CN1906760A - 具有沿径向布置的散热翅片的散热器、具有散热器的冷却设备、及包括冷却设备的电子设备 - Google Patents
具有沿径向布置的散热翅片的散热器、具有散热器的冷却设备、及包括冷却设备的电子设备 Download PDFInfo
- Publication number
- CN1906760A CN1906760A CN200480041055.1A CN200480041055A CN1906760A CN 1906760 A CN1906760 A CN 1906760A CN 200480041055 A CN200480041055 A CN 200480041055A CN 1906760 A CN1906760 A CN 1906760A
- Authority
- CN
- China
- Prior art keywords
- path
- radiating fin
- coolant
- heat
- receiving unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
- G06F1/203—Cooling means for portable computers, e.g. for laptops
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2200/00—Indexing scheme relating to G06F1/04 - G06F1/32
- G06F2200/20—Indexing scheme relating to G06F1/20
- G06F2200/201—Cooling arrangements using cooling fluid
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2200/00—Indexing scheme relating to G06F1/04 - G06F1/32
- G06F2200/20—Indexing scheme relating to G06F1/20
- G06F2200/203—Heat conductive hinge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
一种散热器(32),包括:出口端口(70),冷却空气通过所述出口端口沿径向被施加;多个散热翅片(80),它们间隔地布置并且围绕出口端口(70);以及通道(62),液体冷却剂在该通道(62)中流动。通道(62)沿布置散热翅片(80)的方向延伸,并且热连接到散热翅片(80)上。
Description
技术领域
本发明涉及一种具有用于液体冷却剂的通道和多个散热翅片的散热器,并且涉及一种用液体冷却剂冷却诸如CPU之类的热量产生元件的液体冷却型冷却设备。本发明也涉及一种电子设备,如便携式计算机,它包括以上描述类型的冷却设备。
背景技术
CPU包括在诸如个人计算机之类的电子设备中。由于CPU的数据处理速度升高或者由于它完成越来越多的功能,CPU在运行的同时产生越来越多的热量。CPU的温度越高,它的运行效率越低。
为了冷却CPU,所谓的“液体冷却型冷却系统”在最近几年已经投入使用。该冷却系统使用热导率远高于空气的液体冷却剂。
传统冷却系统具有:热量接收部分,用来从CPU接收热量;散热部分,用来散发由CPU产生的热量;循环路径,用来在热量接收部分与散热部分之间循环液体冷却剂;及风扇,用来把冷却空气施加到散热部分上。
散热部分具有管道和多个散热翅片。在热量接收部分处通过热交换加热的液体冷却剂流经管道。散热翅片的形状像平板,并且成行布置和彼此隔开。管道穿过散热翅片的中心部分。管道具有外圆周表面,该外圆周表面借助于例如焊接等热连接到散热翅片的中心部分上。
风扇包括叶轮以及包含叶轮的风扇壳体。风扇壳体具有出口端口,冷却空气通过该出口端口排出。出口端口与散热部分相对。通过出口端口排出的冷却空气经过在散热翅片之间的间隙。冷却空气带走从液体冷却剂传递给管道和散热翅片的热量。在散热部分中加热的液体冷却剂因此随着它与冷却空气交换热量而被冷却。日本专利申请公开2003-101272披露了一种包括冷却设备的电子设备,该冷却设备具有这样一种散热部分和这样一种风扇。
在该公开所披露的冷却设备中,风扇的出口端口仅在一个方向上相对于叶轮敞开,并且开口仅具有有限尺寸。而且,散热部分必须正好位于出口端口的开口内。不可避免地,散热部分和散热翅片分别在尺寸和数量上大大地受到限制。所以,散热部分不能具有足够的散热面积,并且不能以高效率散发来自CPU的热量。
发明内容
本发明的一个目的在于,提供一种具有增大数量的散热翅片并因此可有效地冷却液体冷却剂的散热器。
本发明的另一个目的在于提供一种冷却设备,该冷却设备具有增大数量的散热翅片,并且因此可有效地散发从热量产生元件发出并然后吸收在液体冷却剂中的热量。
本发明的又一个目的在于,提供一种包括上述类型的冷却设备的电子设备。
为了实现上述第一目的,根据本发明一个方面的一种散热器包括:出口端口,通过它在径向方向上施加冷却空气;多个散热翅片,它们间隔地布置并且围绕出口端口;及通道,它在布置散热翅片的方向上延伸并且热连接到散热翅片上,液体冷却剂在该通道中流动。
为了实现上述第二目的,根据本发明另一个方面的一种冷却设备包括:热量接收部分,它热连接到热量产生元件上;散热部分,它散发热量产生元件的热量;及循环路径,它在热量接收部分与散热部分之间循环液体冷却剂。散热部分包括:出口端口,通过它在径向方向上施加冷却空气;多个散热翅片,它们间隔地布置并且围绕出口端口;及通道,它在布置散热翅片的方向上延伸并且热连接到散热翅片上,在热量接收部分中加热的液体冷却剂在该通道中流动。
为了实现上述第三目的,根据本发明又一个方面的一种电子设备包括:外壳,它包含热量产生元件;和冷却设备,它包括在外壳中,并且它用液体冷却剂冷却热量产生元件。冷却设备包括:热量接收部分,它热连接到热量产生元件上;散热部分,它散发热量产生元件的热量;及循环路径,它在热量接收部分与散热部分之间循环液体冷却剂。散热部分包括:出口端口,通过它在径向方向上施加冷却空气;多个散热翅片,它们间隔地布置并且围绕出口端口;及通道,它在布置散热翅片的方向上延伸并且热连接到散热翅片上,在热量接收部分中加热的液体冷却剂在该通道中流动。
在这种构造中,多个散热翅片可围绕出口端口布置。这增大了散热翅片接触冷却空气的面积。液体冷却剂因此能以高效率被冷却。
附图说明
图1是根据本发明第一实施例的一种便携式计算机的透视图;
图2是根据第一实施例的便携式计算机的透视图,表明在显示器单元已经转动到第二位置时显示器单元与包括冷却设备的中间单元具有的位置关系;
图3是根据第一实施例的便携式计算机的透视图,表明在显示器单元已经转动到第二位置时显示器单元与包括冷却设备的中间单元具有的位置关系;
图4是根据第一实施例的便携式计算机的透视图,表明在显示器单元已经转动到第一位置时显示器单元与包括冷却设备的中间单元具有的位置关系;
图5是根据第一实施例的便携式计算机的剖视图,表明设置在主单元中的泵单元、设置在中间单元中的散热器、及用来在泵单元与散热器之间循环液体冷却剂的循环路径之间的位置关系;
图6是分解透视图,表示根据本发明第一实施例的泵单元;
图7是根据本发明第一实施例的泵外壳的透视图;
图8是根据本发明第一实施例的泵外壳的平面图;
图9是根据本发明第一实施例的散热器的侧视图;
图10是沿图5中的线F10-F10得到的剖视图;
图11是热接合的剖视图,在本发明第一实施例中在该热接点散热翅片连接到扁平管道上;
图12是根据本发明第二实施例的散热器的平面图;
图13是根据本发明第三实施例的散热器的平面图;
图14是沿图13中的线F14-F14得到的剖视图;
图15是根据本发明第四实施例的散热器的平面图;
图16是根据本发明第四实施例的散热器的仰视图;
图17是根据本发明第四实施例的散热器的翅片组件的透视图;
图18是根据本发明第四实施例的散热器的侧视图;
图19是沿图15中的线F19-F19得到的剖视图;
图20是根据本发明第五实施例的散热器的分解透视图;
图21是根据本发明第五实施例的散热器的透视图;
图22是根据本发明第六实施例的散热器的分解透视图;
图23是根据本发明第六实施例的散热器的透视图;
图24是根据本发明第七实施例的散热器的分解透视图;
图25是根据本发明第七实施例的散热器的透视图;
图26是根据本发明第八实施例的散热器的分解透视图;及
图27是根据本发明第八实施例的散热器的透视图。
具体实施方式
参照图1至11将描述本发明的第一实施例。
图1至3表示是电子设备的例子的便携式计算机。便携式计算机1包括主单元2、显示器单元3、及中间单元4。主单元2具有形状像扁平箱的第一外壳5。键盘6设置在第一外壳5的上表面上。
连接座7设置在第一外壳5的后边缘上。连接座7在第一外壳5的宽度方向上延伸,并且从第一外壳5的上表面向上突出。连接座7具有第一至第三空心突起8a、8b及8c。空心突起8a、8b及8c成行排列,并在第一外壳5的宽度方向上彼此隔开。
