CN1893269A - 石英振动片、石英振子以及石英振荡器 - Google Patents

石英振动片、石英振子以及石英振荡器 Download PDF

Info

Publication number
CN1893269A
CN1893269A CNA200610099799XA CN200610099799A CN1893269A CN 1893269 A CN1893269 A CN 1893269A CN A200610099799X A CNA200610099799X A CN A200610099799XA CN 200610099799 A CN200610099799 A CN 200610099799A CN 1893269 A CN1893269 A CN 1893269A
Authority
CN
China
Prior art keywords
equal
axle
smaller
axis
piezoelectric vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200610099799XA
Other languages
English (en)
Inventor
田中雅子
前田进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN1893269A publication Critical patent/CN1893269A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

本发明在以厚度切变振动为主振动的双旋转切的石英振动片中,减小DLD所致的频率变化量,提供需要更大的驱动功率的小型形状的石英振动片、使用了该石英振动片的石英振子以及石英振荡器。对石英的正交的3个晶轴进行如下设定,即,把电轴设为X轴,把与其正交的机械轴设为Y轴,把与X轴、Y轴正交的光轴设为Z轴。首先,设定以石英坯料(15)的Z轴为中心、将X轴以顺时针方向旋转大于等于6.5度且小于等于17.5度的任意角度φ而得到的X’轴,用于得到本发明的石英振动片(20)的石英板(10)具有与该X’轴平行的边。进而,石英板(10)具有平行于以X’轴为中心、将Z轴以顺时针方向旋转大于等于34度且小于等于35度10分的任意角度θ而得到的Z’轴的边。

