量较低。MFR较高表示分子量分布较宽。MFR是指高载荷熔体指数(HLMI)与MI2的比值。MI2与HLMI可按照ASTM D-1238方法进行测定。MI2是在190℃、2.16千克载荷下测定的。HLMI是在190℃、21.6千克载荷下测定的。
优选的是,LLDPE、MDPE和HDPE的数均分子量(Mn)为约10000-约500000,更优选为约11000-约50000,而最优选为约11000-约35000。优选的是,LLDPE、MDPE和HDPE的重均分子量(Mw)为约120000-约1000000,更优选为约135000-约500000,而最优选为约140000-约250000。优选的是,LLDPE、MDPE和HDPE的分子量分布(Mw/Mn)为约3-约20,更优选为约4-约18,而最优选为约5-约17。
Mw、Mn和Mw/Mn是在装置有混合床GPC柱(Polymer Labs混合的B-LS)、以1,2,4-三氯苯(TCB)为流动相的Waters GPC 2000CV高温仪上以凝胶渗透色谱法(GPC)测得的。流动相的正常流速为1.0毫升/分钟,温度为145℃。不同流动相添加抗氧化剂,但用于试样溶解的溶剂中添加有800ppm BHT。聚合物试样在175℃加热2小时,同时每隔30分钟进行缓慢搅拌。试样的注入体积为100微升。
Mw和Mn是采用Waters Millennium 4.0软件提供的累积匹配%校正程序进行计算的。该程序包括首先采用窄分子量分布的聚苯乙烯标准样(PSS,Waters Corporation的产品)制作校准曲线,然后通过通用校准步骤求得聚乙烯校准曲线。
适用的LLDPE、MDPE和HDPE可通过Ziegler、单中心催化剂或任何其它烯烃聚合催化剂来制造。Ziegler催化剂是众所周知的。适用的Ziegler催化剂的实例包括钛的卤化物、钛的烷氧化物、钒的卤化物以及它们的混合物。Ziegler催化剂是与助催化剂如烷基铝化合物一起使用的。
单中心催化剂可分为金属茂和非金属茂催化剂。金属茂单中心催化剂是包含环戊二烯基(Cp)或Cp衍生物配体的过渡金属化合物。例如,美国专利4542199介绍了金属茂催化剂。非金属茂单中心催化剂包含的配体不是Cp,但具有与金属茂相同的催化特性。非金属茂单中心催化剂可包含杂原子配体,例如硼芳基、吡咯基、azaborolinyl或喹啉基。例如美国专利6034027、5539124、5756611和5637660介绍了非金属茂催化剂。
任选的是,多层薄膜可包含其它层如阻气层、粘合剂层、药物层、阻燃层等。适用作任选层的材料包括聚(偏二氯乙烯)、聚(乙烯醇)、聚酰胺(尼龙)、聚丙烯腈、乙烯-醋酸乙烯酯共聚物(EVA)、乙烯-丙烯酸甲酯共聚物(EMA)、乙烯-丙烯酸共聚物(EAA)、离子交联聚合物、马来酸酐接枝聚烯烃、K-树脂(苯乙烯/丁二烯嵌段共聚物)、聚(对苯二甲酸乙二醇酯)(PET)等,以及它们的混合物。
多层薄膜可通过共挤塑、贴合以及任何其它层合方法来制造。它们可通过铸塑薄膜或吹胀薄膜工艺来制造。吹胀薄膜工艺包括高注道工艺和型腔内(in-pocket)工艺。高注道工艺与型腔内工艺的区别在于:在高注道工艺中挤塑膜管是在挤出模头前的注道范围(即注道长度)内吹胀的,而在型腔内工艺中挤塑膜管是在膜管挤出模头出口时吹胀的。
多层薄膜是以纵向(或加工方向)进行单轴拉伸的。这就是通常所说的MDO。在进行MDO期间将由吹胀薄膜生产线或其它薄膜工艺制造的薄膜加热至取向温度。优选的取向温度在玻璃化转变温度(Tg)与熔点(Tm)之差的60%与熔融温度Tm之间。例如,如果共混物的Tg为25℃而Tm为125℃,则取向温度优选在约60°-约125℃范围内。优选采用多个加热辊来实施加热。
接着,用夹膜辊将已加热的薄膜喂入慢速牵引辊,该牵引辊的辊速与加热辊辊速相同。然后,使薄膜进入快速牵引辊。快速牵引辊的辊速比慢速牵引辊快2-10倍,快速牵引辊能连续地拉伸薄膜。
然后,经拉伸的薄膜进入退火热辊,该薄膜通过在退火热辊的高温下保持一定时间而达到应力松弛。退火温度优选为约100℃-约125℃,退火时间为约1-约2秒钟。最后通过冷却辊使薄膜冷却至环境温度。