如图5中所示,第一外壳5包含印刷电路板9。是热量产生元件的CPU 10安装在印刷电路板9的上表面上。CPU 10具有基片11和安装在基片11的上表面上的集成电路(IC)芯片12。IC芯片12在运行的同时产生大量热量,这是因为它以高速运行并且完成许多功能。为了保持在稳定的状态下运行,IC芯片12需要被冷却。
显示器单元3是独立于主单元2的元件。显示器单元3包括液晶显示器面板14和包含液晶显示器面板14的第二外壳15。液晶显示器面板14具有显示图像的屏幕14a。第二外壳15形状像扁平箱,与第一外壳5一样大,并且在前面具有矩形开口16。液晶显示器面板14的屏幕14a通过开口16暴露于外部。
第二外壳15具有位于液晶显示器面板14的背后的后板17。后板17已经被加工,从而如图5中表明的那样形成一对空心突起18a和18b。空心突起18a和18b位于第二外壳15的上部处。空心突起18a和18b在第二外壳15的宽度方向上间隔开,并且向第二外壳15的背后突出。
如图2和3中所示,中间单元4位于主单元2和显示器单元3上。中间单元4具有第三外壳20。第三外壳20形状像扁平箱,并且具有顶板21a、底板21b、左和右侧壁21c和21d、及一对端板21e和21f。第三外壳20比第一和第二外壳5和15窄。
如在图1、2和5中表示的那样,第三外壳20在一端处具有支腿部分22。支腿部分22向连接座7伸出,并且具有第一至第三凹口23a、23b及23c。第一和第二凹口23a和23b在第三外壳20的宽度方向上隔开,并且分别与第一和第二空心突起8a和8b对准。第一和第二空心突起8a和8b分别设置在第一和第二凹口23a和23b中。第三凹口23c位于第一凹口23a与第二凹口23b之间。第三突起8c设置在第三凹口23c中。
支腿部分22由一对铰链24a和24b连接到连接座7上,并且可相对于座7转动。一个铰链24a在连接座7的第一空心突起8a与第三外壳20之间延伸。另一个铰链24b在连接座7的第二空心突起8b与第三外壳20之间延伸。
如图5中所示,第三外壳20具有一对凹口25a和25b。凹口25a和25b布置在背离支腿部分22的第三外壳20的那个端部处。凹口25a和25b在第三外壳20的宽度方向上隔开,并且分别与第二外壳15的空心突起18a和18b对准。空心突起18a和18b设置在凹口25a和25b中。
第三外壳20在另一端处由一对铰链26a和26b连接到第二外壳15的后板17上,并且可相对于后板17转动。一个铰链26a在第二外壳15的一个空心突起18a与第三外壳20之间延伸。另一个铰链26b在第二外壳15的另一个空心突起18b与第三外壳20之间延伸。
因而,显示器单元3由中间单元4连接到主单元2上。显示器单元3可相对于主单元2在第一位置与第二位置之间转动。图4表示转动到第一位置的显示器单元3。图1至3表示转动到第二位置的显示器单元3。
在第一位置处,显示器单元3位于主单元2上方,覆盖第一外壳5的上表面和键盘6。在第二位置处,显示器单元3站立在主单元2上,暴露键盘6和屏幕14a。在显示器单元3保持在第二位置的同时,中间单元4站立在显示器单元3的背后处。显示器单元3因此可单独地转动,把铰链26a和26b用作转轴。所以,用户可改变显示器单元3站立的角度,从而他或她可以看到在屏幕14a上显示的图像。
如图5中所示,主单元2包括一种液体冷却型冷却设备30。冷却设备30设计成用诸如防冻液之类的液体冷却剂冷却CPU 10。冷却设备30包括泵单元31、散热器32、及循环路径33。散热器32是散热单元。
泵单元31定位在第一外壳5中。泵单元31具有也起热量接收部分作用的泵外壳35。如在图6和7中描绘的那样,泵外壳35具有外壳本体36和顶盖37。外壳本体36形状像扁平箱,并且稍大于CPU 10。它由热导率优良的金属(如铝合金)制成。外壳本体36具有向上敞开的凹口38。凹口38具有面向CPU 10的底壁39。底壁39的下表面是平的热量接收表面40。顶盖37由合成树脂制成,并且以液体密封形式封闭凹口38的开口。
环形隔板壁41把泵外壳35的内部划分成泵室42和储箱43。储箱43提供成临时存储液体冷却剂,并且围绕泵室42。隔板壁41从外壳本体36的底壁39向上突出。隔板壁41具有连接泵室42和储箱43的连通开口44。
进口管道45和出口管道46与外壳本体36整体地形成。进口管道45和出口管道46平行地延伸,并且隔开。进口管道45的上游端从外壳本体36的一侧向外突出。进口管道45的下游端通到储箱43的内部,并且与隔板壁41的连通开口44相对。如图8中所示,用来将气体和液体彼此分离的间隙47提供在进口管道45的下游端与连通开口44之间。不管泵外壳35位于哪个位置间隙47都保持成在储箱43中存储的液体冷却剂的表面下面。
出口管道46的下游端从外壳本体36的那侧向外突出。出口管道46的上游端通到泵室42。
叶轮48设置在泵外壳35的泵室42中。叶轮48具有在叶轮48的轴向方向上延伸的转动轴49。转动轴49由凹口38的底壁39和顶盖37支撑,并且可被转动。
泵外壳35包含驱动叶轮48的电机50。电机50具有环形转子51和一定子52。转子51固定到叶轮48的上表面上,并且与叶轮48同轴对准,及提供在泵室42中。磁体53嵌在转子51中。磁体53具有多个正磁极和多个负磁极。磁体53随着转子51和叶轮48转动而转动。
定子52提供于在顶盖37的上表面中制成的凹口54中。凹口54延伸到转子51中。定子52因此位于转子51中,并且与转子51同轴地定位。用来控制电机50的控制板55支撑在顶盖37的上表面上。控制板55电气连接到定子52上。
例如,在便携式计算机1被开启的同时,电力供给到定子52。当电力供给到定子52时,绕定子52产生旋转磁场。这个磁场与转子51的磁体53的磁场相结合。结果,在定子52与磁体53之间产生转矩,作用在转子51的圆周方向上。转矩逆时针地(即在图6中表示的箭头方向上)驱动叶轮48。
多个螺钉56把后板57紧固到顶盖37的上表面上。后板57覆盖定子52和控制板55。
泵单元31定位在印刷电路板9上,从上面覆盖CPU 10。泵单元31的泵外壳35与印刷电路板9一道固定到第一外壳5的底部上。由于泵外壳35被如此固定,所以外壳本体36的热量接收表面40热连接到CPU 10的IC芯片12上。
如图3和5中所示,冷却设备30的散热器32提供在中间单元4的第三外壳20中。散热器32包括风扇60、翅片组件61、及通道62。液体冷却剂流经通道62。
如图10表示的那样,风扇60包括风扇壳体64和离心叶轮65。风扇壳体64具有底座66和顶盖67。底座66和顶盖67形状像盘,并且在三个点处用销68彼此连接。底座66和顶盖67彼此面对,并且被同轴地定位。
风扇壳体64具有一对进口端口69a和69b以及一出口端口70。进口端口69a制成在底座66的中心部分中,并且进口端口69b制成在顶盖67的中心部分中。出口端口70制成在风扇壳体64的外圆周内,并且在底座66和顶盖67的圆周方向上延伸。
叶轮65布置在底座66与顶盖67之间。叶轮65具有轮毂72和在径向方向上从轮毂72伸出的多个叶片73。轮毂72连接到电机(未表示)上,该电机固定到底座66上。任何叶片73的远端都相对风扇壳体64的出口端口70。当在便携式计算机1上的电源开关被打开或者当CPU 10的温度达到一预置值时,电动机开始驱动叶轮65。
当叶轮65逆时针(即在图5中表明的箭头的方向上)转动时,在风扇壳体64外的空气经进口端口69a和69b抽到叶轮65的转动中心。如此抽吸的空气凭借离心力从叶片73的末端流向风扇壳体64的出口端口70。风扇60因此从风扇壳体64的整个圆周在径向方向上施加冷却空气。
风扇60的风扇壳体64固定到第三外壳20的底板31b的内表面上。第三外壳20的顶板21a和底板21b分别具有吸入端口75a和75b。吸入端口75a和75b分别相对风扇壳体64的进口端口69a和69b。
第三外壳20的侧壁21c和21d每一个都具有多个排出端口76。排出端口76间隔开、成行布置并位于显示器单元3的背后处。
如图5、9及10中表示的那样,翅片组件61具有多个散热翅片80。散热翅片80形状像矩形板,并且由热导率优良的金属制成,如由铝合金制成。散热翅片80绕风扇60的出口端口70排列,并且彼此隔开。换句话说,散热翅片80在叶轮65的径向方向上和在冷却空气流自出口端口70的方向上延伸。翅片组件61因此以圆弧形式弯曲,从而围绕叶轮65。
翅片组件61具有第一端61a和第二端61b。当沿排列散热翅片80的方向上看时,第一端61a布置在一端处。当沿排列散热翅片80的方向上看时,第二端61b布置在另一端处。第一端61a和第二端61b彼此面对,在翅片组件61的圆周方向上彼此隔开。
如图10中所示,翅片组件61的每个散热翅片80具有第一边缘81a和第二边缘81b。第一和第二边缘81a和81b在施加冷却空气的方向上延伸。第一边缘81a位于散热翅片80的下端处。第二边缘81b位于散热翅片80的上端处。换句话说,第一边缘81a和第二边缘81b在散热翅片80的高度方向上彼此隔开。如在图11中表明的那样,凹口82制成在散热翅片80的第一边缘81a中。凹口82布置在第一边缘81a的中心部分处。
任何相邻散热翅片80均由一对连接板83a和83b连接。连接板83a和83b在布置散热翅片80的方向上以圆弧形式弯曲。连接板83a和83b借助于焊接等固定到每个散热翅片80的第一边缘81a上。散热翅片80由此以规则间隔保持。