Description

石英振动片、石英振子以及石英振荡器
技术领域
本发明涉及以厚度切变振动为主振动、具有绕石英的晶轴的两个轴倾斜的切断面的双旋转切(double rotation cut)的石英振动片、使用了该石英振动片的石英振子以及石英振荡器。
背景技术
通常,在通信设备、信息设备以及家用设备等的电子设备中所使用的振子、振荡器等的压电器件中,为了获得稳定的频率特性等而采用了石英作为压电材料。石英振动片采用以预定的角度从该石英切出的石英板而形成。特别是AT切石英板由于在较大范围的温度区域内能获得稳定的频率而以往至今被用于石英振动片。所谓AT切石英板是,如图12所示,使其一边与石英的晶轴的X轴平行、以将XZ面绕X轴以顺时针方向(以从X轴的-X方向朝+X方向观察的情况为基准)旋转35度15分所成的切角进行切割而得到的。该切割方式称为单旋转切(single rotationcut)。公知的是,使用了该AT切石英板的石英振动片,在由于温度的变动而使频率变化的、所谓的频率温度特性中,在100℃左右的高温区域,频率变化较大(例如,专利文献1)。为了改善该高温区域中的频率温度特性,提出了通过如下方式得到的石英板:在使石英的晶轴的一个轴旋转后、以该新的轴为中心而使另一个轴旋转后的面上进行切割(例如,专利文献2)。该切割方式称为双旋转(2次旋转)切。
专利文献1:日本特开平5-235678号公报
专利文献2:日本特开2004-7420号公报
但是,在石英振动片的特性中,除所述的频率温度特性之外,还具有驱动电平依赖性(Drive Level Dependency),即,通过施加用于使石英振动片振动的驱动功率(下面称为“驱动功率”。),使谐振频率发生变化等。下面,将驱动电平依赖性所导致的谐振频率的变化量称为“DLD”。
关于该DLD,采用图13详细地进行说明。图13是表示驱动功率和频率变化量之间的相关度、即DLD的图。在图13中示出了近似线,该近似线表示每个谐振频率和振动片的主面的大小(芯片尺寸)的DLD。各个近似线的详细情况如下所述。
(a)谐振频率为48MHz,芯片尺寸为2.0mm×1.2mm。
(b)谐振频率为40MHz,芯片尺寸为2.0mm×1.1mm。
(c)谐振频率为40MHz,芯片尺寸为4.0mm×2.2mm。
(d)谐振频率为20MHz,芯片尺寸为5.4mm×1.6mm。
如图13所示,该DLD与驱动功率大致成正比,驱动功率越大则频率的变化量越大。进而,可由如图13所示的(b)和(c)之间的比较了解到,该DLD是,如果谐振频率相同,则由于主面的面积变小,从而频率的变化量变大。并且,也可由如图13所示的(a)、(b)和(d)之间的比较了解到,该DLD是,谐振频率越高则频率的变化量越大。因此,在如专利文献2所示的现有的石英振动片中,如果要形成较高谐振频率区域或者主面的面积较小的石英振动片,则会产生DLD变大、超过所允许的频率变化量的问题。
发明内容
本发明就是鉴于上述问题进行的,其目的在于能够通过减小DLD而提供需要更大的驱动功率的小型形状的石英振动片、使用了该石英振动片的石英振子以及石英振荡器。
为了解决上述问题,发明者们对石英的切角进行了各种研究、实验,结果发现了在需要更大驱动功率的小型形状的石英振动片中具有较小的DLD的切角。本发明就是根据该发现而做成的。
本发明的石英振动片通过至少在主面上施加的驱动功率,按照预定的谐振频率进行振动,其特征在于,所述主面包含与如下的X’轴平行的边和与如下的Z’轴平行的边而形成,该X’轴是把石英的电轴作为X轴、把机械轴作为Y轴、把光轴作为Z轴,将所述X轴绕所述Z轴以顺时针方向旋转大于等于7度且小于等于17.3度的角度φ而设定的,该Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成。
根据本发明的石英振动片,通过使用使X轴和Z轴按照预定的角度旋转的双旋转切,能够减小DLD。即,即使是需要较大驱动功率(激励电平)的石英振动片,也能将DLD抑制为较小,能够提供高频率精度(高品质)的石英振动片。
并且,优选为,所述谐振频率为大于等于48MHz且小于等于100MHz,所述主面的面积形成为大于等于4.0mm2且小于等于8.0mm2
由此,即使以500μW左右的驱动功率使谐振频率为大于等于48MHz且小于等于100MHz、且主面的面积为大于等于4.0mm2且小于等于8.0mm2的石英振动片进行振动,也能使DLD小于等于5ppm。
并且,优选为,所述谐振频率为大于等于27MHz且小于等于48MHz,所述主面包含与所述X’轴平行的边和与所述Z’轴平行的边,所述X’轴是将所述X轴绕所述Z轴以顺时针方向旋转大于等于8度且小于等于16度的角度φ而设定的,所述Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成,该主面的面积形成为大于等于1.4mm2且小于等于2.0mm2
这样,即使以500μW左右的驱动功率使谐振频率大于等于27MHz且小于等于48MHz、且主面的面积为大于等于1.4mm2且小于等于2.0mm2的石英振动片进行振动,也能使DLD小于等于5ppm。
并且,优选为,所述谐振频率为大于等于27MHz且小于等于48MHz,所述主面包含与所述X’轴平行的边和与所述Z’轴平行的边,所述X’轴是将所述X轴绕所述Z轴以顺时针方向旋转大于等于10度且小于等于14度的角度φ而设定的,所述Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成,该主面的面积形成为大于等于0.8mm2且小于等于1.4mm2
这样,即使以500μW左右的驱动功率使谐振频率大于等于27MHz且小于等于48MHz、且主面的面积为大于等于0.8mm2且小于等于1.4mm2的石英振动片振动,也能使DLD小于等于5ppm。