薄膜在取向前与取向后的厚度之比称为“牵伸比”。例如,当厚度为6密耳的薄膜被牵伸至厚度为0.6密耳时,则牵伸比为10∶1。根据本发明方法,牵伸比要足够高,以使薄膜的落镖冲击强度随牵伸比增加而提高。如预期的那样,当多层薄膜进行MD取向时,该薄膜的落镖冲击值会随牵伸比增加而降低。然而,出乎意料地发现,当薄膜取向超过某一值时,落镖冲击值会随牵伸比增加而提高。当取向继续进行时,取向薄膜可具有高于未取向薄膜的最终落镖冲击值。
落镖冲击值随牵伸比提高的临界点取决于许多因素,其中包括各层的性质,薄膜加工条件和MDO条件。优选的是,牵伸比大于6∶1。更优选的牵伸比大于8∶1。最优选的牵伸比大于10∶1。优选的是,使多层薄膜取向至达到薄膜的各层开始脱层的程度,并形成多层壁薄膜。
本发明包括通过本发明方法制造的MD取向薄膜。本发明还包括通过本发明方法制造的多层壁薄膜。本发明薄膜不仅具有高模量、高拉伸强度,而且还具有高的落镖冲击强度。由于本发明薄膜既具有高模量、高拉伸强度又具有高冲击强度,因而特别适用于制造重负载包装袋。
优选的是,本发明薄膜的1%正切MD和TD(横向)模量高于150000磅/平方英寸,更优选高于200000磅/平方英寸,而最优选高于250000磅/平方英寸。模量是根据ASTM E-111-97方法测定的。
优选的是,薄膜的MD屈服拉伸强度和MD断裂拉伸强度高于30000磅/平方英寸,更优选高于35000磅/平方英寸,而最优选高于40000磅/平方英寸。拉伸强度是根据ASTM D-882方法测定的。
优选的是,薄膜的雾度低于30%,更优选低于50%。雾度是根据ASTM D 1003-92方法(Standard Test Method for Haze and LuminousTransmittance of Transparent Plastics,Oct.1992)测定的。优选的是,薄膜的光泽度大于20,更优选大于30。光泽度是根据ASTM D2457-90:Standard Test Method for Specular Gloss of PlasticFilms and Solid Plastics测定的。
下述实施例只是作为对本发明的说明。技术熟练人员都知道在本发明精神和权利要求书范围内可以有许多变体。
实施例1-6
LLDPE/MDPE/LLDPE三层薄膜的纵向取向
将中密度聚乙烯(XL3805,Equistar Chemicals的产品,LP,MI2:0.057分克/分钟,密度:0.938克/立方厘米,Mn:18000,Mw:209000)与线形低密度聚乙烯(GS707,Equistar Chemicals的产品,LP,密度:0.915克/立方厘米,MI2:0.700分克/分钟,Mn:30000,Mw:120000)进行共挤塑,并用模口间隙为2.5毫米的1000毫米模头加工成厚度为14.0密耳的等厚三层(LLDPE/MDPE/LLDPE)叠层膜。将该膜在型腔内以吹胀比(BUR)2∶1吹胀成薄膜。
然后,按照实施例1-6分别以4、5、6、7、8和9.3∶1的牵伸比对薄膜进行纵向拉伸成为更薄的薄膜。牵伸比9.3∶1是取向设备限制的最大牵伸比而不是聚合物薄膜的最大牵伸比。薄膜的性能列于表1中。数据显示,在较低牵伸比时,落镖冲击值如预期的那样随牵伸比增加而降低。在一特定的牵伸比之后,落镖冲击值开始随牵伸比增加而提高并明显地超过初始薄膜的落镖冲击值。
表1多层薄膜性能与牵伸比的关系
  实施例   牵伸比   落镖冲击强度F 50克   MD模量kpsi   TD模量kpsi   MD拉伸屈服强度kpsi   MD拉伸断裂强度kpsi   光泽度   雾度%
  1   4∶1   136   122   149   8.85   13.8   22   39
  2   5∶1   128   144   155   16.5   20.2   26   34
  3   6″1   134   170   160   24.3   26.7   29   31