如图11表示的那样,上述通道62由已经通过压平而制备的扁平管道85(例如铜管)构成。扁平管道85的横截面具有长轴线L1和短轴线S1。长轴线L1和短轴线S1分别在散热翅片80的长度方向和高度方向上延伸。
如图5表示的那样,扁平管道85在排列散热翅片80的方向上以圆弧形式弯曲,并且延伸穿过任何散热翅片80的第一边缘81a。扁平管道85装配在每个散热翅片80的凹口82中,并且焊接到每个散热翅片80上。因此,散热翅片80和扁平管道85构成一整体结构,并且翅片80和管道85被热连接。
扁平管道85具有冷却剂进口端口86和冷却剂出口端口87。冷却剂进口端口86布置在通道62的上游端处。冷却剂出口端口87布置在通道62的下游端处。冷却剂进口端口86和冷却剂出口端口87位于翅片组件61的第一端61a与第二端61b之间。
如图5中所示,冷却设备30的循环路径33具有第一连接管90和第二连接管91。第一连接管90把泵外壳35的出口管道46连接到翅片组件61的冷却剂进口端口86上。第一连接管90从泵外壳35延伸到第一外壳5的第三空心突起8c,越过在该空心突起8c的一端与第三外壳20之间的接点,并引导到翅片组件61的冷却剂进口端口86。
第二连接管91把泵外壳35的进口管道45连接到翅片组件61的冷却剂出口端口87上。第二连接管91从泵外壳35延伸到第一外壳5的第三空心突起8c,越过在该空心突起8c的另一端与第三外壳20之间的接点,并引导到翅片组件61的冷却剂出口端口87。所以,液体冷却剂可经第一和第二连接管90和91在泵外壳35与散热器32之间循环。
如图5表示的那样,设置在第二外壳15中的液晶显示器面板14由电缆93连接到设置在第一外壳5中的印刷电路板9上。电缆93从液晶显示器面板14经由在第二外壳15的空心突起18a与第三外壳20的凹口25a之间的接点引导到第三外壳20中。
在第三外壳20中,电缆93在散热器32与侧壁21c之间延伸,并且经由在第三外壳20的第一凹口23a与第一外壳5的空心突起8a之间的接点引导到第一外壳5中。
将解释冷却设备30如何操作。
在便携式计算机1的使用期间,CPU 10的IC芯片12产生热量。芯片12产生的热量经热量接收表面40扩散到泵外壳35。在泵外壳35的泵室42和储箱43中填充的液体冷却剂吸收传递到泵外壳35的大部分热量。
在便携式计算机1上的电源开关被打开的同时,电力供给到电机50的定子52。由此在定子52与转子51的磁体53之间产生转矩。转子51因此转动,从而驱动叶轮48。当叶轮48被如此驱动时,压力施加到在泵室42中的液体冷却剂上。液体冷却剂被迫经出口管道46出去,并且经第一连接管90导向到散热器32中。
更明确地说,通过在泵外壳35中的热交换加热的液体冷却剂经由翅片组件61的冷却剂进口端口86泵吸到扁平管道85中。液体冷却剂经扁平管道85流向冷却剂出口端口87。当冷却剂如此流动时,由IC芯片12产生的并且吸收到液体冷却剂中的热量扩散到扁平管道85,并因此扩散到散热翅片80。
假定风扇60的叶轮65在便携式计算机1的使用期间被驱动。那么,通过在风扇壳体64的整个外圆周中制成的出口端口70在径向方向上施加冷却空气。如此施加的冷却空气流经在翅片组件61的散热翅片80之间的间隙。散热翅片80和扁平管道85由此被冷却。因而,当冷却空气向外流经排出端口76时,传递到散热翅片80和扁平管道85的热量的大部分从第三外壳20释放。
在流经扁平管道85的同时被冷却的液体冷却剂经第二连接管91引导到泵外壳35的进口管道45中。液体冷却剂从进口管道45的下游端供给到储箱43中。流经扁平管道85的液体冷却剂可能包含气泡。在这种情况下,在储箱43中从液体冷却剂除去气泡。
供回到储箱43中的液体冷却剂吸收由IC芯片12产生的热量,直到它经连通开口44抽吸到泵室42中。当叶轮48被转动时,液体冷却剂从储箱43经由连通开口44抽到泵室42中。压力再次施加到抽入泵室42中的液体冷却剂上,该液体冷却剂从出口管道46供向散热器32。
重复这种操作周期,借此IC芯片12的热量被传递到翅片组件61。流经翅片组件61的冷却空气从散热器32带走热量。
在以上描述的根据第一实施例的散热器32中,风扇60具有在风扇壳体64的整个外圆周中制成的出口端口70,并且从叶轮65的整个圆周在径向方向上施加冷却空气。接收冷却空气的翅片组件61具有多个散热翅片80,所述散热翅片80彼此隔开地排列并围绕出口端口70。热的液体冷却剂被引导到其中的扁平管道85以圆弧形式弯曲,并且热连接到任何散热翅片80的第一边缘81a上。
借助于这种构造,围绕风扇60排列多个散热翅片80。这增大散热翅片80接触冷却空气的面积。因此,散热翅片80可有效地释放来自在扁平管道85中流动的液体冷却剂的热量。所以,提高了散热器32的散热效率。
另外,翅片组件61从风扇60突出得不多,这是因为它与风扇60同轴地布置。散热器32因此可紧凑得作为整体。散热器32可并入尺寸受限制的第三外壳20中,而不必采取任何特殊措施。
而且,每个散热翅片80接触扁平管道85的面积增大,这是因为每个散热翅片80具有在第一边缘81a中的凹口82,并且扁平管道85装配在凹口82中。所以,热量可有效地从扁平管道85传递到散热翅片80。结果,每个散热翅片80的表面温度容易升高,从而从每个散热翅片80的表面把IC芯片12的热量有效地散发到液体冷却剂中。
在以上描述的第一实施例中,散热器设置在连接主单元和显示器单元的中间单元中。尽管如此,本发明不限于第一实施例。例如,散热器可以包括在主单元的第一外壳中,或包括在显示器单元的第二外壳中。
图12表示本发明的第二实施例。
第二实施例与第一实施例的不同之处主要在于翅片组件61的散热翅片80的延伸方向。在其它方面,第二实施例与第一实施例相同。
如图12中所示,风扇60的叶片73在轮毂72的切线方向上延伸,相对于叶轮65转动的方向向后倾斜。叶片73的倾斜角度α由冷却空气应该施加的速率和某些其它因素确定。
当叶轮65在箭头的方向上被驱动时,空气抽吸到叶轮65的转动中心。这种空气是从叶片73的远端施加到出口端口70上的冷却空气。施加冷却空气的方向D对于每个叶片73几乎为直角。依据叶片73的倾斜角度α,在施加冷却空气的方向D与每个叶片73延伸的方向之间的角度β通常是80°至105°。
所以,在第二实施例中,布置成围绕叶轮65的散热翅片80的每一个在从叶片73施加冷却空气的方向上延伸。
在这种构造中,从风扇壳体64的出口端口70向翅片组件61施加冷却空气的方向与每个散热翅片80延伸的方向相同。冷却空气因此可容易地流入在任何两个相邻散热翅片80之间的间隙中。结果,冷却空气可有效地冷却翅片组件61。这增加了散热器32的散热效率。
图13和14表示本发明的第三实施例。
第三实施例与第一实施例不同之处主要在于在散热器32中提供的通道62的形状。
如图13中所示,通道62具有第一至第三冷却剂路径100、101及102。第一冷却剂路径100从翅片组件61的第一端61a到其第二端61b延伸。第二冷却剂路径101从翅片组件61的第二端61b到其第一端61a延伸。第三冷却剂路径102连接第一冷却剂路径100的下游端和第二冷却剂路径101的上游端。
第一和第二冷却剂路径100和101以圆弧的形式弯曲,并且在布置散热翅片80的方向上延伸。路径100和101与叶轮65同心。而且,第二冷却剂路径101布置在第一冷却剂路径100与风扇60之间。
第一冷却剂路径100的上游端和第二冷却剂路径101的下游端从翅片组件61的第一端61a伸出。第三冷却剂路径102布置在翅片组件61的第一端61a与第二端61b之间。第一连接管90把第一冷却剂路径100的上游端连接到泵单元31的出口管道46上。第二连接管91把第二冷却剂路径101的下游端连接到泵单元31的进口管道45上。
第一至第三冷却剂路径100、101及102已经通过弯曲一根扁平管道103形成。如图14描绘的那样,扁平管道103的横截面具有长轴线L1和短轴线S1。长轴线L1和短轴线S1分别在散热翅片80的长度方向和高度方向上延伸。
第一和第二凹口105a和105b制成在每个散热翅片80的第一边缘81a中。第一和第二凹口105a和105b在散热翅片80的长度方向上隔开。第一冷却剂路径100装配在每个翅片80的第一凹口105a中,并且焊接到翅片80上。第二冷却剂路径101装配在每个翅片80的第二凹口105b中,并且焊接到翅片80上。因而,第一冷却剂路径100和第二冷却剂路径101热连接到散热翅片80上。
以圆弧形式弯曲的连接板106焊接到每个散热翅片80的第二边缘80b上。散热翅片80因此由第一冷却剂路径100、第二冷却剂路径101及连接板106连接。如此连接的任何两个相邻翅片80保持隔开一个特定距离。
在这种构造中,在泵单元31中加热的液体冷却剂首先供给到翅片组件61的第一冷却剂路径100。液体冷却剂然后从第一冷却剂路径100经第三冷却剂路径102流入第二冷却剂路径101中,到达第二冷却剂路径101的下游端。在如此流动的同时,液体冷却剂把IC芯片12的热量传递到散热翅片80。
在以上描述的构造中,从泵外壳35导向到翅片组件61的液体冷却剂首先从翅片组件61的第一端61a流到其第二端61b,并且然后从第二端61b返回到第一端61a。所以,穿过翅片组件61延伸的液体冷却剂通道是在第一实施例中的两倍长。换句话说,热量从第一冷却剂路径100和第二冷却剂路径101传递到每个散热翅片80。