并且,优选为,所述谐振频率为大于等于48MHz且小于等于100MHz,所述主面包含与所述X’轴平行的边和与所述Z’轴平行的边,所述X’轴是将所述X轴绕所述Z轴以顺时针方向旋转大于等于8度且小于等于16度的角度φ而设定的,所述Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成,该主面的面积形成为大于等于2.0mm2且小于等于4.0mm2
这样,即使以500μW左右的驱动功率使谐振频率大于等于48MHz且小于等于100MHz、且主面的面积为大于等于2.0mm2且小于等于4.0mm2的石英振动片振动,也能使DLD小于等于5ppm。
并且,优选为,所述谐振频率为大于等于48MHz且小于等于100MHz,所述主面包含与所述X’轴平行的边和与所述Z’轴平行的边,所述X’轴是将所述X轴绕所述Z轴以顺时针方向旋转大于等于9度且小于等于15.5度的角度φ而设定的,所述Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成,该主面的面积形成为大于等于1.4mm2且小于等于2.0mm2
这样,即使以500μW左右的驱动功率使谐振频率大于等于48MHz且小于等于100MHz、且主面的面积为大于等于1.4mm2且小于等于2.0mm2的石英振动片振动,也能使DLD小于等于5ppm。
并且,优选为,所述角度φ大于等于11.5度且小于等于12.5度。
这样,能够进一步将DLD抑制得较小。即,能够提供如下的石英振动片:即使以500μW左右的驱动功率使谐振频率大于等于27MHz且小于等于100MHz、且主面的面积为大于等于0.8mm2且小于等于4.0mm2的石英振动片振动,也能将DLD抑制为大致小于等于2.5ppm的较小的变化。
并且,本发明的石英振子的特征在于,具有封装和收纳在所述封装中的所述石英振动片。
根据本发明的石英振子,通过将所述双旋转切的石英振动片收纳于封装内而使用,能够减小DLD。即,即使是需要较大驱动功率(激励电平)的石英振子,也能使DLD所致的频率变化减小,能够提供较高频率精度(高品质)的石英振子。
并且,本发明的石英振荡器的特征在于,具有所述的石英振动片和至少具有驱动所述石英振动片的功能的电路部。
根据本发明的石英振荡器,通过使用所述双旋转切的石英振动片,能够使DLD减小。即,即使是需要较大驱动功率(激励电平)的石英振动片,也能将DLD抑制得较小。并且,由于具有石英振动片和电路部,所以能够缩短双方的连接,能够做成更小型的石英振荡器。从而,能够提供具有较高频率精度(高品质)的小型的石英振荡器。
附图说明
图1是第一实施方式的双旋转切的石英板的概略图。
图2是表示从图1所示的石英板切出的石英振动片的立体图。
图3是表示实施例1的石英振动片的激励电平和频率偏差之间的相关度的曲线图。
图4是表示实施例2的石英振动片的激励电平和频率偏差之间的相关度的曲线图。
图5是表示实施例3的石英振动片的激励电平和频率偏差之间的相关度的曲线图。
图6是表示实施例4的石英振动片的激励电平和频率偏差之间的相关度的曲线图。
图7是表示实施例5的石英振动片的激励电平和频率偏差之间的相关度的曲线图。
图8表示第二实施方式的石英振子的概要,是剖开了盖体的一部分的俯视图。
图9是表示石英振子的概要的正剖面图。
图10表示第三实施方式的石英振荡器的概要,是剖开了盖体的一部分的俯视图。
图11是表示石英振荡器的概要的正剖面图。
图12是现有的单旋转切的石英板的概略图。
图13是说明DLD的曲线图。
具体实施方式
根据附图对本发明的石英振动片、石英振子和石英振荡器的优选方式进行详细说明。
(第一实施方式)
用图1和图2说明本发明的石英振动片。图1表示第一实施方式的双旋转切的石英板的概要。图2是表示从图1所示的石英板切出的石英振动片的立体图。
如图1所示,对石英的正交的3个晶轴作如下设定,即,把电轴设为X轴,把与其正交的机械轴设为Y轴,把与X轴、Y轴正交的光轴设为Z轴。用于得到本发明的石英振动片的石英板(也称为石英基板)10首先设定以石英坯料15的Z轴为中心、将X轴以顺时针方向(以从Z轴的-Z方向朝+Z方向观察的情况为基准)旋转角度φ而成的X’轴,具有与该X’轴平行的边,该角度φ是大于等于6.5度且小于等于17.5度的任意的角度。进而,石英板10具有与如下的Z’轴平行的边,该Z’轴是以X’轴为中心、将Z轴以顺时针方向(以从X’轴的-X’方向朝+X’方向观察的情况为基准)旋转角度θ而得到的,该角度θ是大于等于34.3度且小于等于35.25度的任意的角度。而且,通过将包含这些边的面作为主面进行切割,形成了所谓的双旋转切的石英板10。进而,将石英板10的两个面研磨加工成所期望的厚度和表面状态,之后,采用切割机等来分成小片,切出如图2所示的、具有所期望的尺寸和形状的石英振动片20。而且,同时,Y轴也2次旋转,但在图1中没有示出。在图2中将切出的石英振动片的厚度方向上的轴表示为将Y轴2次旋转而得到的Y”轴。
对石英振动片20的细节进行说明。图2所示的石英振动片20具有矩形的主面23、24,该矩形的主面23、24具有尺寸为L的长度的与X’轴平行的长边21、和尺寸为W的长度的与Z’轴平行的短边22。主面23、24形成于表里两面,在它们之间具有与Y”轴平行的厚度T。而且,该厚度T与石英振动片20的谐振频率具有成反比的关系,石英振动片20的厚度T越薄则谐振频率越高。在各个主面23、24的表面的中央部形成有激励电极25。在表面的主面23上形成的激励电极25经引出电极26与外部连接电极27a相连接。而且,另一个外部连接电极27b通过石英振动片20的侧面与未图示的里面的外部连接电极、引出电极和激励电极相连接。通过从未图示的振荡电路对该表里的激励电极25施加驱动功率,石英振动片20以预定的频率进行振荡。而且,表示该驱动功率的大小,有时称为激励电平或者驱动电平。