  4   7∶1   155   200   164   32.0   33.0   31   30
  5   8∶1   190   236   167   39.5   39.5   32   30
  6   9.3∶1   258   293   171   47.9   47.9   31   33
对照实施例7-11
HDPE单层薄膜的纵向取向
重复实施例1-6,但薄膜是单层HDPE结构(L5005,EquistarChemicals产品,LP,密度:0.949克/立方厘米,MI:0.057分克/分钟,Mn:12600,Mw:212000)。薄膜性能列于表2中,数据显示,落镖冲击值随牵伸比增加而明显地下降,并未观察到如在实施例1-6多层膜中所见到的落镖冲击值急剧上升的现象。牵伸比7.9∶1是取向设备限制的最大牵伸比而不是聚合物薄膜的最大牵伸比。
表2单层薄膜性能与牵伸比的关系
  实施例   牵伸比   落镖冲击强度F 50克   MD模量kpsi   TD模量kpsi   MD拉伸屈服强度kpsi   MD拉伸断裂强度kpsi   光泽度   雾度%
  C7   4∶1   137   218   234   6.53   15.3   12   60
  C8   5∶1   105   239   236   7.17   20.1   14   56
  C9   6∶1   86   261   238   7.81   25.0   16   52
  C10   7∶1   81   286   240   8.45   29.8   19   48
  C11   7.9∶1   88   310   241   9.02   34.1   23   44
对照实施例12-19
由MDPE-LLDPE共混物制成的单层薄膜的纵向取向
重复实施例1-6,但薄膜是由MDPE(XL 3805,Equistar Chemicals产品,LP,MI2:0.057分克/分钟,密度:0.938克/立方厘米,Mn:18000,MW:209000)和LLDPE(GS707,Equistar Chemicals产品,LP,密度:0.915克/立方厘米,MI2:0.700分克/分钟,Mn:30000,Mw:120000)的共混物制成的单层薄膜。共混物中各组分的比例要使整个薄膜中每种材料的百分比分别与实施例1-6多层薄膜中两种材料的百分比相同。薄膜的性能列于表3中,数据显示,落镖冲击值随牵伸比增加而明显地下降,并未观察到如实施例1-6多层膜中所见到的落镖冲击值急剧上升的现象。牵伸比10.6∶1是取向设备限制的最大牵伸比而不是聚合物薄膜的最大牵伸比。
表3MDPE-LLDPE共混物单层薄膜性能与牵伸比的关系
  实施例   牵伸比   落镖冲击强度F 50克   MD模量kpsi   TD模量kpsi   MD拉伸屈服强度kpsi   MD拉伸断裂强度kpsi   光泽度   雾度%
  C12   4∶1   140   104   129   7.32   13.4   27   32
  C13   5∶1   120   120   135   12.2   17.5   30   29
  C14   6∶1   105   139   140   17.1   21.6   34   27
  C15   7∶1   93   161   145   22.1   25.7   36   25
  C16   8∶1   87   186   148   27.0   29.9   38   24
  C17   9∶1   84   215   151   32.0   34.0   39   24
  C18   10∶1   86   249   154   36.9   38.1   39   25
  C19   10.6∶1   89   272   156   39.9   40.5   9   26

Claims (14)

1.一种方法,包括在对于多层薄膜的落镖冲击强度随牵伸比的增加而提高的牵伸比下纵向取向该多层薄膜,其中多层薄膜包含至少一层线形低密度聚乙烯(LLDPE)和至少一层高密度聚乙烯(HDPE)或中密度聚乙烯(MDPE)。
2.权利要求1的方法,其中HDPE的密度为0.941克/立方厘米-0.970克/立方厘米。
3.权利要求1的方法,其中MDPE的密度为0.926克/立方厘米-0.940克/立方厘米。
4.权利要求1的方法,其中LLDPE的密度为0.865克/立方厘米-0.925克/立方厘米。
5.权利要求1的方法,其中薄膜是在对引起薄膜脱层有效的牵伸比下取向的。
6.权利要求1的方法,其中薄膜是在使得薄膜的落镖冲击强度高于初始薄膜的落镖冲击强度的牵伸比下取向的。
7.权利要求1的方法,其中LLDPE、HDPE和MDPE的各自重均分子量(Mw)为120000-1000000。
8.权利要求7的方法,其中Mw为135000-500000。
9.权利要求7的方法,其中Mw为140000-250000。
10.权利要求1的方法,其中LLDPE、HDPE和MDPE各自的数均分子量(Mn)为10000-500000。
11.权利要求10的方法,其中Mn为11000-50000。
12.权利要求10的方法,其中Mn为11000-35000。
13.一种通过权利要求1的方法制造的取向薄膜。
14.一种通过权利要求5的方法制造的多层壁薄膜。
CNA2005800075581A 2004-03-10 2005-02-15 纵向取向的多层薄膜 Pending CN1929985A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/797,640 2004-03-10
US10/797,640 US20050200046A1 (en) 2004-03-10 2004-03-10 Machine-direction oriented multilayer films

Publications (1)

Publication Number Publication Date
CN1929985A true CN1929985A (zh) 2007-03-14

Family

ID=34920094

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800075581A Pending CN1929985A (zh) 2004-03-10 2005-02-15 纵向取向的多层薄膜

Country Status (7)

Country Link
US (1) US20050200046A1 (zh)
EP (1) EP1740363A1 (zh)
JP (1) JP2007528309A (zh)
KR (1) KR20060129049A (zh)
CN (1) CN1929985A (zh)
CA (1) CA2557712A1 (zh)
WO (1) WO2005092595A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104487349A (zh) * 2012-04-18 2015-04-01 博瑞立斯有限公司 整理收缩膜
CN104582959A (zh) * 2012-08-13 2015-04-29 北欧化工公司 薄膜
CN109153225A (zh) * 2016-06-03 2019-01-04 博里利斯股份公司 多层结构

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060177641A1 (en) * 2005-02-09 2006-08-10 Breese D R Multilayer polyethylene thin films
US8034461B2 (en) * 2005-02-09 2011-10-11 Equistar Chemicals, Lp Preparation of multilayer polyethylene thin films
EP1923200A1 (en) * 2006-11-20 2008-05-21 Borealis Technology Oy Article
US20080118692A1 (en) * 2006-11-21 2008-05-22 Fina Technology, Inc. Polyethylene useful for producing film and molded articles in a process which uses solid state stretching
ES2340868T5 (es) 2006-12-21 2014-03-24 Borealis Technology Oy Película
DE602006009412D1 (de) 2006-12-21 2009-11-05 Borealis Tech Oy Film
US7794848B2 (en) 2007-01-25 2010-09-14 Equistar Chemicals, Lp MDO multilayer polyethylene film
ATE491647T1 (de) * 2007-08-10 2011-01-15 Borealis Tech Oy Artikel der eine polypropylenzusammensetzung beinhaltet
EP2067799A1 (en) * 2007-12-05 2009-06-10 Borealis Technology OY Polymer
PL2354184T3 (pl) 2010-01-29 2013-01-31 Borealis Ag Tłoczywo polietylenowe o ulepszonym stosunku odporność na pękanie /sztywność i ulepszone udarności
EP2354183B1 (en) 2010-01-29 2012-08-22 Borealis AG Moulding composition
ES2545821T3 (es) 2012-04-18 2015-09-16 Borealis Ag Un proceso para envolver mediante agrupación por retracción una pluralidad de contenedores individuales
US9670347B2 (en) 2013-08-14 2017-06-06 Borealis Ag Propylene composition with improved impact resistance at low temperature
CA2919171A1 (en) 2013-08-21 2015-02-26 Borealis Ag High flow polyolefin composition with high stiffness and toughness
EA031054B1 (ru) 2013-08-21 2018-11-30 Бореалис Аг Композиция полиолефина с высокой текучестью, жесткостью и ударной вязкостью
EP2860031B1 (en) * 2013-10-11 2016-03-30 Borealis AG Machine direction oriented film for labels
ES2661108T3 (es) 2013-10-24 2018-03-27 Borealis Ag Homopolímero de polipropileno de bajo punto de fusión con alto contenido de regioerrores y alto peso molecular
EA031527B1 (ru) 2013-11-22 2019-01-31 Бореалис Аг Гомополимер пропилена с низкой эмиссией и с высокой скоростью течения расплава
US9828698B2 (en) 2013-12-04 2017-11-28 Borealis Ag Phthalate-free PP homopolymers for meltblown fibers
SG11201604266WA (en) 2013-12-18 2016-07-28 Borealis Ag Bopp film with improved stiffness/toughness balance
CN105829364B (zh) 2014-01-17 2017-11-10 博里利斯股份公司 用于制备丙烯/1‑丁烯共聚物的方法
PL3102634T3 (pl) 2014-02-06 2020-11-16 Borealis Ag Miękkie i przezroczyste kopolimery odporne na uderzenia
CN105934475A (zh) 2014-02-06 2016-09-07 北欧化工公司 高冲击强度的柔性共聚物
EP2907841A1 (en) 2014-02-14 2015-08-19 Borealis AG Polypropylene composite
ES2659731T3 (es) 2014-05-20 2018-03-19 Borealis Ag Composición de polipropileno para aplicaciones en interiores de automóviles
AR113268A1 (es) 2017-10-10 2020-03-11 Dow Global Technologies Llc Películas poliméricas orientadas de manera uniaxial y artículos fabricados a partir de estas
EP4239015A1 (en) 2022-03-02 2023-09-06 Borealis AG Monoaxially oriented film comprising a polyethylene composition

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3127133A1 (de) * 1981-07-09 1983-01-27 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung von polyolefinen und deren copolymerisaten
US4501798A (en) * 1983-05-05 1985-02-26 American Can Company Unbalanced oriented multiple layer film
US4606879A (en) * 1985-02-28 1986-08-19 Cerisano Frank D High stalk blown film extrusion apparatus and method
JPH0655433B2 (ja) * 1985-08-12 1994-07-27 三井石油化学工業株式会社 インフレ−シヨンフイルム、その製法と装置
EP0246328B1 (en) * 1985-11-07 1994-01-05 Showa Denko Kabushiki Kaisha Transparent high-density polyethylene film and process for its production
JPH07100348B2 (ja) * 1987-07-13 1995-11-01 三菱化学株式会社 フィルムの製造方法
US5024799A (en) * 1987-09-14 1991-06-18 Tredegar Industries, Inc. Method for producing an embossed oriented film
JP2615931B2 (ja) * 1988-10-27 1997-06-04 三菱化学株式会社 フィルムの製造方法
JP2785403B2 (ja) * 1989-12-19 1998-08-13 三菱化学株式会社 フィルムの製造方法
US5348794A (en) * 1990-01-30 1994-09-20 Nippon Petrochemicals Company, Limited Monoaxially oriented multilayered packaging material
JP3195403B2 (ja) * 1992-03-13 2001-08-06 旭化成株式会社 熱収縮性多層フィルム
WO1995015256A1 (en) * 1993-12-01 1995-06-08 Mobil Oil Corporation Oriented hdpe films with skin layers
JP3431706B2 (ja) * 1994-12-16 2003-07-28 新日本石油化学株式会社 積層体・不織布または織布並びにそれらを用いた強化積層体
US5539124A (en) * 1994-12-19 1996-07-23 Occidental Chemical Corporation Polymerization catalysts based on transition metal complexes with ligands containing pyrrolyl ring
US6419966B1 (en) * 1994-12-22 2002-07-16 Exxonmobil Chemical Patents Inc. Polyethylene articles with improved resistance to water vapor transmission
US5637660A (en) * 1995-04-17 1997-06-10 Lyondell Petrochemical Company Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety
JP3493079B2 (ja) * 1995-06-19 2004-02-03 東燃化学株式会社 熱可塑性樹脂微多孔膜の製造方法
US6034027A (en) * 1996-05-17 2000-03-07 Equistar Chemicals, Lp Borabenzene based olefin polymerization catalysts containing a group 3-10 metal
US5962598A (en) * 1996-07-26 1999-10-05 Equistar Chemicals, Lp Polyethlene film composition having broad molecular weight distribution and improved bubble stability
US5989725A (en) * 1997-01-16 1999-11-23 Tenneco Packaging Clear high molecular weight film
US5756611A (en) * 1997-02-21 1998-05-26 Lyondell Petrochemical Company α-olefin polymerization catalysts
US6013378A (en) * 1997-03-17 2000-01-11 Tenneco Packaging HMW HDPE film with improved impact strength
JPH1158635A (ja) * 1997-08-08 1999-03-02 Mitsui Chem Inc インフレーション多層フィルム
US6391411B1 (en) * 1999-06-03 2002-05-21 Printpack Illinois, Inc. Machine direction oriented high molecular weight, high density polyethylene films with enhanced water vapor transmission properties
US6265504B1 (en) * 1999-09-22 2001-07-24 Equistar Chemicals, Lp Preparation of ultra-high-molecular-weight polyethylene
AU2001256204A1 (en) * 2000-03-16 2001-09-24 Basell Polyolefine Gmbh Method for the production of polyethylene
US6486270B1 (en) * 2000-08-25 2002-11-26 Equistar Chemicals, Lp High molecular weight, medium density polyethylene
US7135526B2 (en) * 2001-06-22 2006-11-14 Univation Technologies, Llc Very low density polyethylene and high density polyethylene blends
CN1319730C (zh) * 2001-07-19 2007-06-06 兰克霍斯特茵德泰克股份有限公司 聚烯烃薄膜、带或纱
US6635701B2 (en) * 2001-08-09 2003-10-21 Equistar Chemicals L.P. Oriented high density polyethylene film, compositions and process suitable for preparation thereof
US6613841B2 (en) * 2002-01-28 2003-09-02 Equistar Chemicals, Lp Preparation of machine direction oriented polyethylene films
US6878454B1 (en) * 2003-12-05 2005-04-12 Univation Technologies, Llc Polyethylene films

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104487349A (zh) * 2012-04-18 2015-04-01 博瑞立斯有限公司 整理收缩膜
CN104582959A (zh) * 2012-08-13 2015-04-29 北欧化工公司 薄膜
CN109153225A (zh) * 2016-06-03 2019-01-04 博里利斯股份公司 多层结构
US11472166B2 (en) 2016-06-03 2022-10-18 Borealis Ag Multilayer structure
US11865818B2 (en) 2016-06-03 2024-01-09 Borealis Ag Multilayer structure

Also Published As

Publication number Publication date
CA2557712A1 (en) 2005-10-06
US20050200046A1 (en) 2005-09-15
EP1740363A1 (en) 2007-01-10
WO2005092595A1 (en) 2005-10-06
JP2007528309A (ja) 2007-10-11
KR20060129049A (ko) 2006-12-14

Similar Documents

Publication Publication Date Title
CN1929985A (zh) 纵向取向的多层薄膜
CA2597313C (en) Multilayer polyethylene thin films
CN1292019C (zh) 薄膜及其制备方法
US8034461B2 (en) Preparation of multilayer polyethylene thin films
US7078081B2 (en) Preparation of polyethylene films
WO2015052246A1 (en) Machine direction oriented film for labels
EP3554828B1 (en) Biaxially oriented articles comprising multimodal polyethylene polymer
EP2121317A1 (en) Film
EP4048503A1 (en) Biaxially oriented mdpe film
CN1684993A (zh) 收缩膜
CN1914021A (zh) 聚乙烯薄膜制造
US20070045894A1 (en) Process for producing polyolefin films
MXPA06010220A (en) Machine-direction oriented multilayer films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20070314