另外,每个散热翅片80接触第一和第二冷却剂路径100和101的面积增加,这是因为第一和第二冷却剂路径100和101装配到在每个翅片80中制成的第一和第二凹口105a和105b中。热量因此可有效地从流经第一和第二冷却剂路径100和101的液体冷却剂传递到散热翅片80。
结果,每个散热翅片80的表面温度升高,并且热量容易扩散到每个散热翅片80的角部。液体冷却剂的热量可有效地从每个散热翅片80的表面散发。这提高了散热器32的散热效率。
在以上描述的构造中,经风扇60的出口端口70施加的冷却空气在图14中如由箭头指示的那样流动。首先,它流过在第二冷却剂路径101与散热翅片80之间的热接点。然后,它流过在第一冷却剂路径100与散热翅片80之间的热接点。换句话说,第一冷却剂路径100相对于冷却空气流动的方向布置在第二冷却剂路径101的下游。
在第二冷却剂路径101与散热翅片80之间的热接点较低,这是因为在第二冷却剂路径101中流动的液体冷却剂凭借与散热翅片80的热交换已经在第一冷却剂路径100中被冷却。另一方面,在第一冷却剂路径100与散热翅片80之间的热接点较高,这是因为加热到高温的液体冷却剂首先导向到第一冷却剂路径100。当冷却空气经过在第一冷却剂路径100与散热翅片80之间的热接点时,冷却空气的温度因此大大地升高。
在第三实施例中,在第一冷却剂路径100与散热翅片80之间的热接点相对于冷却空气流动的方向位于第二冷却剂路径101的下游。所以,在经过在第一冷却剂路径100与散热翅片80之间的热接点的同时被加热的冷却空气不被引导到在第二冷却剂路径101与散热翅片80之间的热接点。
结果,加热的冷却空气不影响第二冷却剂路径101。这可防止从散热器32流回泵单元31的液体冷却剂的温度升高。
图15至19表明本发明的第四实施例。
第四实施例与第一实施例的不同之处在于,连接到散热器32的翅片组件61上的冷却剂路径以不同方式延伸。
如图15至17中所示,翅片组件61具有其中液体冷却剂流动的第一至第三路径110至112。第一至第三冷却剂路径110至112已经通过弯曲一根扁平管道113形成。
第一路径110在布置散热翅片80的方向上以圆弧形式弯曲。它接触每个散热翅片80的第二边缘81b,延伸过任何两个相邻翅片80。第一路径110的上游端位于翅片组件61的第二端61b处。第一路径110的下游端位于翅片组件61的第一端61a处。第一路径110的上游端由第一连接管90连接到泵单元31的出口管道46上。如图19中所示,第一路径110装配于在每个散热翅片80的第二边缘81b中制成的凹口114中,并且焊接到每个散热翅片80上。
第二路径111在布置散热翅片80的方向上以圆弧形式弯曲。它接触每个散热翅片80的第一边缘81a,延伸过任何两个相邻翅片80。第二路径111的上游端位于翅片组件61的第二端61b处。第二路径111的下游端位于翅片组件61的第一端61a处。第二路径111的下游端由第二连接管91连接到泵单元31的进口管道45上。如图19中所示,第二路径111装配于在每个散热翅片80的第一边缘81a中制成的凹口115中,并且焊接到每个散热翅片80上。
第一路径110和第二路径111在散热翅片80的高度方向上隔开。第一和第二路径110和111同心地布置,围绕风扇60的叶轮65。
第三路径112布置在翅片组件61的第一端61a与第二端61b之间。第三路径112对于散热翅片80的高度方向倾斜地延伸,连接第一路径110的下游端和第二路径111的上游端。
一对连接板116a和116b焊接到每个散热翅片80的第一边缘81a上。连接板116a和116b在布置散热翅片80的方向上以圆弧形式弯曲。类似地,两块连接板117a和117b焊接到每个散热翅片80的第二边缘81b上。连接板117a和117b在布置散热翅片80的方向上以圆弧形式弯曲。
多个散热翅片80因而由第一路径110、第二路径111及连接板116a、116b、117a及117b彼此连接。任何相邻散热翅片80因此隔开一个特定距离。
在这种构造中,在泵单元31中加热的液体冷却剂首先被引导到第一路径110,并且然后依次地流过散热翅片80的第二边缘81b。在到达第一路径110的下游端之后,液体冷却剂被引导到第二路径111,并且然后依次地流过散热翅片80的第一边缘81a。当液体冷却剂如此流动时,热量从液体冷却剂传递到散热翅片80。
在第四实施例中,从泵单元31导向到散热器32的液体冷却剂在它通过第一和第二路径110和111之后流回泵单元31,绕翅片组件61两次。翅片组件61因此具有用于液体冷却剂的流动路径,该流动路径是在以上描述的第一实施例中的两倍长。热量从液体冷却剂经由两条路径(即第一路径110和第二路径111)扩散到每个散热翅片80。
而且,第一路径110装配于在每个散热翅片80的第二边缘81b中制成的凹口114中,并且第二路径111装配于在每个散热翅片80的第一边缘81a中制成的凹口115中。即,每个散热翅片80接触第一和第二路径110和111的面积比在第一实施例中的面积大。因此在液体冷却剂流经第一和第二路径110和111的同时,热量可有效地从液体冷却剂传递到散热翅片80。
所以,每个散热翅片80的表面温度升高得越多,热量扩散到散热翅片80的角部越容易。热量可有效地从每个散热翅片80的表面散发。这提高了散热器32的散热性能。
在翅片组件61如图17中所示保持在水平位置中的同时,第三路径112从第一路径110的下游端向第二路径111的上游端向下倾斜。液体冷却剂因此在第三路径112中向下流动。结果,在第一至第三路径110、111及112中流动的液体冷却剂不必被迫克服重力向上。因此有可能减小液体冷却剂在它通过第一至第三路径110、111及112时接受的阻力。
换句话说,减小在泵单元31上迫使液体冷却剂出去的负载。液体冷却剂因此可在泵单元31与散热器32之间循环,而不用把巨大的力施加在液体冷却剂上。
图20和21表示根据本发明第五实施例的散热器32。
如图20中所示,散热器32的翅片组件61具有第一和第二连接板120和121。第一和第二连接板120和121在布置散热翅片80的方向上以圆弧形式弯曲。第一连接板120焊接到每个散热翅片80的第一边缘81a上。第一连接板120连接散热翅片80,并且热连接到散热翅片80上。第二连接板121焊接到每个散热翅片80的第二边缘81b上。第二连接板121连接散热翅片80,并且热连接到散热翅片80上。
翅片组件61具有液体冷却剂在其中流动的第一至第三路径122、123及124。第一路径122由扁平管道125构成。扁平管道125在布置散热翅片80的方向上以圆弧形式弯曲,并且焊接到第二连接板121上并置于其上。
扁平管道125的上游端和下游端分别从翅片组件61的第一和第二端61a和61b伸出。扁平管道125的上游端在热的液体冷却剂流入处形成冷却剂进口端口126。扁平管道125的下游端在液体冷却剂流出处形成冷却剂出口端口127。
外盖129提供在支撑叶轮65的底座66的下面。底座66和外盖129是几乎具有与翅片组件61相同的外径的盘。底座66的外圆周与翅片组件61的外圆周对准。翅片组件61的第一连接板120位于底座66的上表面上,使其外圆周与底座66的外圆周对准。
外盖129在其中心部分中具有通孔130。通孔130与底座66的进口端口69a连通。提供从通孔130的边沿向上延伸的内壁131。内壁131的远端抵靠在底座66的下表面上。提供从外盖129的外圆周边缘向上延伸的外壁132。外壁132的远端抵靠在底座66的下表面上。
因而,外盖129与底座66共同地限定第二路径123。第二路径123具有扁平横截面,并且沿翅片组件61以圆弧形式弯曲。
如在图20中表明的那样,外盖129具有冷却剂进口端口133和冷却剂出口端口134。冷却剂进口端口133和冷却剂出口端口134分别靠近翅片组件61的第一端61a和第二端61b布置。冷却剂进口端口133连接到第二路径123的上游端上。冷却剂出口端口134连接到第二路径123的下游端上。
第三路径124是诸如橡胶管之类的软管道135。管道135把第二路径123的冷却剂进口端口133连接到第一路径122的冷却剂出口端口127上。
在这种构造中,加热的液体冷却剂首先被引导到第一路径122的冷却剂进口端口126,并且然后在翅片组件61的圆周方向上在第一路径122中流动。在到达第一路径122的下游端之后,液体冷却剂经第三路径124导向到第二路径123的冷却剂进口端口133。然后,液体冷却剂在翅片组件61的圆周方向上在第二路径123中流动。在液体冷却剂如此流动的同时,热量从冷却剂传递到翅片组件61的散热翅片80。已经达到第二路径123的下游端的液体冷却剂从冷却剂出口端口134流出。
在第五实施例中,导向到散热器32的液体冷却剂通过以圆弧形式弯曲的第一和第二路径122和123绕翅片组件61流动两次。翅片组件61因此具有用于液体冷却剂的流动路径,该流动路径是在以上描述的第一实施例中的两倍长。因而,热量经由两条路径(即第一路径122和第二路径123)从液体冷却剂扩散到每个散热翅片80。
所以,每个散热翅片80的表面温度升高得越多,热量传播到散热翅片80的角部越容易。热量可有效地从每个散热翅片80的表面散发。这提高了散热器32的散热性能。
图22和23描绘根据本发明第六实施例的散热器32。