在前述的背景技术中也进行了描述,但石英振动片20的谐振频率根据驱动功率的大小而发生变化。本申请的发明者们阶段性地改变以Z轴为中心的X轴的旋转角度φ来切出石英板10,试制了根据本发明的双旋转切的厚度切变模式的石英振动片20。而且,在该试制中,关注了需要较大的驱动功率的小型(主面的面积较小的石英振动片)和高频带的石英振动片20。
进而,关于试制出的各个石英振动片20,在常温下使驱动功率(激励电平)阶段性地变化,同时测量谐振频率。其结果是发现了:通过设定谐振频率、角度φ、角度θ以及主面的面积,能够形成具有实用上没有任何问题的DLD的石英振动片20。特别是发现了:在角度φ大于等于11.5度且小于等于12.5度的范围内切出的石英振动片20可使DLD显著变小。在此,通常所要求的实用上不成问题的频率变化量是指,对石英振动片20施加直至500μW左右的施加了直至500μW左右的驱动功率时的DLD为小于等于5ppm。
根据本实施方式的石英振动片20,能够使DLD减小。详细地说能够提供如下的石英振动片20:施加了直至500μW左右的施加了直至500μW左右的驱动功率时的频率变化量、即DLD为小于等于5ppm。这样,即使是需要较大驱动功率的石英振动片,也能提供DLD较小的、高频率精度(高品质)的石英振动片20。
此外,在角度φ为大于等于11.5且小于等于12.5的范围内切出的石英振动片20中,能够进一步减小施加了直至500μW左右的驱动功率时的DLD。具体地说,可使DLD为小于等于2.5ppm。
而且,虽然在所述的第一实施方式中,将石英振动片说明为矩形形状,但石英振动片的形状不限于此。例如,圆形或方形等形状的石英振动片也具有同等的效果。
(实施例1)
阶段性地改变X轴的旋转角度φ来切出石英板,试制了根据本发明的厚度切变模式的谐振频率为48MHz和100MHz的石英振动片。各个谐振频率的石英振动片的芯片尺寸为3mm×1.5mm(以图2所示的L×W的尺寸来表示),即主面的面积为4.5mm2。并且,在实施例1中,将角度θ固定为35度。而且,作为比较例,还试制了谐振频率、芯片尺寸相同,角度φ为0度、即现有的单旋转切的石英振动片。然后,关于实施例1的石英振动片,使激励电平变化到700μW左右的同时测量出频率变化量(频率偏差ΔF(ppm))。
其结果如图3所示。图3是表示实施例1的石英振动片的激励电平和频率偏差之间的相关度的曲线图,纵轴表示频率偏差,横轴表示激励电平(μW)。而且,横轴是对数刻度。图3中的曲线表示如下所示的石英振动片的DLD。
(1a)实施例1中的谐振频率为100MHz,角度φ为7度、以及17.3度。
(2a)实施例1中的谐振频率为48MHz,角度φ为7度、以及17.3度。
(3a)实施例1中的谐振频率为48MHz和100MHz,角度φ为12度。
(1b)谐振频率为100MHz,角度φ为0度(比较例)。
(2b)谐振频率为48MHz,角度φ为0度(比较例)。
如图3所示,通常石英振动片的DLD从超过10μW起慢慢增加,当超过100μW时变动变大。与作为比较例的曲线(1b)、(2b)所示的单旋转切的石英振动片相比,实施例1的石英振动片的曲线(1a)、(2a)和(3a)在各谐振频率中变得非常小。通常,当激励电平为小于等于500μW时,该DLD需要小于等于5ppm。图中的双点划线表示在激励电平为小于等于500μW、且DLD为小于等于5ppm的范围。如图3所示,对于曲线(1a)、(2a)和(3a)所示的实施例1的石英振动片,即使激励电平为500μW,也能将DLD抑制为小于等于5ppm。
将谐振频率为100MHz的石英振动片作为一个例子进一步详细地说明。曲线(1a)表示角度φ为7度和17.3度时的DLD。在激励电平500μW中,此时的DLD大致为5ppm。通过使角度φ大于7度,该曲线缓缓地倾斜且曲线的上升变缓。于是,将角度φ为12度的曲线(3a)作为大致下限,如果达到大于等于此的角度,则曲线再次缓缓地倾斜且2次曲线的上升变得急陡,在角度φ为17.3度时大致与角度φ为7度的曲线(1a)重叠。换句话说,对于使角度φ采用从7度到17.3度之间的值来切出的石英振动片,表示DLD的曲线存在于曲线(1a)和曲线(3a)之间的区域中。从而,在角度φ为从7度到17.3度之间切出的石英振动片的DLD在小于等于5ppm的范围内。进而,虽然没有图示,但阶段性地改变主面的面积,进行同样的试制。其结果是,主面的面积在大于等于4.0mm2且小于等于8.0mm2的范围内,能够确认同等的效果。
此外,与前述相同地,在谐振频率为48MHz的石英振动片中,曲线也存在于曲线(2a)和曲线(3a)之间的区域内,能够使DLD为小于等于5ppm。而且,曲线(3a)还表示48MHz的石英振动片的角度φ为12度时的曲线。
由此,在大于等于48MHz且小于等于100MHz的谐振频带中,在角度φ为从7度到17.3度的范围内切出的主面的面积大于等于4.0mm2且小于等于8mm2的双旋转切的石英振动片,能够使激励电平为500μW时的DLD小于等于5ppm。
此外,在曲线(3a)中,即使使激励电平为700μW,也很难观察到DLD,达到了小于等于1ppm。通过这样使角度φ为12度左右(例如,从11.5度到12.5度),能够提供DLD极小的石英振动片。
(实施例2)
进而,改变谐振频率和芯片尺寸,进行与实施例1相同的试制。在实施例2中,试制了根据本发明的厚度切变模式的谐振频率为27MHz和48MHz的石英振动片。各个谐振频率的石英振动片的芯片尺寸为1.4mm×1.0mm(以图2所示的L×W的尺寸来表示),即主面的面积为1.4mm2。并且,在实施例2中,也将角度θ固定为35度。然后,关于实施例2的石英振动片,使激励电平变化到700μW左右的同时测量出频率变化量(频率偏差ΔF(ppm))。
其结果如图4所示。图4是表示实施例2的石英振动片的激励电平和频率偏差之间的相关度的曲线图,纵轴表示频率偏差,横轴表示激励电平(μW)。而且,横轴是对数刻度。图4中的曲线表示如下所示的石英振动片的DLD。
(4a)实施例2中的谐振频率为48MHz,角度φ为8度、以及16度。
(5a)实施例2中的谐振频率为27MHz,角度φ为8度、以及16度。
(6a)实施例2中的谐振频率为48MHz,角度φ为12度。
(7a)实施例2中的谐振频率为27MHz,角度φ为12度。
(4b)谐振频率为48MHz,角度φ为0度(比较例)。
(5b)谐振频率为27MHz,角度φ为0度(比较例)。
与实施例1相同地,与作为比较例的曲线(4b)、(5b)所示的单旋转切的石英振动片相比,实施例2的石英振动片的曲线(4a)、(5a)、(6a)和(7a)在各谐振频率中变得非常小。而且,如图4所示,对于曲线(4a)、(5a)、(6a)和(7a)所示的实施例2的石英振动片,即使激励电平为500μW,也能将DLD抑制为小于等于5ppm。另外,虽然没有图示,但阶段性地改变主面的面积,进行了同样的试制。其结果是,在主面的面积大于等于1.4mm2且小于等于2.0mm2的范围内,能够确认同等的效果。而且,关于与实施例1相同的现象,省略其说明。
因此,在大于等于27MHz且小于等于48MHz的谐振频带中,对于在角度φ为大于等于8度且小于等于16度的范围内切出的主面的面积为大于等于1.4mm2且小于等于2.0mm2的双旋转切的石英振动片,能够使激励电平为500μW时的DLD小于等于5ppm。
(实施例3)
进而,改变谐振频率和芯片尺寸,进行与实施例1相同的试制。在实施例3中,试制了根据本发明的厚度切变模式的谐振频率为27MHz和48MHz的石英振动片。各个谐振频率的石英振动片的芯片尺寸为1.0mm×0.8mm(以图2所示的L×W的尺寸来表示),即主面的面积为0.8mm2。并且,在实施例3中,也将角度θ固定为35度。然后,关于实施例3的石英振动片,使激励电平变化到700μW左右的同时测量出频率变化量(频率偏差ΔF(ppm))。
其结果如图5所示。图5是表示实施例3的石英振动片的激励电平和频率偏差之间的相关度的曲线图,纵轴表示频率偏差,横轴表示激励电平(μW)。而且,横轴是对数刻度。图5中的曲线表示如下所示的石英振动片的DLD。
(8a)实施例3中的谐振频率为48MHz,角度φ为10度、以及14度。
(9a)实施例3中的谐振频率为27MHz,角度φ为10度、以及14度。
(10a)实施例3中的谐振频率为48MHz,角度φ为12度。
(11a)实施例3中的谐振频率为27MHz,角度φ为12度。
(8b)谐振频率为48MHz,角度φ为0度(比较例)。
(9b)谐振频率为27MHz,角度φ为0度(比较例)。
与实施例1相同地,与作为比较例的曲线(8b)、(9b)所示的单旋转切的石英振动片相比,实施例3的石英振动片的曲线(8a)、(9a)、(10a)和(11a)在各谐振频率中变得非常小。而且,如图5所示,对于曲线(8a)、(9a)、(10a)和(11a)所示的实施例3的石英振动片,即使激励电平为500μW,也能将DLD抑制为小于等于5ppm。另外,虽然没有图示,但阶段性地改变主面的面积,进行了同样的试制。其结果是,在主面的面积大于等于0.8mm2且小于等于1.4mm2的范围内,能够确认同等的效果。而且,关于与实施例1相同的现象,省略其说明。
因此,在大于等于27MHz且小于等于48MHz的谐振频带中,对于在角度φ为大于等于10度且小于等于14度的范围内切出的主面的面积为大于等于0.8mm2且小于等于1.4mm2的双旋转切的石英振动片,能够使激励电平为500μW时的DLD小于等于5ppm。
(实施例4)
进而,改变谐振频率和芯片尺寸,进行了与实施例1相同的试制。在实施例4中,试制了根据本发明的厚度切变模式的谐振频率为48MHz和100Hz的石英振动片。各个谐振频率的石英振动片的芯片尺寸为2.0mm×1.0mm(以图2所示的L×W的尺寸来表示),即主面的面积为2.0mm2。并且,在实施例4中,也将角度θ固定为35度。然后,关于实施例4的石英振动片,使激励电平变化到700μW左右的同时测量出频率变化量(频率偏差ΔF(ppm))。
其结果如图6所示。图6是表示实施例4的石英振动片的激励电平和频率偏差之间的相关度的曲线图,纵轴表示频率偏差,横轴表示激励电平(μW)。而且,横轴是对数刻度。图6中的曲线表示如下所示的石英振动片的DLD。
(12a)实施例4中的谐振频率为100MHz,角度φ为8度、以及16度。
(13a)实施例4中的谐振频率为48MHz,角度φ为8度、以及16度。
(14a)实施例4中的谐振频率为100MHz,角度φ为12度。
(15a)实施例4中的谐振频率为48MHz,角度φ为12度。
(12b)谐振频率为100MHz,角度φ为0度(比较例)。
(13b)谐振频率为48MHz,角度φ为0度(比较例)。
与实施例1相同地,与作为对比例的曲线(12b)、(13b)所示的单旋转切的石英振动片相比,实施例4的石英振动片的曲线(12a)、(13a)、(14a)和(15a)在各谐振频率中变得非常小。而且,如图6所示,对于曲线(12a)、(13a)、(14a)和(15a)所示的实施例4的石英振动片,即使激励电平为500μW,也能将DLD抑制为小于等于5ppm。另外,虽然没有图示,但阶段性地改变主面的面积,进行了同样的试制。其结果是,在主面的面积大于等于2.0mm2且小于等于4.0mm2的范围内,能够确认同等的效果。而且,关于实施例1相同的现象,省略其说明。
因此,在大于等于48MHz且小于等于100MHz的谐振频带中,对于在角度φ大于等于8度且小于等于16度的范围内切出的主面的面积为大于等于2.0mm2且小于等于4.0mm2的双旋转切的石英振动片,能够使激励电平为500μW时的DLD小于等于5ppm。
(实施例5)
进而,改变谐振频率和芯片尺寸,进行了与实施例1相同的试制。在实施例5中,试制了根据本发明的厚度切变模式的谐振频率为48MHz和100MHz的石英振动片。各个谐振频率的石英振动片的芯片尺寸为1.4mm×1.0mm(以图2所示的L×W的尺寸来表示),即主面的面积为1.4mm2。并且,在实施例5中,也将角度θ固定为35度。然后,关于实施例5的石英振动片,使激励电平变化到700μW左右的同时测量出频率变化量(频率偏差ΔF(ppm))。
其结果如图7所示。图7是表示实施例5的石英振动片的激励电平和频率偏差之间的相关度的曲线图,纵轴表示频率偏差,横轴表示激励电平(μW)。而且,横轴是对数刻度。图7中的曲线表示如下所示的石英振动片的DLD。
(16a)实施例5中的谐振频率为100MHz,角度φ为9度、以及15.5度。
(17a)实施例5中的谐振频率为48MHz,角度φ为9度、以及15.5度。
(18a)实施例5中的谐振频率为100MHz和48MHz,角度φ为12度。
(16b)谐振频率为100MHz,角度φ为0度(比较例)。
(17b)谐振频率为48MHz,角度φ为0度(比较例)。
与实施例1相同地,与作为比较例的曲线(16b)、(17b)所示的单旋转切的石英振动片相比,实施例5的石英振动片的曲线(16a)、(17a)和(18a)在各谐振频率中变得非常小。而且,如图7所示,对于曲线(16a)、(17a)和(18a)所示的实施例5的石英振动片,即使激励电平为500μW,也能将DLD抑制为小于等于5ppm。另外,虽然没有图示,但阶段性地改变主面的面积,进行了同样的试制。其结果是,在主面的面积大于等于1.4mm2且小于等于2.0mm2的范围内,能够确认同等的效果。而且,关于实施例1相同的现象,省略其说明。
因此,在大于等于48MHz且小于等于100MHz的谐振频带中,对于在角度φ为大于等于9度且小于等于15.5度的范围内切出的主面的面积为大于等于1.4mm2且小于等于2.0mm2的双旋转切的石英振动片,能够使激励电平为500μW时的DLD小于等于5ppm。
(第二实施方式)
将本发明的石英振子的一个例子作为第二实施方式,利用附图进行说明。图8表示作为第二实施方式的石英振子的概要,是剖开了盖体的一部分的俯视图。图9是表示第二实施方式的石英振子的概要的正剖面图。
如图8和图9所示,石英振子300由如下部分构成:作为封装的一个例子的、例如陶瓷制的绝缘性基座30;封闭绝缘性基座30的开口部37的盖体(lid)31;将绝缘性基座30和盖体31接合起来的接合部件38;石英振动片35、以及将石英振动片35与绝缘性基座30连接的导电性粘接剂36。
在绝缘性基座30的大致中央部所设置的开口部37的底部40中形成有支撑部39。在支撑部39的上面,通过导电性粘接剂36等连接部件连接并安装形成有激励电极35a等的石英振动片35。该石英振动片35使用了在所述的第一实施方式中说明过的双旋转切的石英振动片35。导电性粘接剂36是在树脂的基础材料中混合银片或者银粒等作为填充物而形成,还通过加热处理或者紫外线照射等使之硬化,确保电连接。
绝缘性基座30的开口部37被盖体31气密地封闭,该盖体31是通过形成于绝缘性基座30的上面32上的接合部件38接合。而且,在绝缘性基座30的外表面形成有从开口部37导出的未图示的导通配线部,与安装基板等接合。
根据上述的第二实施方式的石英振子300,采用了在第一实施方式中说明过的双旋转切的石英振动片35。因此,能够提供下述的石英振子300:施加了直至500μW左右的驱动功率时的频率变化量、即DLD为小于等于5ppm。
而且,在第二实施方式中,示出采用陶瓷制的绝缘性基座作为封装、将石英振动片收容在绝缘性基座内的形式的石英振子作为例子而进行了说明,但是封装不限于此。例如,也可以是如下形式:在贯穿了圆筒状金属环内所填充的绝缘材料(例如玻璃)的引线的一端连接石英振动片、将圆筒盖压入金属环而进行封闭。
(第三实施方式)
将本发明的石英振子的一个例子作为第三实施方式,利用附图进行说明。图10表示作为第三实施方式的石英振荡器的概要,是除去了盖体的一部分的俯视图。图11是表示第三实施方式的石英振荡器的概要的正剖面图。
如图10和图11所示,石英振荡器500由如下部分构成:例如陶瓷制的绝缘性基座50;封闭绝缘性基座50的开口部57的盖体(lid)51;将绝缘性基座50和盖体51接合起来的接合部件58;石英振动片55;将石英振动片55与绝缘性基座50连接的导电性粘接剂56;以及至少具有使石英振动片55振荡的功能的作为电路部的电路元件61。
在绝缘性基座50的大致中央部所设置的开口部57的底部62中形成有支撑部59。在支撑部59的上面,通过导电性粘接剂56等连接部件连接并安装有由石英薄板构成、形成有激励电极55a等的石英振动片55。该石英振动片55使用了在所述的第一实施方式中说明过的双旋转切的石英振动片55,除了连接部分以外,悬空。导电性粘接剂56是在树脂的基础材料中混合了银片或者银粒等作为填充物而形成,还通过加热处理或者紫外线照射等使之硬化,确保电连接。绝缘性基座50的大致中央部设置的开口部57的底部62的、处于石英振动片55的下部的部分,通过未图示的配线等与石英振动片55相连接,通过未图示的导电性粘接剂等接合有至少具有使石英振动片55振荡的功能的电路元件61。即,电路元件61也安装在开口部57内。
绝缘性基座50的开口部57被盖体51气密地封闭,该盖体51是通过形成于绝缘性基座50的上面52上的接合部件58接合的。而且,在绝缘性基座50的外表面形成有从开口部57导出的未图示的导通配线部,与安装基板等接合。
根据上述的第三实施方式的石英振荡器500,采用了在第一实施方式中说明过的双旋转切的石英振动片55。因此,能够提供下述的石英振荡器500:施加了直至500μW左右的驱动功率时的DLD为小于等于5ppm。并且,由于将石英振动片55和电路元件61收容于绝缘性基座50的开口部57内,所以能够缩短两者间的连接,能够实现更小型的石英振荡器。由此,能够提供具有较高频率精度的小型的石英振荡器。
而且,在第三实施方式中,以陶瓷为一例说明了绝缘性基座50,但并不限于此。例如,也可以采用在环氧树脂基板等的树脂基板、金属板上具有绝缘部件和电路配线的基板等。

Claims (9)

1.一种石英振动片,通过至少在主面上施加的驱动功率,按照预定的谐振频率进行振动,其特征在于,
所述主面包含与如下的X’轴平行的边和与如下的Z’轴平行的边而形成,该X’轴是把石英的电轴作为X轴、把机械轴作为Y轴、把光轴作为Z轴,将所述X轴绕所述Z轴以顺时针方向旋转大于等于7度且小于等于17.3度的角度φ而设定的,该Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成。
2.根据权利要求1所述的石英振动片,其特征在于,
所述谐振频率为大于等于48MHz且小于等于100MHz,
所述主面的面积形成为大于等于4.0mm2且小于等于8.0mm2
3.根据权利要求1所述的石英振动片,其特征在于,
所述谐振频率为大于等于27MHz且小于等于48MHz,
所述主面包含与所述X’轴平行的边和与所述Z’轴平行的边,所述X’轴是将所述X轴绕所述Z轴以顺时针方向旋转大于等于8度且小于等于16度的角度φ而设定的,所述Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成,该主面的面积形成为大于等于1.4mm2且小于等于2.0mm2
4.根据权利要求1所述的石英振动片,其特征在于,
所述谐振频率为大于等于27MHz且小于等于48MHz,
所述主面包含与所述X’轴平行的边和与所述Z’轴平行的边,所述X’轴是将所述X轴绕所述Z轴以顺时针方向旋转大于等于10度且小于等于14度的角度φ而设定的,所述Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成,该主面的面积形成为大于等于0.8mm2且小于等于1.4mm2
5.根据权利要求1所述的石英振动片,其特征在于,
所述谐振频率为大于等于48MHz且小于等于100MHz,
所述主面包含与所述X’轴平行的边和与所述Z’轴平行的边,所述X’轴是将所述X轴绕所述Z轴以顺时针方向旋转大于等于8度且小于等于16度的角度φ而设定的,所述Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成,该主面的面积形成为大于等于2.0mm2且小于等于4.0mm2
6.根据权利要求1所述的石英振动片,其特征在于,
所述谐振频率为大于等于48MHz且小于等于100MHz,
所述主面包含与所述X’轴平行的边和与所述Z’轴平行的边,所述X’轴是将所述X轴绕所述Z轴以顺时针方向旋转大于等于9度且小于等于15.5度的角度φ而设定的,所述Z’轴是将所述Z轴绕所述X’轴以顺时针方向旋转大于等于34.3度且小于等于35.25度的角度θ而成,该主面的面积形成为大于等于1.4mm2且小于等于2.0mm2
7.根据权利要求1至6中的任意一项所述的石英振动片,其特征在于,
所述角度φ为大于等于11.5度且小于等于12.5度。
8.一种石英振子,其特征在于,具有:
封装;以及
收纳在所述封装中的权利要求1至7中的任意一项所述的石英振动片。
9.一种石英振荡器,其特征在于,具有
权利要求1至7中的任意一项所述的石英振动片;以及
电路部,其至少具有驱动所述石英振动片的功能。
CNA200610099799XA 2005-06-29 2006-06-29 石英振动片、石英振子以及石英振荡器 Pending CN1893269A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005189511A JP2007013381A (ja) 2005-06-29 2005-06-29 水晶振動片、水晶振動子、及び水晶発振器
JP2005189511 2005-06-29

Publications (1)

Publication Number Publication Date
CN1893269A true CN1893269A (zh) 2007-01-10

Family

ID=37588597

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200610099799XA Pending CN1893269A (zh) 2005-06-29 2006-06-29 石英振动片、石英振子以及石英振荡器

Country Status (3)

Country Link
US (1) US20070001555A1 (zh)
JP (1) JP2007013381A (zh)
CN (1) CN1893269A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091004A (zh) * 2011-11-08 2013-05-08 精工爱普生株式会社 传感器元件、力检测装置以及机械臂
CN103312287A (zh) * 2012-03-15 2013-09-18 精工爱普生株式会社 振动片和振子的制造方法、振子、振荡器以及电子设备
CN107636962A (zh) * 2015-06-12 2018-01-26 株式会社村田制作所 石英片以及石英振子
CN107636963A (zh) * 2015-06-12 2018-01-26 株式会社村田制作所 石英片以及石英振子
CN107710612A (zh) * 2015-07-09 2018-02-16 株式会社村田制作所 石英片以及石英振子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160017A (ja) * 2010-01-29 2011-08-18 Kyocera Kinseki Corp 圧電デバイス
RU2546313C1 (ru) * 2013-11-25 2015-04-10 Открытое акционерное общество "Омский научно-исследовательский институт приборостроения" (ОАО "ОНИИП") Кварцевый резонатор
US9762206B2 (en) * 2014-02-07 2017-09-12 Samsung Electro-Mechanics Co., Ltd. AT-cut quartz crystal vibrator with a long side along the X-axis direction
RU2639659C2 (ru) * 2016-06-17 2017-12-21 Игорь Владимирович Абрамзон Кварцевый резонатор

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1187323B1 (en) * 2000-03-03 2007-11-14 Daishinku Corporation Crystal vibration device
JP3965070B2 (ja) * 2002-04-22 2007-08-22 日本電波工業株式会社 表面実装用の水晶振動子
US20040070462A1 (en) * 2002-10-10 2004-04-15 Iyad Alhayek Oscillator package
JP4069773B2 (ja) * 2003-03-19 2008-04-02 セイコーエプソン株式会社 圧電振動片、圧電振動子および圧電デバイス

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091004A (zh) * 2011-11-08 2013-05-08 精工爱普生株式会社 传感器元件、力检测装置以及机械臂
CN103312287A (zh) * 2012-03-15 2013-09-18 精工爱普生株式会社 振动片和振子的制造方法、振子、振荡器以及电子设备
CN103312287B (zh) * 2012-03-15 2017-05-31 精工爱普生株式会社 振动片和振子的制造方法、振子、振荡器以及电子设备
CN107636962A (zh) * 2015-06-12 2018-01-26 株式会社村田制作所 石英片以及石英振子
CN107636963A (zh) * 2015-06-12 2018-01-26 株式会社村田制作所 石英片以及石英振子
CN107636963B (zh) * 2015-06-12 2020-07-28 株式会社村田制作所 石英片以及石英振子
CN107636962B (zh) * 2015-06-12 2020-07-31 株式会社村田制作所 石英片以及石英振子
CN107710612A (zh) * 2015-07-09 2018-02-16 株式会社村田制作所 石英片以及石英振子
CN107710612B (zh) * 2015-07-09 2020-10-27 株式会社村田制作所 石英片以及石英振子

Also Published As

Publication number Publication date
JP2007013381A (ja) 2007-01-18
US20070001555A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
CN1893269A (zh) 石英振动片、石英振子以及石英振荡器
CN1652459A (zh) 压电振动片、压电振子及压电振荡器
CN1665129A (zh) 压电振动片、压电振子及压电振荡器
CN1278485C (zh) 使用压电振动器的振荡电路容器和振荡器
CN1099754C (zh) 压电振荡器和电压控制振荡器及其制造方法
CN1753304A (zh) 压电振动片和压电器件
CN1211923C (zh) 水晶振子及其制造方法
CN1374153A (zh) 振动片、振子、振荡器以及电子仪器
CN1855712A (zh) 压电振动片和压电器件
CN1497842A (zh) 压电谐振器、压电滤波器以及通信装置
CN1828960A (zh) 压电振动片和压电振动器
CN1248413C (zh) 弹性表面波装置的温度特性调整方法及弹性表面波装置
CN1712144A (zh) 超声波清洗装置
CN1711680A (zh) 压电振动片和使用压电振动片的压电器件、使用压电器件的便携电话装置和使用压电器件的电子设备
CN1574623A (zh) 压电振荡器及其制造方法以及移动电话装置和电子设备
CN1572057A (zh) 表面声波装置
CN1585261A (zh) 压电振荡器的制造方法
CN1582486A (zh) 半导体器件及其制造方法
CN1146106C (zh) 压电谐振器和抑制压电谐振器产生的一次谐波的方法
CN1716767A (zh) 声表面波装置的制造方法
CN1034535C (zh) 片型压电共振动元件
CN1858997A (zh) 晶体振荡器
CN1929293A (zh) 具有双振荡器的振荡电路
CN1649264A (zh) 温度补偿式晶体振荡器
CN1130824C (zh) 弹性表面波元件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication