具体实施方式
本发明的第一方面
一种实现本发明的第一方面的制造多孔二氧化硅预制件的方法将参照附图进行说明。
多孔二氧化硅预制件1由玻璃粒子制成,并且光纤预制件得自于在电炉中加热多孔二氧化硅预制件1使之脱水,然后烧结使之透明化的多孔二氧化硅预制件1。在此所使用的,在多孔二氧化硅预制件1中,将成为所得光纤预制件的核心的区域被称作多孔二氧化硅预制件芯区11,并且将成为所得光纤预制件的包层的区域被称为多孔二氧化硅预制件包层区12。
第一方面的第一实施方案
图1是说明多孔二氧化硅预制件制造方法的示意图,其中玻璃粒子直接沉积到芯棒上。参照数字表示由二氧化硅等制成的芯棒2。芯棒2可由驱动装置(未示出)控制转动,并且在其逐渐向上移动的同时,芯棒2依参照符号“x”所示的方向绕轴转动。
围绕芯棒2安置玻璃合成燃烧器,即:芯燃烧器31和包层燃烧器35,包层燃烧器35包括第一包层燃烧器32、第二包层燃烧器33和第三包层燃烧器34。
这些燃烧器具有多管结构,含硅的玻璃生成气(此后称为“气体A”)和含氟气体(“气体B”)被供应到中央管(喷嘴)。氢气作为燃料气,氩气作为惰性气体以及氧气作为助燃气被供应到从中央向外侧排列的分离的管中。
气体A是至少含有含硅化合物气体,如SiCl4的玻璃生成气。生成气的一个实例是含硅化合物气体与另一种化合物气体的混合气,该另一种化合物气体含改变多孔二氧化硅预制件1的折射率的元素,如四氯化锗。
气体B是至少含有含氟化合物气的气体。作为含氟化合物气,优选CF4、SiF4和SF6等,因为这些气体容易处理并且可以很容易地将氟引入二氧化硅玻璃。
芯燃烧器31被安置来使沉积区31a的玻璃粒子能够沉积到芯棒的一端。
第一包层燃烧器32被安置来使包括包层区12的沉积区32a的玻璃粒子能够沉积在31a的上方。第二包层燃烧器33被安置来使包括包层区12的沉积区33a的玻璃粒子能够沉积在32a的上方。
相似地,第三包层燃烧器34被安置来使包括包层区12的沉积区34a的玻璃粒子能够沉积在33a的上方。
在此所使用的,“玻璃粒子沉积区”指玻璃粒子从燃烧器沉积在芯棒2上的区域。
在第一步里,在芯棒2逐渐向上移动的同时,其依参照符号“x”所示的方向绕轴转动,并且玻璃粒子直接沉积到芯棒2上(即沉积到图2的区域I)。
气体A、氢气、氩气和氧气被供应到芯燃烧器31中但不供应气体B,且氧氢焰从喷嘴喷射出来。
在从燃烧器喷嘴中喷射的氧氢焰中,玻璃生成原料发生水解或氧化反应并合成不含氟的由二氧化硅形成的玻璃粒子。该玻璃粒子为火焰所携带并粘附和沉积在芯棒2上。
气体A、气体B、氢气、氩气和氧气被供应到包层燃烧器35中,且氧氢焰从喷嘴喷射出来。
与芯燃烧器31相似,在氧氢焰中,玻璃生成原料和含氟化合物发生水解和氧化反应并合成由含氟二氧化硅形成的玻璃粒子。该玻璃粒子为火焰所携带并粘附和沉积在芯棒2周围。
根据本发明,当玻璃粒子沉积到图2所示的区域I时,调节供应到每个燃烧器的气体A和气体B的供应量以使供应到每个燃烧器的气体中的氟原子数与硅原子数的比率满足下述公式(1)
{(氟原子数)/(硅原子数)}≤0.1 …(1)
在此所使用的,“供应到燃烧器的气体中的氟原子数”定义为供应的含氟化合物气的流量(单位时间的供应量(摩尔))和一摩尔含氟化合物气中的氟原子数的乘积。相似地,“供应到燃烧器的气体中的硅原子数”定义为供应的含硅化合物气的流量(单位时间的供应量(摩尔))和一摩尔含硅化合物气中的硅原子数的乘积。
在不供应含氟化合物气的燃烧器中,如在芯燃烧器31中,由于氟原子数为零所以满足上述方程式(1)。
接着,在第二步,为了制造含期望浓度的氟的多孔二氧化硅预制件,通过调节气体A和气体B的供应量以使供应到燃烧器的气体中的氟原子数与硅原子数的比率保持在期望值,再将玻璃粒子沉积到在第一步中已经沉积的玻璃粒子上。
如图2所示,当芯棒2逐渐向上移动且依参照符号“x”所示的方向绕轴转动的同时,来自芯燃烧器31的玻璃粒子沉积在芯棒2的一端21上(图1中垂直方向的底部)。沉积的多孔二氧化硅预制件生长并纵向向下延伸,这样就形成了芯区11。
形成的芯区11随芯棒2向上移动,当形成的芯区11进入第一包层燃烧器32的沉积区32a时,从第一包层燃烧器喷出的玻璃粒子沉积到芯区11的表面上。当形成的多孔二氧化硅预制件再向上移动并且进入第二包层燃烧器33的沉积区33a时,从第二包层燃烧器33喷出的玻璃粒子沉积到被制造的多孔二氧化硅预制件上。当形成的多孔二氧化硅预制件继续向上移动并且进入第三包层燃烧器34的沉积区34a时,从第三包层燃烧器34喷出的玻璃粒子沉积到被制造的多孔二氧化硅预制件上。
以这种方式,来自第一包层燃烧器32、第二包层燃烧器33和第三包层燃烧器34的玻璃粒子顺序沉积在芯区11的表面上,形成了包层区12。结果,形成了多孔二氧化硅预制件1,如图3所示。
发明人研究了多孔二氧化硅预制件1从芯棒2脱落的问题,发现多孔二氧化硅预制件1从芯棒2的脱落开始于多孔二氧化硅预制件1邻近芯棒2的部分,特别是多孔二氧化硅预制件1与芯棒2接触的部分。
已知SiF4由腐蚀反应产生而且当供应大量含氟化合物气体(高浓度)时玻璃粒子间的粘附力下降。认为如果腐蚀反应发生,那么玻璃粒子与芯棒2间的粘附力将下降。
基于上述发现,本发明人研究了在第一步供应到燃烧器的气体中氟原子数与硅原子数的比率和多孔二氧化硅预制件1脱落的发生率之间的关系,并表达在本发明中。
根据本实施方案,如图4所示,调节第一步中供应的气体A和气体B的供应量以减少含氟化合物气体的供应,使供应到每个燃烧器的气体中氟原子数与硅原子数的比率符合上述方程(1),从而减低多孔二氧化硅预制件1脱落的发生率。
可以通过减少含氟化合物气体的供应来减少沉积在区域I的玻璃粒子的氟含量以满足方程(1),从而抑制腐蚀反应以确保玻璃粒子强烈粘附在芯棒2上。
第一步中玻璃粒子的沉积形成了多孔二氧化硅预制件1和芯棒2间的界面,当在该界面处玻璃粒子强烈粘附在芯棒2上时,多孔二氧化硅预制件1能够支撑其自身重量。因此,多孔二氧化硅预制件1脱落的发生率降低了。
玻璃粒子直接沉积到芯棒2上的厚度,即区域I的厚度,在第一步中为约0.5mm-约50mm,优选为不少于0.5mm且不大于50mm,更优选为不少于5mm且不大于30mm。以下定义该区域为区域I,如图2所示。
当玻璃粒子在上述厚度范围内沉积时,多孔二氧化硅预制件1能够支撑其自身重量。因此,多孔二氧化硅预制件1脱落的发生率显著降低了。
本发明的技术范围不限于上述实施方案;在不偏离本发明的精神的情况下可以作更多不同的改变。
例如,在围绕芯棒2沉积玻璃粒子的方法中,任何能够使玻璃粒子围绕芯棒2沉积以形成多孔二氧化硅预制件1的技术都可以使用。例如可以使用改进的化学气相沉积法(MCVD)或外气相沉积法(OVD)。
通过调节气体A的供应量和气体B的供应量以使供应的气体中氟原子数与硅原子数的比率符合上述方程(1),同时供应气体B至芯燃烧器31并沉积含氟玻璃粒子,可以形成芯区11。另外,供应到包层燃烧器35的各个燃烧器32、33和34的气体A的供应量和气体B的供应量可以是不同的,以使每个燃烧器的氟原子数与硅原子数的比率不同。
第一方面的第二实施方案
第二实施方案与第一实施方案的不同之处在于:第一和第二步中,在调节气体A的供应量和气体B的供应量以使供应到燃烧器的气体中氟原子数与硅原子数的比率符合以下方程(2)时:
{(氟原子数)/(硅原子数)}≤0.3 …(2)
玻璃粒子至少沉积在如图2所示的区域II中。
本发明人研究了破裂(粉末破裂)和多孔二氧化硅预制件1的裂纹,发现粉末破裂和裂纹来源于多孔二氧化硅预制件1邻近芯棒2的部分。
如图1和2所示,可以认为在使用多个玻璃合成燃烧器来围绕芯棒2沉积玻璃粒子时,由于以下原因产生粉末破裂和裂纹。
在燃烧器氧氢焰的中心和外围存在温度差异。在低温的火焰外围合成的玻璃粒子具有较低的粉末密度并且松软,并且该低温玻璃粒子围绕芯棒2沉积。
在芯棒2向上移动时,当具有较低粉末密度的玻璃粒子进入位于已经沉积了玻璃粒子的区域以上的燃烧器的沉积区时,玻璃粒子被该燃烧器氧氢焰烧结并收缩。可以认为此时玻璃粒子易于受压和变形,粉末破裂和裂纹就发生了。
根据本实施方案,当玻璃粒子至少沉积在如图2所示的区域II中时,可以通过调节气体A的供应量和气体B的供应量以使供应到每个燃烧器的气体中氟原子数与硅原子数的比率符合上述方程(2)来抑制腐蚀反应。从而,玻璃粒子间的粘附力保持得很强。
以这种方式,通过调节供应到每个燃烧器的气体,即使在具有较低粉末密度的玻璃粒子被烧结时其易于受压,粉末破裂和裂纹的发生也能由于玻璃粒子间的强粘附力而得到抑制。因此,能够减少多孔二氧化硅预制件1的粉末破裂的发生,如图4所示。
此处所用的短语“至少邻近芯棒2沉积玻璃粒子”的意思是从多孔二氧化硅预制件1和芯棒2表面之间的界面朝芯棒2的径向开始沉积玻璃粒子,并且在图2所示例子中,其意味着玻璃粒子沉积在相对于芯棒2的较低端(参照图2中数字21)以上的区域,如区域II所示。
在第二步中,当玻璃粒子至少沉积在图2所示的区域II上时,调节气体A的供应量和气体B的供应量以使供应到每个燃烧器的气体中氟原子数与硅原子数的比率满足上述方程(2)。在区域II以外的区域中,可以通过调节气体A的供应量和气体B的供应量使得供应到燃烧器的气体中氟原子数与硅原子数的比率大于0.3来沉积玻璃粒子。
图2所示的区域II是芯棒2和多孔二氧化硅预制件1之间的界面。该区域定义了多孔二氧化硅预制件1的一个有缺陷的区域(变动区域)。沉积在图2所示的区域II以下的玻璃粒子定义了多孔二氧化硅预制件1的有效区域(稳定区域)。因此,多孔二氧化硅预制件1的稳定区域内的氟含量可以增加,并且可以在较少粉末断裂和裂纹的情况下制造掺杂高浓度氟的多孔二氧化硅预制件1。
第一方面的第三实施方案
本发明的第三实施方案与第一实施方案的不同在于可以气体A和气体B的任何供应量来形成芯区和包层区,而不考虑供应气中氟原子数与硅原子数不满足上述方程(1)或(2)。此外,第三实施方案与第一实施方案的不同还在于当多孔二氧化硅预制件10(图5和6)形成完毕后,升高燃烧器火焰温度以形成硬化层13,其将成为多孔二氧化硅预制件10的尾部(末端)。
对于在燃烧器氧氢焰中合成玻璃粒子和沉积玻璃粒子到芯棒2上以形成芯区11和包层区12的解释在此省略,因为其与第一实施方案中的相同。
图5是说明一个多孔二氧化硅预制件制造方法的实施例的示意图,多孔二氧化硅预制件10的尾部区域由来自燃烧器的氧氢焰所加热。
在沉积玻璃粒子形成芯区11和包层区12之后,调节气体A的供应量和气体B的供应量使得供应到每个燃烧器的气体中氟原子数与硅原子数的比率满足以下方程(2)。此外,调节氢气、氧气和氩气的供应量来提高氧氢焰的温度,以使沉积的二氧化硅玻璃粒子表面温度不低于约600℃且不高于约1300℃,优选为不低于600℃且不高于1300℃。更优选的沉积二氧化硅玻璃粒子表面温度为不低于700℃且不高于1200℃。
{(氟原子数)/(硅原子数)}≤0.3 …(2)
在维持气体A和B的供应量以及氧氢焰温度的同时,玻璃粒子沉积到将成为多孔二氧化硅预制件10尾部的区域13的表面。同时,将成为尾部的区域中的玻璃粒子被氧氢焰的热量烧结以便提高粉末密度。
遵循上述步骤之后,具有高粉末密度以及其中氟原子数与硅原子数的比率满足上述方程(2)的硬化层13被形成在将成为多孔二氧化硅预制件10尾部的区域表面。
硬化层13形成预定厚度之后,对所有燃烧器停止气体供应,并冷却玻璃粒子以得到多孔二氧化硅预制件10。
因为硬化层13中的氟原子数与硅原子数的比率很小,腐蚀反应被抑制,玻璃粒子间的粘附力保持得很强。此外,由于玻璃粒子在氧氢焰中被烧结,所以玻璃粒子的粉末密度和硬度得到提高。
由于多孔二氧化硅预制件10的内部被硬化层13所保护,所以当多孔二氧化硅预制件10制造完毕冷却时,可以抑制在多孔二氧化硅预制件10的尾部发生粉末断裂和裂纹。
当调节气体A的供应量和气体B的供应量使得供应到每个燃烧器的气体中氟原子数与硅原子数的比率满足上述方程(2)时,优选逐渐改变气体A和气体B的供应量。
当硬化层13形成时,玻璃粒子被高温氧氢焰加热并收缩。玻璃粒子收缩的程度取决于玻璃粒子的粉末密度。因此,当沉积的玻璃粒子的粉末密度随区域而变化时,由于玻璃粒子收缩率的差异,在硬化层13形成期间该区域易于受到压力,从而发生粉末断裂。
当迅速改变气体A和气体B的供应量时,沉积玻璃粒子的氟含量也会改变,并引起粉末密度的变化。因此,在调节气体A的供应量和气体B的供应量时,如果沉积玻璃粒子的粉末密度变化很慢,那么就可以抑制粉末密度的大的变化,并且由玻璃粒子的收缩率不同引起的压力被降低。因此,有可能进一步抑制粉末破裂的发生。
另外,对于所有燃烧器,气体A、气体B的供应量和火焰温度可以同时改变。作为选择,可以按照芯燃烧器,再第一、第二和第三包层燃烧器31、32和33的顺序依次调节气体A、气体B的供应量和火焰温度,以使硬化层13从多孔二氧化硅预制件10的尾部开始形成直到上部区域。
当硬化层13形成完毕,对所有燃烧器可以同时停止气体供应。作为选择,可以根据多孔二氧化硅预制件10的向上移动,从芯燃烧器开始,再第一、第二和第三包层燃烧器31、32和33依次停止气体供应。
现在利用实施例详细描述本发明的第一方面。然而,本发明并不限于此处所述的特定实施例。
(实施例1)
如图1所示,围绕由二氧化硅等制成的芯棒2,安装玻璃合成燃烧器,即芯燃烧器31和包层燃烧器35,包层燃烧器35包括第一包层燃烧器32、第二包层燃烧器33和第三包层燃烧器34。
在第一步中,作为玻璃生成气的SiCl4气(气体A)、作为含氟化合物气的CF4气(气体B)、氢气、氩气和氧气被以合适的量(流量)供应到每个燃烧器。通过燃烧器氧氢焰合成玻璃粒子,并将玻璃粒子直接沉积到旋转的、同时向上移动的芯棒2上。
在本实施例中,SiCl4气和GeCl4气作为气体A供应到芯燃烧器31中,而不供应气体B。
接着,在第二步中,供应到每个燃烧器的气体供应量调节到表1所列的值。玻璃粒子在此条件下合成,并沉积到在第一步中已经沉积的玻璃粒子上。具有直径约220mm和长度1400mm的多孔二氧化硅预制件1就制成了。
表1
供应量 |
第一包层燃烧器 |
第二包层燃烧器 |
第三包层燃烧器 |
H2(liter/min.) |
24 |
30 |
42 |
O2(liter/min.) |
12 |
14 |
20 |
SiCl4(liter/min.) |
2.2 |
3.1 |
3.8 |
Ar(liter/min.) |
2.4 |
3.2 |
6 |
CF4(liter/min.) |
0.45 |
0.8 |
0 |
氟原子数/硅原子数 |
0.82 |
1.03 |
0 |
(实施例2)
实施例2与实施例1的不同在于当在第一和第二步中沉积玻璃粒子到区域II时,供应给每个燃烧器的气体供应量调节到适当的值,并且在此条件下合成和沉积玻璃粒子到图2所示的区域II中。
当在第二步中玻璃粒子沉积到将成为多孔二氧化硅预制件的有效区的区域时,供应到每个燃烧器的气体供应量调节到表1所列的值。在此条件下,玻璃粒子被合成、粘附和沉积。具有直径约220mm和长度1400mm的多孔二氧化硅预制件1就制成了。
(实施例3)
在第一和第二步中,供应到每个燃烧器的气体供应量调节到表1所列的值。在此条件下,玻璃粒子被合成、粘附和沉积以形成芯区11和包层区12。
供应给每个燃烧器的气体供应量调节到适当的值,并且提高氧氢焰的温度。玻璃粒子在此条件下被合成,并且玻璃粒子被沉积到将成为多孔二氧化硅预制件1的尾部的区域以形成硬化层13。具有直径约220mm和长度1400mm的多孔二氧化硅预制件1就制成了。
在实施例1-3中,在相同条件下制造了几个多孔二氧化硅预制件1,并且检查了粉末断裂和从芯棒脱落的问题。计算粉末断裂和脱落的发生率。确定了在供应到燃烧器的气体中氟原子数与硅原子数的比率和多孔二氧化硅预制件1的粉末断裂和脱落的发生率之间的关系。结果如图4所示。
对于通过在第一步中调节供应到每个燃烧器的气体中氟原子数与硅原子数的比率而制成的多孔二氧化硅预制件1,确定脱落的发生率。对于通过在第二步中调节供应到每个燃烧器的气体中氟原子数与硅原子数的比率而制成的多孔二氧化硅预制件1,确定粉末断裂的发生率。
对于通过在形成硬化层的步骤中调节供应到每个燃烧器的气体中氟原子数与硅原子数的比率而制成的多孔二氧化硅预制件1,确定脱落的发生率。
如图4所示,发现在第一步沉积玻璃粒子到区域I中时,当供应到燃烧器的气体中的氟原子数与硅原子数的比率满足上述方程(1)时,多孔二氧化硅预制件1从芯棒2脱落的发生率将显著降低。
还发现在第二步沉积玻璃粒子到图2所示的区域II中时,当供应到燃烧器的气体中的氟原子数与硅原子数的比率满足上述方程(2)时,多孔二氧化硅预制件1的粉末破裂的发生率将显著降低。
还发现如果硬化层13形成在将成为多孔二氧化硅预制件1尾部的区域时,当供应到燃烧器的气体中的氟原子数与硅原子数的比率满足上述方程(2)时,多孔二氧化硅预制件1的粉末破裂可以降低。
一种实现本发明第二方面的多孔二氧化硅预制件制造方法将参照附图进行说明。
如此所使用的,在多孔二氧化硅预制件41中,将成为所得光纤预制件的芯的区域是指多孔二氧化硅预制件的芯区51,将成为所得光纤预制件的包层的区域是指多孔二氧化硅预制件的包层区52。
第二方面的第一实施方案
图7是说明一个多孔二氧化硅预制件制造方法的实施例的示意图,其中玻璃粒子沉积在芯棒42上。
围绕芯棒42,安放内燃烧器43和外燃烧器44作为玻璃合成燃烧器。
将气体A和气体B供应到内燃烧器43和外燃烧器44的每个中央管。作为燃料的氢气、作为惰性气体的氩气和作为助燃气的氧气被供应到这些燃烧器中。
内燃烧器43沉积玻璃粒子到多孔二氧化硅预制件41的芯区51和包层区52上。设计内燃烧器43以供应气体A和气体B来合成含氟玻璃粒子(以下指为玻璃粒子α)。
当多个燃烧器被用作内燃烧器43时,只要气体A和气体B被供应到该多个燃烧器中的一个,就不必给其它燃烧器供应气体B。
图7中,内燃烧器43包括芯燃烧器71、第一包层燃烧器72和第二包层燃烧器73。设计第一包层燃烧器和第二包层燃烧器72、73以供应气体A和气体B,并将玻璃粒子α沉积到芯棒42上。
芯燃烧器71设计为不供应气体B,以合成无氟玻璃粒子(指为玻璃粒子β),并将其沉积到芯棒42上。
安放芯燃烧器71至芯棒42的沉积区71a以使玻璃粒子β形成芯区51。安放第一包层燃烧器72以使沉积区72a的玻璃粒子α能够沉积在71a的上方。
安放第二包层燃烧器73以使沉积区73a的玻璃粒子α能够沉积在72a的上方。
由内燃烧器43形成的多孔二氧化硅预制件41一部分,即芯区51和包层区52,被称为内沉积区53。
外燃烧器44沉积玻璃粒子到多孔二氧化硅预制件41的表面层(外沉积区54)。外燃烧器44设计为不供应气体B以合成不含氟玻璃粒子β,并将其沉积到玻璃粒子α上。
下面,将详述利用内燃烧器43和外燃烧器44围绕芯棒42沉积玻璃粒子的制造多孔二氧化硅预制件的方法。
气体A、气体B、氢气、氩气和氧气被供应到内燃烧器43,即分别到第一和第二包层燃烧器,并从喷嘴喷射氧氢焰。
在从燃烧器喷嘴喷出的氧氢焰中,玻璃生成材料发生水解和氧化并且合成由二氧化硅制成的玻璃粒子。含氟化合物气也被供应到氧氢焰,且氟被引入形成的玻璃粒子中以形成含氟玻璃粒子α,其由火焰输送,粘附并沉积在芯棒42周围。
气体A、氢气、氩气和氧气被供应到内燃烧器43的芯燃烧器71和外燃烧器44,但不供应气体B,同时氧氢焰从喷嘴喷出。
与内燃烧器43相似,在从燃烧器喷嘴喷出的氧氢焰中,玻璃生成材料发生水解和氧化并且合成由不含氟的二氧化硅制成的玻璃粒子β。这些玻璃粒子β由火焰输送,粘附并沉积在芯棒42周围。
当芯棒42以参照符号“X”所指的方向绕轴旋转的同时芯棒42逐渐向上移动时,从芯燃烧器71喷出的玻璃粒子沉积在芯棒42的一端61(图7中垂直方向的底部)。沉积的多孔二氧化硅预制件沿纵向向下生长、延伸;这样就形成了芯区51。
形成的芯区51随芯棒42向上移动,且当形成的芯区51进入第一包层燃烧器72的沉积区72a时,从第一包层燃烧器72喷出的玻璃粒子α沉积到芯区51的表面。形成的多孔二氧化硅预制件进一步向上移动,当其进入第二包层燃烧器73的沉积区73a时,从第二包层燃烧器73喷出的玻璃粒子α沉积到多孔二氧化硅预制件上。
在本方法中,从第一包层燃烧器72和第二包层燃烧器73喷出的玻璃粒子α顺序沉积到芯区51的表面;这样就形成了包层区52。结果,至少由玻璃粒子α制成的内沉积区53(芯区51和包层区52)就形成了。
接下来,芯区51和包层区52再向上移动,当它们进入外燃烧器44的沉积区44a时,从外燃烧器44喷出的玻璃粒子β沉积到包层区52的表面;这样就在包层区52的表面形成了第二区54。
由于外燃烧器44并未被供应含氟化合物气,因此形成的外沉积区是由不含氟的玻璃粒子β制成。
根据本发明的此实施方案,是通过沉积不含氟玻璃粒子β至含氟玻璃粒子α的表面来形成外沉积区54的,即包层区52已经沉积在芯棒42周围。因此,由于SiF4不会在外沉积区产生,所以玻璃粒子β间的粘附力并未被削弱。既然在沉积区54中粘附力很强,那么即使沉积区54的温度下降和产生收缩也不会导致在沉积区54发生粉末破裂。因此,多孔二氧化硅预制件41表面的粉末破裂能够得到防止。
特别是在本实施方案中,内燃烧器43和外燃烧器44被安放在芯棒42的移动方向上,即纵向,且在芯棒42移动的同时,使用内燃烧器43沉积玻璃粒子α以形成内沉积区(芯区51和包层区52)。同时,使用外燃烧器44沉积无氟玻璃粒子β以形成外沉积区54。因而,玻璃粒子β能够在玻璃粒子α被沉积后立刻沉积在玻璃粒子α上。
玻璃粒子温度下降和收缩时容易发生粉末破裂。然而,在本实施方案中,玻璃粒子β能够在玻璃粒子α被沉积后立刻沉积在玻璃粒子α上,如上所述。因此,玻璃粒子β能够在玻璃粒子α变凉之前被沉积(这时玻璃粒子α还足够热)。
因此,因为在外沉积区54形成之前玻璃粒子α尚未冷却和收缩,故能够防止并未牢固粘附在一起的含氟包层区52的表面破裂。故而,源于多孔二氧化硅预制件41制造完毕冷却时包层区52表面开裂的粉末破裂能够被防止。
特别地,优选在保持玻璃粒子α温度为400℃或更高时,沉积玻璃粒子β到玻璃粒子α上以形成外沉积区54。这进一步防止了由于包层区52冷却时产生收缩导致在包层区52表面上的破裂,因此多孔二氧化硅预制件41的破裂几乎可以完全消除。
例如,收窄内燃烧器43的沉积区(第二包层燃烧器73的沉积区73a,本实施方案中其位于内燃烧器43的最上方)和外燃烧器44的沉积区44a之间的距离,则从自内燃烧器43沉积玻璃粒子α到自外燃烧器44沉积玻璃粒子β的时间间隔可被缩短。因此,沉积后玻璃粒子α的温度下降可被减少,并能够保持玻璃粒子α的温度在约400℃或更高,优选在400℃或更高。
优选在从外燃烧器44沉积玻璃粒子β时,通过分别调节氢气、氩气和氧气的供应量来调节温度,以使沉积区54的粉末密度不低于约0.15g/cm3且不高于约0.8g/cm3,优选不低于0.15g/cm3且不高于0.8g/cm3。
这确保了致密、固态且进一步防止了粉末破裂的外沉积区54的形成。
低于约0.15g/cm3的外沉积区54的粉末密度是不理想的,这是由于外沉积区54会变得脆且更容易发生粉末破裂。此外,高于约0.8g/cm3的外沉积区54的粉末密度也是不理想的。这是因为外沉积区会变得过于致密,使得脱水处理容易不充分;从而难以得到具有低传输损失的光纤。
优选通过调节气体A的流量和气体A供应到外燃烧器44的时间来调节玻璃生成气的供应量以使外沉积区54的体积与内沉积区53中的含氟玻璃粒子α体积的比率不小于约0.2且不大于约1.0,优选不小于0.2且不大于1.0,来沉积玻璃粒子β以形成外沉积区54。
这保证了具有有效厚度的外沉积区的形成;因而,有可能进一步抑制粉末破裂。
玻璃粒子α和外沉积区的体积可从多孔二氧化硅预制件41的直径来计算。
例如,在制造多孔二氧化硅预制件41期间,测量多孔二氧化硅预制件41在每个示于图7的沉积区71a、72a、73a和44a的上端(垂直方向上外围区域的上端)的直径。
玻璃粒子α的体积可由多孔二氧化硅预制件41在沉积区73a的上端和沉积区71a的上端之间直径的差异来计算。此外,外沉积区54的体积可由多孔二氧化硅预制件41在沉积区44a的上端和沉积区73a的上端之间直径的差异来计算。
小于0.2的外沉积区54的体积与含氟玻璃粒子α体积的比率是不理想的,这是因为外沉积区54会变薄并且不能有效防止粉末破裂。
因为多孔二氧化硅预制件41通常在脱水和透明化后用作光纤预制件,这也就需要将氟均匀分布到多孔二氧化硅预制件41内。
然而,如果外沉积区54的体积与含氟玻璃粒子α体积的比率大于1.0,则外沉积区54会变厚并且在脱水和透明化处理时玻璃粒子α中的氟不能分布到整个外沉积区54中。因而,由于难以得到氟均匀分布光纤预制件,所以该范围的比率是不理想的。
如上所述,由于本实施方案中形成了无氟外沉积区54以致能够防止粉末破裂,所以无论内沉积区53(芯区51和包层区52)中掺杂多少氟粉末破裂都能被减少。
例如,在传统技术中很难在供应气的氟原子数与硅原子数的比率满足以下方程(3)的情况下制造多孔二氧化硅预制件,这是由于高浓度的含氟化合物会导致粉末破裂频繁发生。因此,为了制造含高浓度氟的光纤预制件,首先在低浓度含氟化合物气环境下沉积玻璃粒子制造含氟化合物浓度低的多孔二氧化硅预制件,然后,在含氟化合物环境中烧结多孔二氧化硅预制件以掺杂更多的氟。
{(氟原子数)/(硅原子数)}>0.3 …(3)
与传统技术相反,根据本实施方案,能够制造含高浓度氟且低粉末破裂的多孔二氧化硅预制件41,而且烧结时不再需要含氟化合物气。
因此,优选调节玻璃生成气和含氟化合物气的供应量以使供应至内燃烧器43的气体中的氟原子数与硅原子数的比率满足上述方程(3)。
如果内燃烧器43使用多个燃烧器,则为每个燃烧器计算方程(3)所述的比率。
下面,说明根据本发明第二方面的多孔二氧化硅预制件41。
根据本发明第二方面的多孔二氧化硅预制件41包括表面层,即含二氧化硅且不含氟的外沉积区54。多孔二氧化硅预制件41根据本发明的第二方面通过上述制造方法而制得。
根据本发明,无氟表面层(外沉积区54)保证了玻璃粒子间足够的粘附力,如上所解释,这是由于作为吸附物质,SiF4不会在外沉积区54中产生。由于在该表面层中玻璃粒子间的粘附力很强,所以即使当表面层被冷却以及发生热收缩,也不会发生粉末破裂。因此,多孔二氧化硅预制件41表面的粉末破裂能被防止。
另外,当由制得的多孔二氧化硅预制件41来制造光纤预制件时,由于撞击等原因导致的破裂能被抑制。由于多孔二氧化硅预制件41容易处理,因此减少了运输等过程中的损坏所导致的破裂并且提高了产量。
在对该多孔二氧化硅预制件41脱水和烧结后,得到光纤预制件。
特别地,当包括含高浓度氟的内沉积玻璃粒子的光纤预制件的制造满足方程(3)时,通过本发明可以显著降低粉末破裂的发生。
表面层的粉末密度优选为不低于约0.15g/cm3且不高于约0.8g/cm3,更优选为不低于0.15g/cm3且不高于0.8g/cm3,这是因为致密、固态的外沉积区54能够进一步抑制粉末破裂的发生。此外,在制造光纤预制件时,能够充分脱水并可得到可由其制得具有低传输损失的光纤的光纤预制件。
此外,芯区51和包层区52中的表面层体积与含氟部分的体积(含氟玻璃粒子α)的比率优选不小于约0.2且不大于约1.0,更优选为不小于0.2且不大于1.0。具有足够厚度的外沉积区在此范围能够进一步抑制破裂的发生。还有,在此范围内,芯区51和包层区52中的氟能够在脱水后的透明化过程中扩散到整个外沉积区54,得到均匀分布的氟。
本发明的技术范围不限于上述实施方案;可进行相当多的不违背本发明精神的改变。
例如,象是围绕芯棒42沉积玻璃粒子的技术,任何能够围绕芯棒42沉积含氟玻璃粒子α以形成内沉积区53(芯区51和包层区52)且同时立刻在包层区52沉积无氟玻璃粒子β以形成外沉积区54的技术都可以采用。例如,可以采用外气相沉积法(OVD)。
可以供应气体B到芯燃烧器71以沉积含氟玻璃粒子α来形成芯区51。
第二方面的第二实施方案
本发明的第二实施方案不同于第一实施方案之处在于在内燃烧器43中央提供两个喷嘴,且气体A和气体B被供应到各自的喷嘴,而不是将气体A和气体B供应到同一喷嘴。
由于其它设计与第一实施方案相似,不再详述。
当气体A和气体B被供应到同一喷嘴时,SiO2生成后就立刻暴露在氧氢焰中的高浓度含氟化合物气当中。
当温度和氟浓度越高,由氟所引起的腐蚀反应(
,这里“s”、“g”、和”ad”分别表示固体、气体和吸附物质)就越容易发生。因此,如果气体A和气体B被供应到同一喷嘴,则大量SiF
4产生且玻璃粒子间的粘附力显著削弱。
在本实施方案中,含硅化合物气和含氟化合物气被分别供应到各自的喷嘴来在氧氢焰中合成含氟玻璃粒子α并且沉积到芯棒42上。
因此,SiO2在氧氢焰中生成后仅暴露在氧氢焰中的相对低浓度的含氟化合物气当中。因而,腐蚀反应能被抑制,且能够生成强粘附力的玻璃粒子α并由于玻璃粒子间的强粘附力的得到保持而沉积在芯棒42周围。
因而,多孔二氧化硅预制件41的破裂(粉末破裂)能被抑制。
另外,优选供应混有惰性气体的含氟化合物气至喷嘴。惰性气体在降低了氟浓度的同时保持了{(氟原子数)/(硅原子数)}为常数,而且SiO2在生成后不会立刻暴露在氧氢焰中高浓度的含氟化合物气当中。
因此,腐蚀反应被抑制,且能够生成强粘附力的玻璃粒子α。
在本实施方案中,优选类似于第一实施方案的方法形成外沉积区54。这防止了在内沉积区53中玻璃粒子的腐蚀反应,并保持了强粘附力。另外,表面能够包覆上外沉积区54进一步抑制了多孔二氧化硅预制件41的破裂(粉末破裂)的发生。
现在将利用实施例来详细说明本发明的第二方面。然而,应该理解本发明不限于此处所描述的特定实施例。
(实施例4)
如图7所示,内燃烧器43和外燃烧器44被提供为围绕芯棒42安放的多管玻璃合成燃烧器。内燃烧器43包括芯燃烧器71、第一包层燃烧器72和第二包层燃烧器73。
如表2所列,作为玻璃生成气的SiCl4气、作为含氟化合物气的CF4气、氢气、氩气和氧气被供应到每个燃烧器中,氧氢焰从喷嘴中喷出。
然而,SiCl4气和GeCl4气作为气体A被供应到芯燃烧器71而不供应气体B。由于供应到第一和第二包层燃烧器的气体含有足够浓度的氟,因此能够得到具有理想光学性质的多孔二氧化硅预制件。
表2
|
实施例4 |
实施例5 |
第一包层燃烧器(liter/min.) |
H2 |
24 |
24 |
O2 |
12 |
12 |
SiCl4 |
2.2 |
2.2 |
Ar |
2.4 |
2.4 |
CF4 |
0.45 |
0.38 |
氟原子数/硅原子数 |
0.82 |
0.69 |
第二包层燃烧器(liter/min.) |
H2 |
30 |
30 |
O2 |
14 |
14 |
SiCl4 |
3.1 |
3.1 |
Ar |
3.2 |
3.2 |
CF4 |
0.8 |
0.6g |
氟原子数/硅原子数 |
1.03 |
0.88 |
外燃烧器或第三包层燃烧器(liter/min.) |
H2 |
42 |
42 |
O2 |
20 |
20 |
SiCl4 |
3.8 |
3.8 |
Ar |
6 |
6 |
CF4氟原子数/硅原子数 |
00 |
0.30.32 |
使用了多管玻璃合成燃烧器,即具有多管结构,其中提供有多个喷嘴的燃烧器。气体A(SiCl4气)和气体B(CF4气)使用同一个燃烧器从各自喷嘴喷出。此外,SiCl4气中混有氩气。
玻璃粒子在氧氢焰中生成,并且在芯棒42向上移动的同时生成的玻璃粒子被吸附和沉积到芯棒42上。具有约220mm直径和1400mm长度的多孔二氧化硅预制件被制得。
(实施例5)
以与实施例4相同的方法制备多孔二氧化硅预制件41以在有效区域得到理想的光学特性,除了代替外燃烧器44而在内燃烧器中提供了第三包层燃烧器,并且向每个燃烧器供应表2所列数量的CF4气来沉积含氟玻璃粒子α,并且不形成外沉积区54。
(实施例6)
以与实施例4相同的方法制备多孔二氧化硅预制件41以在有效区域得到理想的光学特性,除了使用第二包层燃烧器73和外燃烧器44来喷射玻璃粒子,其中安排使第二包层燃烧器73的沉积区73a与外燃烧器44的沉积区44a之间的距离是实施例4中该距离的两倍。
(实施例7)
以与实施例4相同的方法制备多孔二氧化硅预制件41以在有效区域得到理想的光学特性,除了调节供应到外燃烧器44的包括SiCl4的每种气体的供应量,以使外沉积区54的体积与形成多孔二氧化硅预制件41的包层区52的体积(沉积的含氟玻璃粒子α的量)的比率为0.18,如表3所列。
表3
|
例7 |
例8 |
例9 |
例10 |
第二燃烧器或第三包层燃烧器(liter/min.) |
H2 |
36 |
51 |
32 |
37 |
O2 |
18 |
24 |
15 |
18 |
SiCl4 |
1.2 |
5.8 |
3 |
3.3 |
Ar |
6 |
6 |
6 |
6 |
CF4 |
0 |
0 |
0 |
0 |
(实施例8)
以与实施例4相同的方法制备多孔二氧化硅预制件41以在有效区域得到理想的光学特性,除了调节供应到外燃烧器44的包括SiCl4的每种气体的供应量,以使外沉积区54的体积与形成多孔二氧化硅预制件41的包层区52的体积(沉积的含氟玻璃粒子α的量)之比为1.08,如表3所列。
(实施例9)
以与实施例4相同的方法制各多孔二氧化硅预制件41以在有效区域得到理想的光学特性,除了调节供应到外燃烧器44的包括SiCl4的每种气体的供应量,以使外沉积区54的粉末密度为0.12g/mm3,如表3所列。
(实施例10)
以与实施例4相同的方法制备多孔二氧化硅预制件41以在有效区域得到理想的光学特性,除了调节供应到外燃烧器44的包括SiCl4的每种气体的供应量,以使外沉积区54的粉末密度为0.15g/mm3,如表3所列。
(实施例11)
以与实施例4相同的方法制备多孔二氧化硅预制件41以在有效区域得到理想的光学特性,除了将SiCl4气(气体A)和CF4气(气体B)的混合气供应到第三包层燃烧器的单一喷嘴并从中喷出。
(实施例12)
以与实施例4相同的方法制备多孔二氧化硅预制件41以在有效区域得到理想的光学特性,除了将SiCl4气和氢气的混合气供应到第三包层燃烧器的单一喷嘴并从中喷出。
在实施例4一12中,当制造多孔二氧化硅预制件41时,测量了在第三包层燃烧器与第二包层燃烧器73之间的沉积区44a和73a的边界45处的玻璃粒子表面温度(以下,此温度被指为“边界温度”)。
玻璃粒子α的体积由在沉积区73a的上端和沉积区71a的上端之间多孔二氧化硅预制件直径的不同来计算。另外,表面层(外沉积区54)的体积由在α沉积区44a的上端和沉积区73a的上端之间多孔二氧化硅预制件直径的不同来计算。计算多孔二氧化硅预制件41的表面层(外沉积区54)的体积与包层区52的体积(沉积的含氟玻璃粒子α的量)的比率。
此外,形成的多孔二氧化硅预制件41在经过1200℃的脱水处理后在电炉中烧结进行透明化过程以得到光纤预制件46。测量了光纤预制件46的芯91和包层92的折射率,并确定了包层92中的相对折射率差(由于掺杂氟引起的指标差异变量Δn)。结果列于表4。
表4
|
例4 |
例5 |
例6 |
例7 |
例8 |
例9 |
例10 |
例11 |
例12 |
氟原子数/硅原子数 |
第一包层燃烧器 | 0.82 | 0.69 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.69 | 0.69 |
第二包层燃烧器 | 1.03 | 0.88 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 0.88 | 0.88 |
第二燃烧器或第三包层燃烧器 | 0 | 0.32 | 0 | 0 | 0 | 0 | 0 | 0.32 | 0.32 |
边界温度(℃) |
580 |
560 |
375 |
520 |
620 |
540 |
560 |
560 |
560 |
表面层本体密度(g/cm3) | 0.19 | - | 0.19 | 0.22 | 0.17 | 0.12 | 0.15 | - | - |
表面层与包层区体积比 |
0.74 |
0.74 |
0.72 |
0.18 |
1.08 |
0.78 |
0.78 |
0.74 |
0.74 |
Δn |
-0.130 |
-0.132 |
-0.132 |
-0.131 |
-0.124 |
-0.130 |
-0.129 |
-0.131 |
-0.130 |
粉末破裂数/总数 |
0/12 |
3/6 |
1/4 |
1/3 |
0/4 |
2/5 |
0/6 |
6/6 |
5/6 |
在实施例4中,得到无粉末破裂的多孔二氧化硅预制件41。
相反,在实施例5中,在3-5个制成的多孔二氧化硅预制件41观察到粉末破裂,这是由于没有形成外沉积区54的缘故。
因而,粉末破裂能够通过沉积不掺杂氟的玻璃粒子β形成外沉积区54得到降低。
参照图8,示出从实施例4的多孔二氧化硅预制件41得到的光纤预制件46的折射率(图中用虚线示出),和从实施例5的多孔二氧化硅预制件41得到的光纤预制件46的折射率(图中用实线示出)。
实施例4中,外沉积区54的粉末密度为0.15g/mm3,且外沉积区54的体积与包层区52的体积的比率时0.74。因此,包层区52中的氟在1200℃的脱水过程中扩散到外沉积区54,从而得到具有均一折射率的芯层92。
因此,从实施例4的多孔二氧化硅预制件41得到的光纤预制件46的折射率与从实施例5的多孔二氧化硅预制件41得到的没有外沉积区54的光纤预制件46的折射率相同,如图8所示。
实施例6中,从第二包层燃烧器73(内燃烧器43)喷出的玻璃粒子α到达外燃烧器44的沉积区44a要花费时间,并且由于内燃烧器43的沉积区(第二包层燃烧器73的沉积区73a)与外燃烧器44的沉积区44a是空间分离的,所以沉积的玻璃粒子α在到达沉积区44a之前已被冷却。因此,该边界温度为375℃,这使得多孔二氧化硅预制件易于粉末破裂。在4个制成的多孔二氧化硅预制件41中的一个发现了粉末破裂。
实施例7中,由于外沉积区54的体积与包层区52的体积(沉积的含氟玻璃粒子α的量)的比率小于0.2,所以外沉积区54变得过薄。因此,粉末破裂不能被满意地抑制。因而,在3个制成的多孔二氧化硅预制件41中的一个发现了粉末破裂。
实施例8中,由于外沉积区54的体积与包层区52的体积(沉积的含氟玻璃粒子α的量)的比率大于1.0,所以外沉积区54变得过厚。因此,在脱水和透明化处理过程中,含氟玻璃粒子α中的氟不能在外沉积区54中分散。如图9虚线所示,由于包层92外围的氟浓度很低使得没有得到象实施例5中那样的折射率图,并且折射率没有令人满意地下降。
实施例9中,由于外沉积区54的粉末密度低于0.15g/cm3,所以外沉积区54很脆且粉末破裂不能被满意地抑制。因此,在5个制成的多孔二氧化硅预制件41中的2个发生了粉末破裂。
相反,在实施例10中,外沉积区54的粉末密度高于0.15g/cm3,该致密固体沉积区进一步防止了外沉积区54的粉末破裂。实验的多孔二氧化硅预制件41均未出现粉末破裂。
实施例11和12中,不是供应SiCl4到各自的喷嘴,而是将SiCl4气和氢气混合后供应到单一喷嘴。在氧氢焰中,SiO2生成后立刻暴露在高温中。结果,大量SiF4生成,玻璃粒子间的粘附力被显著削弱。
实施例11中的所有多孔二氧化硅预制件41和实施例12中6个多孔二氧化硅预制件41的5个都发生了粉末破裂。
相反,由于在实施例5中SiCl4气是和氩气混合后才被供应和从喷嘴喷出的,所以与实施例11和12相比粉末破裂得到了防止。
根据本发明第一方面的制造多孔二氧化硅预制件方法的第一实施方案,有可能使玻璃粒子牢固粘附在芯棒上,这使多孔二氧化硅预制件的脱落率降低并提高产量。
根据本发明第一方面的制造多孔二氧化硅预制件方法的第二实施方案,玻璃粒子间的粘附力能被增强,这使多孔二氧化硅预制件的脱落率降低并提高产量。
根据本发明第一方面的制造多孔二氧化硅预制件方法的第三实施方案,通过形成硬化层和具有能够形成高粉末密度的固体硬化层来使玻璃粒子间粘附力的下降得到控制。多孔二氧化硅预制件的内部受到硬化层的保护,这抑制了多孔二氧化硅预制件制成后冷却时其尾部的粉末破裂和裂纹,以及能够提高产量。
根据本发明第二方面的制造多孔二氧化硅预制件方法的第一实施方案,多孔二氧化硅预制件表面能被包覆上具有较高粘附力的外沉积区,因而,多孔二氧化硅预制件的破裂(粉末破裂)能被抑制。
特别地,内燃烧器和外燃烧器被安置在芯棒移动的方向,即纵向,且在芯棒纵向移动时,使用内燃烧器来沉积玻璃粒子α以形成芯区和包层区。同时,二氧化硅外燃烧器来沉积玻璃粒子β以形成外沉积区。因而,玻璃粒子β能够在玻璃粒子α沉积后立刻沉积到玻璃粒子α上。
根据本发明第二方面的制造多孔二氧化硅预制件方法的第二实施方案,腐蚀反应能被抑制并保持玻璃粒子间的强粘附力。因而,能够生成具有强粘附力的玻璃粒子并沉积到芯棒上。所以,多孔二氧化硅预制件的破裂(粉末破裂)的发生能被抑制。
根据本方面第二方面的多孔二氧化硅预制件,由于多孔二氧化硅预制件表面能被包覆上具有优异粘附力的外沉积区,例如,当由该多孔二氧化硅预制件制造光纤预制件时,能够抑制由于撞击多孔二氧化硅预制件而导致的破裂。运输等过程的处理变得简单,破裂得到抑制,并且产量得到提高。
根据本发明,能够制造只有很少裂口的含氟多孔二氧化硅预制件,而且本发明能够被应用在使用VAD(气相轴向沉积)或OVD(外气相沉积)方法的多孔二氧化硅预制件生产工艺中。
此外,本发明能够被应用在使用易于引起粉末破裂的非氟元素的情况下,并且本发明能够被用作防止粉末破裂和得到高产量的方法。
根据本发明,甚至当以高浓度掺杂氟时,也能够制造出低破裂发生率的含氟多孔二氧化硅预制件,并且本发明能够被应用在使用VAD(气相轴向沉积)或OVD(外气相沉积)方法的多孔二氧化硅预制件生产工艺中。此外,本发明能够被应用在使用易于引起粉末破裂的非氟元素的情况下,并且本发明能够被用作防止粉末破裂和得到高产量的方法。
在描述和说明以上本发明的优选实施方案的同时,应该理解这些是本发明的实例而不应被限制。在不违背本发明的精神或范围的情况下可以进行增加、省略、替换以及其它改进。因此,本发明不应被认为受限制于前面的描述,而是仅仅受限制于所附权利要求的范围。