第六实施例与第五实施例的不同之处主要在于轴流风扇140的使用以及用于液体冷却剂的第二路径的结构。在任何其它方面,这个散热器32与第五实施例相同。
风扇140具有叶轮141。叶轮141包括轮毂142和多个叶片143。轮毂142使其中心与叶轮141的轴线对准。叶片143从轮毂142在其径向方向上伸出。轮毂142连接到电机(未表示)的轴上,该电机又支撑在底座144的中心部分上。底座144形状像盘,具有与翅片组件61几乎相同的外径。底座144使其外圆周与翅片组件61的圆周对准。翅片组件61的第一连接板120位于底座144的上表面上,使其外边缘与底座144的圆周对准。
叶轮141的叶片143相对于叶轮141的轴线倾斜。当叶轮141被驱动时,空气在叶轮141的轴向方向上流动。空气供给到底座144,并且在不同的方向(即叶轮141的径向方向)上流动。空气或冷却空气流到翅片组件61的散热翅片80。
外盖146提供在底座144的下表面处。外盖146与底座144共同限定一封闭空间。这个空间由隔板壁147划分成热传递腔室148和储箱149。储箱149也用作第二路径。热传递腔室148跨过底座144面对翅片组件61,并且在翅片组件61的圆周方向上延伸。热传递腔室148围绕储箱149。
外盖146具有进口管道151和出口管道152。液体冷却剂经进口管道151流入,并且经出口管道152流出。进口管道151和出口管道152分别靠近翅片组件61的第一和第二端61a和61b布置,并且通到储箱149。进口管道151连接到第三路径124上,该第三路径124又连接到第一路径122的冷却剂出口端口127上。
如图22表示的那样,出口管道152到储箱149中延伸得比进口管道151延伸得更远。出口管道152具有位于储箱149的中间部分中的冷却剂进口端口152a。冷却剂进口端口152a保持浸入在储箱149中存储的液体冷却剂中,不管散热器32取什么位置。
在这种构造中,热的液体冷却剂首先导向到第一路径122的冷却剂进口端口126,并且然后在翅片组件61的圆周方向上在第一路径122中流动。已经到达第一路径122的下游端的液体冷却剂经第三路径124和进口管道151导向到储箱149中。液体冷却剂被临时存储在储箱149中。
液体冷却剂被迫经进口管道151进入储箱149中。在第一路径122中流动的液体可能包含气泡。在这种情况下,从在储箱149中的液体冷却剂除去气泡。出口管道152的冷却剂进口端口152a保持浸入在在储箱149中存储的液体冷却剂中。因此,只有液体冷却剂被抽吸到出口管道152中。
在第六实施例中,进口管道151和出口管道152构成从液体冷却剂除去气泡的气体-液体分离机构。气体-液体分离机构与储箱149成为整体。
沿翅片组件61弯曲的热传递腔室148围绕储箱149。在储箱149中临时存储的液体冷却剂的热量因此经由底座144从热传递腔室148传递到翅片组件61的散热翅片80。
在以上描述的第六实施例中,导向到散热器32的液体冷却剂沿翅片组件61流经第一路径122,并且流入由翅片组件61围绕的储箱149中。翅片组件61因此具有用于液体冷却剂的流动路径,该流动路径是在第一实施例中的流动路径的两倍长。结果,热量从两个元件(即第一路径122和储箱149)从液体冷却剂扩散到每个散热翅片80。
因此,每个散热翅片80的表面温度升高得越多,热量扩散到散热翅片80的角部越容易。热量可有效地从每个散热翅片80的表面散发。这提高了散热器32的散热性能。
而且,热量在上述构造中可从液体冷却剂直接传递到底座144,这是因为支撑叶轮141的底座144和外盖146构成临时存储液体冷却剂的储箱149。当风扇140的叶轮141被驱动时,空气在叶轮141的轴向方向上流动。所述空气或冷却空气被施加到底座144上。底座144由此被高效率冷却。即,冷却空气从底座144带走液体冷却剂的热量。
因而,在储箱149中临时存储的液体冷却剂可被有效地冷却。这有助于提高散热器32的散热效率。
图24和25描绘根据本发明第七实施例的散热器32。
第七实施例与第六实施例的不同之处在于第二路径的结构。在任何其它方面,这种散热器32与第六实施例相同。
如图24中所示,外盖146与底座144共同限定第二路径161。第二路径161具有扁平横截面。第二路径161由隔板壁162划分成第一冷却剂路径163和第二冷却剂路径164。第一和第二冷却剂路径163和164由位于外盖146的外圆周附近的连通路径165连接。
外盖146具有冷却剂进口端口167和冷却剂出口端口168。冷却剂进口端口167和冷却剂出口端口168跨过第一和第二冷却剂路径163和164提供得远离连通路径165。端口167和168分别布置在翅片组件61的第一和第二端61a和61b的附近。
冷却剂进口端口167提供在第一冷却剂路径163的上游端处。冷却剂出口端口168提供在第二冷却剂路径164的下游端处。冷却剂进口端口167由第三路径124连接到第一路径122的冷却剂出口端口127上。
第一和第二冷却剂路径163和164分别包含热量扩散部件169和170。热量扩散部件169和170例如是正方形金属网。金属网插入在底座144与外盖146之间。因此,热量扩散部件169和170热连接到底座144和外盖146上。
在这种构造中,热的液体冷却剂导向到第一路径122的冷却剂进口端口126,并且然后在翅片组件61的圆周方向上在第一路径122中流动。已经到达第一路径122的下游端的液体冷却剂经第三路径124和冷却剂进口端口167导向到第二路径161的第一冷却剂路径163。液体冷却剂经由连通路径165进一步流入第二冷却剂路径164。
导向到第一和第二冷却剂路径163和164的液体冷却剂分别通过热量扩散部件169和170。热量由此从液体冷却剂传递到热量扩散部件169和170。热量经热量扩散部件169和170进一步传递到底座144和外盖146。此外,大部分热量从底座144的外圆周传播到翅片组件61。
在第七实施例中,导向到散热器32的液体冷却剂沿翅片组件61在第一路径122中流动,并且在第二路径161的第一和第二冷却剂路径163和164中流动。因此翅片组件61具有用于液体冷却剂的流动路径,该流动路径是在第一实施例中的流动路径的两倍长。结果,热量可从两条路径(即第一路径122和第二路径161)扩散到每个散热翅片80。
因此,当每个散热翅片80的表面温度升高时,热量更容易扩散到散热翅片80的角部。热量可有效地从每个散热翅片80的表面散发。这提高了散热器32的散热性能。
而且,热量经热量扩散部件169和170可有效地从液体冷却剂传递到底座144和外盖146,这是因为在第二路径161中流动的液体冷却剂沿热量扩散部件169和170通过。结果,对于在第二路径161中流动的液体冷却剂可有效地实现热交换,从而提高了散热器32的散热性能。
图26和27表明根据本发明第八实施例的散热器32。
这种散热器32包括一对空气冷却单元200和201及一通道202。空气冷却单元200和201具有相同构造,每个包括轴流风扇203和形状像环形并且围绕风扇203的翅片组件204。
风扇203具有叶轮205。叶轮205具有轮毂206和多个叶片207。轮毂206使其中心与叶轮的轴线对准。叶片207从轮毂206在其径向方向上伸出。叶片207相对于叶轮205的轴线倾斜。当叶轮205被驱动时,空气沿叶轮205的轴线流动。
翅片组件204包括形状像平板的多个散热翅片208、和形状像环的连接板209。散热翅片208在叶轮205的圆周方向上排列,彼此隔开,并在径向方向上从叶轮205的轴线延伸。连接板209焊接到每个散热翅片208的边缘上,延伸跨过任何两个相邻翅片208。所以,散热翅片208以规则间隔布置,并且任何相邻散热翅片208被连接在一起。
通道202具有主体211和顶盖212。主体211和顶盖212形状像盘,具有与翅片组件204几乎相同的外径。主体211和顶盖212在它们之间限定一封闭空间。该空间由隔板壁213划分成热量传递腔室214和储箱215。热量传递腔室214以圆弧形式弯曲,从而在翅片组件204的圆周方向上延伸。储箱215由热量传递腔室214包围。
主体211具有进口管道217和出口管道218。液体冷却剂经进口管道217流入,并且经出口管道218流出。进口管道217和出口管道218隔开,并且通到储箱215的内部。如图26中所示,出口管道218比进口管道217到储箱215中延伸得更深。出口管道218具有位于储箱215的中间部分中的冷却剂进口端口218a。冷却剂进口端口218a保持浸入在储箱215中存储的液体冷却剂中,而不管散热器32取什么位置。
两个空气冷却单元200和201布置成使通道202介于它们之间。一个空气冷却单元200的翅片组件204位于顶盖212的外圆周边缘上,并因此热连接到顶盖212上。由翅片组件204围绕的风扇203的叶轮205使其轮毂206支撑在顶盖212的上表面的中心部分上。
另一个空气冷却单元201的翅片组件204位于主体211的下表面的外圆周边缘上,并因此热连接到主体211上。由翅片组件204围绕的风扇203的叶轮205使其轮毂206支撑在主体211的下表面的中心部分上。
当叶轮205被驱动时,空气沿叶轮205的轴线流动。空气施加到顶盖212的上表面上,并且施加到主体211的下表面上。空气然后在叶轮205的径向方向上流动。因而,空气流的方向变化。空气是流向翅片组件204的散热翅片208的冷却空气。
在这种构造中,液体冷却剂热量经进口管道217被迫进入储箱215中。液体冷却剂可能包含气泡。在这种情况下,从在储箱215中的冷却剂除去气泡。出口管道218的冷却剂进口端口218a保持浸入在储箱215中存储的液体冷却剂中。因此,只有液体冷却剂被抽吸到出口管道218中。
在本实施例中,进口管道217和出口管道218构成从液体冷却剂除去气泡的气体-液体分离机构。该气体-液体分离机构与储箱215成为整体。
在储箱215中临时存储的液体冷却剂的热量从主体211的下表面传递到一个翅片组件204,并且从顶盖212的上表面传递到另一个翅片组件204。当冷却空气流经在散热翅片208之间的间隙时,传递到翅片组件204的热量从散热器32散发。
在第八实施例中,通道202设置在空气冷却单元200和201之间。在储箱215中临时存储的液体冷却剂的热量因此可传递到两个翅片组件204。因而,散热器32的散热面积是两倍大。
而且,当叶轮205被驱动时,冷却空气施加到通道202的主体211和顶盖212上。在储箱215中临时存储的液体冷却剂因此可被高效率地冷却。这一点以及两倍大的散热面积提高了散热器32的散热性能。
在以上描述的第三至第八实施例中,叶轮的叶片可以以与在第二实施例中相同的方式,倾斜成与空气流自每个叶片的远端的方向对准。
工业适用性
在本发明中,多个散热翅片围绕一出口端口排列,并且因此液体冷却剂的热量能以高效率散发。因而,本发明可应用于使用液体冷却剂来冷却诸如CPU之类的热量产生元件的冷却设备中,并且可应用于包括这种类型的冷却设备的、诸如便携式计算机之类的电子设备中。
Claims (25)
1.一种散热器,其特征在于包括:
出口端口(70),冷却空气通过所述出口端口(70)沿径向方向被施加;
多个散热翅片(80),它们间隔地布置并且围绕所述出口端口(70);以及
通道(62),它在布置散热翅片(80)的方向上延伸并且热连接到散热翅片(80)上,液体冷却剂在所述通道中流动。
2.根据权利要求1所述的散热器,其特征在于,所述通道(62)包括扁平管道(85),并且散热翅片(80)的每一个具有边缘(81a),该边缘(81a)具有扁平管道(85)装配在其中的凹口(82)。
3.根据权利要求1所述的散热器,其特征在于,所述通道(62)具有第一端和第二端,并且包括:第一冷却剂路径(100),它具有下游端,并且在布置散热翅片(80)的方向上从所述第一端向所述第二端延伸;第二冷却剂路径(101),它具有上游端,并且在布置散热翅片(80)的方向上从所述第二端向所述第一端延伸;以及第三冷却剂路径(102),它连接所述第一冷却剂路径(100)的下游端和所述第二冷却剂路径(101)的上游端。
4.根据权利要求3所述的散热器,其特征在于,散热翅片(80)的每一个具有边缘(81a),该边缘(81a)具有一对其中分别装配第一和第二冷却剂路径(100,101)的凹口(105a,105b)。
5.一种冷却设备,其特征在于包括:
出口端口(70),冷却空气通过所述出口端口沿径向方向被施加;
多个散热翅片(80),它们间隔地布置并且围绕出口端口(70),每个散热翅片(80)具有第一边缘(81a)和相对于第一边缘(81a)布置的第二边缘(81b);
第一路径(110),它具有下游端、在布置散热翅片(80)的方向上延伸并且热连接到每个散热翅片(80)的第二边缘(81b)上,液体冷却剂在该第一路径(110)中流动;
第二路径(111),它具有上游端、在布置散热翅片(80)的方向上延伸并且热连接到每个散热翅片(80)的第一边缘(81a)上,液体冷却剂在该第二路径(111)中流动;以及
第三路径(112),它连接第一路径(110)的下游端和第二路径(111)的上游端,并且液体冷却剂在该第三路径(112)中流动。
6.一种冷却设备,其特征在于包括:
热量接收部分(35),它热连接到热量产生元件(10)上;
散热部分(32),它散发热量产生元件(10)的热量;以及
循环路径(33),它在热量接收部分(35)与散热部分(32)之间循环液体冷却剂,
所述散热部分(32)包括:
出口端口(70),冷却空气通过所述出口端口沿径向方向被施加;
多个散热翅片(80),它们间隔地布置并且围绕出口端口(70);以及
通道(62),它在布置散热翅片(80)的方向上延伸并且热连接到散热翅片(80)上,在热量接收部分(35)中加热的液体冷却剂在该通道(62)中流动。
7.根据权利要求6所述的冷却设备,其特征在于,通道(62)包括扁平管道(85),散热翅片(80)的每一个具有边缘(81a),该边缘(81a)具有扁平管道(85)装配在其中的凹口(82)。
8.根据权利要求6所述的冷却设备,其特征在于,热量接收部分(35)包括泵(31),该泵(31)把压力施加到液体冷却剂上,从而压出液体冷却剂。
9.一种冷却设备,其特征在于包括:
热量接收部分(35),它热连接到热量产生元件(10)上;
散热部分(32),它散发热量产生元件(10)的热量;
循环路径(33),它在热量接收部分(35)与散热部分(32)之间循环液体冷却剂;以及
风扇(60),它具有带有多个叶片(73)的叶轮(65),并且它被构造成当叶轮(65)转动时,在径向方向上从每个叶片(73)的远端向散热部分(32)施加冷却空气,
所述散热部分(32)包括:
多个散热翅片(80),它们间隔地布置并且围绕风扇(60)的叶轮(65);和
通道(62),它在布置散热翅片(80)的方向上延伸并且热连接到散热翅片(80)上,在热量接收部分(35)中加热的液体冷却剂在该通道(62)中被引导,
所述散热翅片(80)相对于叶轮(65)的每个叶片(73)的远端的轨迹,向叶轮(65)转动方向的切线倾斜。
10.根据权利要求9所述的冷却设备,其特征在于,通道(62)包括扁平管道(85),并且散热翅片(80)的每一个具有边缘(81a),该边缘(81a)具有扁平管道(85)装配在其中的凹口(82)。
11.根据权利要求9所述的冷却设备,其特征在于,叶轮(65)具有与叶轮(65)的轴线对准的轮毂(72),叶片(73)从轮毂(72)在径向方向上伸出,并且散热翅片(80)相对于叶片(73)伸出的方向大致以直角延伸。
12.根据权利要求9所述的冷却设备,其特征在于,热量接收部分(35)包括泵(31),该泵(31)把压力施加到液体冷却剂上,从而压出液体冷却剂。
13.一种冷却设备,其特征在于包括:
热量接收部分(35),它热连接到热量产生元件(10)上;
散热部分(32),它散发热量产生元件(10)的热量;
循环路径(33),它在热量接收部分(35)与散热部分(32)之间循环液体冷却剂;及
风扇(60),它具有带有多个叶片(73)的叶轮(65),并且它被构造成当叶轮(65)转动时,在径向方向上从每个叶片(73)的远端向散热部分(32)施加冷却空气,
所述散热部分(32)包括:
多个散热翅片(80),它们间隔地布置并且围绕风扇(60)的叶轮(65);和
通道(62),它在布置散热翅片(80)的方向上延伸并且热连接到散热翅片(80)上,在热量接收部分(35)中加热的液体冷却剂在该通道(62)中被引导,
所述通道(62)具有第一端和第二端,并且包括第一冷却剂路径(100)、第二冷却剂路径(101)及第三冷却剂路径(102),第一冷却剂路径(100)具有下游端,并且在布置散热翅片(80)的方向上从第一端向第二端延伸,第二冷却剂路径(101)具有上游端,并且在布置散热翅片(80)的方向上从第二端向第一端延伸,第三冷却剂路径(102)连接第一冷却剂路径(100)的下游端和第二冷却剂路径(101)的上游端。
14.根据权利要求13所述的冷却设备,其特征在于,第一冷却剂路径(100)相对于冷却空气流动的方向位于第二冷却剂路径(101)的下游。
15.根据权利要求13所述的冷却设备,其特征在于,散热翅片(80)布置成沿叶轮(65)的外圆周延伸的一个圆弧,第一和第二冷却剂路径(100,101)以圆弧形式弯曲,并且围绕叶轮(65)。
16.根据权利要求13所述的冷却设备,其特征在于,第一和第二冷却剂路径(100,101)每个包括扁平管道(103),并且散热翅片(80)的每一个具有边缘(81a),该边缘(81a)具有一对其中分别装配扁平管道(103)的凹口(105a,105b)。
17.根据权利要求13所述的冷却设备,其特征在于,热量接收部分(35)包括泵(31),该泵(31)把压力施加到液体冷却剂上,从而压出液体冷却剂。
18.一种冷却设备,其特征在于包括:
热量接收部分(35),它热连接到热量产生元件(10)上;
散热部分(32),它散发热量产生元件(10)的热量;
循环路径(33),它在热量接收部分(35)与散热部分(32)之间循环液体冷却剂;及
风扇(60),它具有带有多个叶片(73)的叶轮(65),并且它被构造成当叶轮(65)转动时,在径向方向上从每个叶片(73)的远端向散热部分(32)施加冷却空气,
所述散热部分(32)包括:
多个散热翅片(80),它们具有第一边缘(81a)和相对第一边缘(81a)布置的第二边缘(81b),所述散热翅片(80)间隔地布置并围绕叶轮(65);
第一路径(110,122),它具有下游端、在布置散热翅片(80)的方向上延伸并且热连接到每个散热翅片(80)的第二边缘(81b)上,在热量接收部分(35)中加热的液体冷却剂在该第一路径(110,122)中流动;
第二路径(111,123),它具有上游端、在布置散热翅片(80)的方向上延伸并且热连接到每个散热翅片(80)的第一边缘(81a)上,在热量接收部分(35)中加热的液体冷却剂在该第二路径(111,123)中流动;及
第三路径(112,124),它连接第一路径(110,122)的下游端和第二路径(111,123)的上游端,并且在热量接收部分(35)中加热的液体冷却剂在该第三路径(112)中流动。
19.根据权利要求18所述的冷却设备,其特征在于,第一和第二路径(110,111)每个包括扁平管道(113),并且每个散热翅片(80)的第一和第二边缘(81a,81b)具有扁平管道(113)装配在其中的凹口(114,115)。
20.根据权利要求18所述的冷却设备,其特征在于,第二路径(123)具有临时存储液体冷却剂的储箱(149)、和从液体冷却剂分离气泡的气体-液体分离机构(151,152)。
21.根据权利要求18所述的冷却设备,其特征在于,热量接收部分(35)包括泵(31),该泵(31)把压力施加到液体冷却剂上,从而压出液体冷却剂。
22.一种电子设备,其特征在于包括:
外壳(5),它包含热量产生元件(10);和
冷却设备(30),它包括在外壳(5)中,并且它用液体冷却剂冷却热量产生元件(10),
所述冷却设备(30)包括:
热量接收部分(35),它热连接到热量产生元件(10)上;
散热部分(32),它散发热量产生元件(10)的热量;及
循环路径(33),它在热量接收部分(35)与散热部分(32)之间循环液体冷却剂,
所述散热部分(32)包括:
出口端口(70),冷却空气通过所述出口端口沿径向方向被施加;
多个散热翅片(80),它们间隔地布置并且围绕出口端口(70);以及
通道(62),它在布置散热翅片(80)的方向上延伸并且热连接到散热翅片(80)上,在热量接收部分(35)中加热的液体冷却剂在该通道(62)中流动。
23.根据权利要求22所述的电子设备,其特征在于,热量接收部分(35)包括泵(31),该泵(31)把压力施加到液体冷却剂上,从而压出液体冷却剂。
24.一种电子设备,其特征在于包括:
外壳(5),它包含热量产生元件(10);和
冷却设备(30),它包括在外壳(5)中,并且它用液体冷却剂冷却热量产生元件(10),
所述冷却设备(30)包括:
热量接收部分(35),它热连接到热量产生元件(10)上;
散热部分(32),它散发热量产生元件(10)的热量;
循环路径(33),它在热量接收部分(35)与散热部分(32)之间循环液体冷却剂,及
风扇(60),它具有带有多个叶片(73)的叶轮(65),并且它被构造成当叶轮(65)转动时,在径向方向上从每个叶片(73)的远端向散热部分(32)施加冷却空气,
所述散热部分(32)具有:
多个散热翅片(80),它们间隔地布置并且围绕风扇(60)的叶轮(65);和
通道(62),它在布置散热翅片(80)的方向上延伸并且热连接到散热翅片(80)上,在热量接收部分(35)中加热的液体冷却剂在该通道(62)中被引导,
所述通道(62)具有第一端和第二端,并且包括第一冷却剂路径(100)、第二冷却剂路径(101)及第三冷却剂路径(102),第一冷却剂路径(100)具有下游端,并且在布置散热翅片(80)的方向上从第一端向第二端延伸,第二冷却剂路径(101)具有上游端,并且在布置散热翅片(80)的方向上从第二端向第一端延伸,第三冷却剂路径(102)连接第一冷却剂路径(100)的下游端和第二冷却剂路径(101)的上游端。
25.一种电子设备,其特征在于包括:
外壳(5),它包含热量产生元件(10);和
冷却设备(30),它包括在外壳(5)中,并且它用液体冷却剂冷却热量产生元件(10),
所述冷却设备(30)包括:
热量接收部分(35),它热连接到热量产生元件(10)上;
散热部分(32),它散发热量产生元件(10)的热量;
循环路径(33),它在热量接收部分(35)与散热部分(32)之间循环液体冷却剂,及
风扇(60),它具有带有多个叶片(73)的叶轮(65),并且它被构造成当叶轮(65)转动时,在径向方向上从每个叶片(73)的远端向散热部分(32)施加冷却空气,
所述散热部分(32)具有:
多个散热翅片(80),它们具有第一边缘(81a)和相对第一边缘(81a)布置的第二边缘(81b),所述散热翅片(80)间隔地布置并且围绕叶轮(65);
第一路径(110,122),它具有下游端、在布置散热翅片(80)的方向上延伸并且热连接到每个散热翅片(80)的第二边缘(81b)上,在热量接收部分(35)中加热的液体冷却剂在该第一路径(110,122)中流动;
第二路径(111,123),它具有上游端、在布置散热翅片(80)的方向上延伸并且热连接到每个散热翅片(80)的第一边缘(81a)上,在热量接收部分(35)中加热的液体冷却剂在该第二路径(111,123)中流动;及
第三路径(112,124),它连接第一路径(110,122)的下游端和第二路径(111,123)的上游端,并且在热量接收部分(35)中加热的液体冷却剂在该第三路径(112)中流动。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003433931A JP2005191452A (ja) | 2003-12-26 | 2003-12-26 | 放熱器、冷却装置および冷却装置を有する電子機器 |
JP433931/2003 | 2003-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1906760A true CN1906760A (zh) | 2007-01-31 |
Family
ID=34736539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200480041055.1A Pending CN1906760A (zh) | 2003-12-26 | 2004-12-15 | 具有沿径向布置的散热翅片的散热器、具有散热器的冷却设备、及包括冷却设备的电子设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20060279930A1 (zh) |
JP (1) | JP2005191452A (zh) |
CN (1) | CN1906760A (zh) |
WO (1) | WO2005064675A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101568248B (zh) * | 2008-04-24 | 2011-09-28 | 株式会社日立制作所 | 电子设备用冷却装置和具备该冷却装置的电子设备 |
CN106898800A (zh) * | 2015-12-21 | 2017-06-27 | 中国科学院大连化学物理研究所 | 一种带有气液分离功能的微型散热器和燃料电池系统 |
CN108054147A (zh) * | 2017-11-15 | 2018-05-18 | 中国科学院电工研究所 | 一种带有跳跃膜片的散热装置 |
CN108155165A (zh) * | 2017-11-15 | 2018-06-12 | 中国科学院电工研究所 | 带有跳跃膜片的散热装置 |
CN108172555A (zh) * | 2017-11-15 | 2018-06-15 | 中国科学院电工研究所 | 一种带有气体控水单元的散热装置 |
CN109426049A (zh) * | 2017-08-21 | 2019-03-05 | 深圳光峰科技股份有限公司 | 液冷循环散热装置、液冷循环散热系统及光学投影系统 |
CN111865246A (zh) * | 2019-04-25 | 2020-10-30 | 波音公司 | 用于电磁干扰滤波器的自含式冷却装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005191294A (ja) * | 2003-12-25 | 2005-07-14 | Toshiba Corp | 冷却装置および冷却装置を有する電子機器 |
US20140137952A1 (en) * | 2012-11-19 | 2014-05-22 | Chen-Source Inc. | Support rack |
US9639125B2 (en) * | 2013-10-31 | 2017-05-02 | Microsoft Technology Licensing, Llc | Centrifugal fan with integrated thermal transfer unit |
US9342107B2 (en) * | 2014-03-29 | 2016-05-17 | Intel Corporation | Differential pressure attachment for an electronic device |
CN108541181B (zh) * | 2017-03-01 | 2020-01-17 | 双鸿科技股份有限公司 | 具有散热功能的电子设备及其水冷排总成 |
US10832449B1 (en) | 2018-11-30 | 2020-11-10 | BlueOwl, LLC | Vehicular telematic systems and methods for generating interactive animated guided user interfaces |
CN109696008B (zh) * | 2019-01-31 | 2023-09-26 | 深圳市研派科技有限公司 | 一种流体冷却装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2657840B2 (de) * | 1976-12-21 | 1979-07-26 | Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co Kg, 7000 Stuttgart | Kühlanlage für Brennkraftmaschinen |
US5172752A (en) * | 1990-06-12 | 1992-12-22 | Goetz Jr Edward E | Curved heat exchanger with low frontal area tube passes |
US5696405A (en) * | 1995-10-13 | 1997-12-09 | Lucent Technologies Inc. | Microelectronic package with device cooling |
US6519955B2 (en) * | 2000-04-04 | 2003-02-18 | Thermal Form & Function | Pumped liquid cooling system using a phase change refrigerant |
US6653755B2 (en) * | 2001-05-30 | 2003-11-25 | Intel Corporation | Radial air flow fan assembly having stator fins surrounding rotor blades |
JP2002368471A (ja) * | 2001-06-05 | 2002-12-20 | Matsushita Electric Ind Co Ltd | 冷却装置 |
US7071587B2 (en) * | 2001-09-07 | 2006-07-04 | Rotys Inc. | Integrated cooler for electronic devices |
US6487076B1 (en) * | 2001-10-01 | 2002-11-26 | Auras Technology, Ltd. | Compact heat sink module |
TW545883U (en) * | 2002-11-20 | 2003-08-01 | Sunonwealth Electr Mach Ind Co | Heat dissipating device |
US6892800B2 (en) * | 2002-12-31 | 2005-05-17 | International Business Machines Corporation | Omnidirectional fan-heatsinks |
KR100505554B1 (ko) * | 2003-01-24 | 2005-08-03 | 아이큐리랩 홀딩스 리미티드 | 하이브리드형 냉각 장치 |
US20040201958A1 (en) * | 2003-04-14 | 2004-10-14 | Lev Jeffrey A. | System and method for cooling an electronic device |
JP4258292B2 (ja) * | 2003-07-03 | 2009-04-30 | パナソニック株式会社 | 冷却装置 |
-
2003
- 2003-12-26 JP JP2003433931A patent/JP2005191452A/ja active Pending
-
2004
- 2004-12-15 CN CN200480041055.1A patent/CN1906760A/zh active Pending
- 2004-12-15 WO PCT/JP2004/018747 patent/WO2005064675A1/ja active Application Filing
-
2006
- 2006-06-22 US US11/473,561 patent/US20060279930A1/en not_active Abandoned
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101568248B (zh) * | 2008-04-24 | 2011-09-28 | 株式会社日立制作所 | 电子设备用冷却装置和具备该冷却装置的电子设备 |
CN106898800A (zh) * | 2015-12-21 | 2017-06-27 | 中国科学院大连化学物理研究所 | 一种带有气液分离功能的微型散热器和燃料电池系统 |
CN109426049A (zh) * | 2017-08-21 | 2019-03-05 | 深圳光峰科技股份有限公司 | 液冷循环散热装置、液冷循环散热系统及光学投影系统 |
CN108054147A (zh) * | 2017-11-15 | 2018-05-18 | 中国科学院电工研究所 | 一种带有跳跃膜片的散热装置 |
CN108155165A (zh) * | 2017-11-15 | 2018-06-12 | 中国科学院电工研究所 | 带有跳跃膜片的散热装置 |
CN108172555A (zh) * | 2017-11-15 | 2018-06-15 | 中国科学院电工研究所 | 一种带有气体控水单元的散热装置 |
CN108054147B (zh) * | 2017-11-15 | 2020-05-15 | 中国科学院电工研究所 | 一种带有跳跃膜片的散热装置 |
CN108172555B (zh) * | 2017-11-15 | 2020-05-15 | 中国科学院电工研究所 | 一种带有气体控水单元的散热装置 |
CN111865246A (zh) * | 2019-04-25 | 2020-10-30 | 波音公司 | 用于电磁干扰滤波器的自含式冷却装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2005191452A (ja) | 2005-07-14 |
WO2005064675A1 (ja) | 2005-07-14 |
US20060279930A1 (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1694611A (zh) | 结合有冷却单元的电子设备 | |
CN1906760A (zh) | 具有沿径向布置的散热翅片的散热器、具有散热器的冷却设备、及包括冷却设备的电子设备 | |
CN1242474C (zh) | 电源模块及空调机 | |
CN1252562C (zh) | 视频图象适配器卡的芯片组冷却设备 | |
CN1290392C (zh) | 电子装置 | |
CN1251048C (zh) | 冷却发热元件的冷却装置和具有该冷却装置的电子设备 | |
CN1792018A (zh) | 尤其用于机动车的旋转电机例如交流发电机 | |
CN1893807A (zh) | 冷却装置和电子设备 | |
CN100347636C (zh) | 用于笔记本式计算机的液体冷却装置 | |
CN1196894C (zh) | 空调器 | |
CN1205451C (zh) | 翅片管型热交换器 | |
CN1296581A (zh) | 安装有展开的cpu模块的高热效率的便携式计算机 | |
CN1125245C (zh) | 送风装置的风扇护罩及空调装置 | |
CN1637234A (zh) | 涡轮式流体机械 | |
CN1292071A (zh) | 流体机械的性能调整装置 | |
CN1847735A (zh) | 空调器的室内单元 | |
CN1690919A (zh) | 电子设备 | |
CN1366146A (zh) | 轴流风扇电机和冷却装置 | |
CN1848038A (zh) | 用于冷却计算机零件的装置及其制造方法 | |
CN1942914A (zh) | 平板显示装置 | |
CN1771597A (zh) | 冷却部件、基板和电子设备 | |
CN1282853C (zh) | 室内机和空调器 | |
CN1508420A (zh) | 燃料供给装置 | |
CN101057385A (zh) | 车辆驱动用全闭型主电动机 | |
CN1148548C (zh) | 内置热电模件的歧管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |