CN1885442A - 一种二氧化锡/锡同轴纳米电缆及其制备方法和应用 - Google Patents

一种二氧化锡/锡同轴纳米电缆及其制备方法和应用 Download PDF

Info

Publication number
CN1885442A
CN1885442A CN 200610035589 CN200610035589A CN1885442A CN 1885442 A CN1885442 A CN 1885442A CN 200610035589 CN200610035589 CN 200610035589 CN 200610035589 A CN200610035589 A CN 200610035589A CN 1885442 A CN1885442 A CN 1885442A
Authority
CN
China
Prior art keywords
tin
nano cable
coaxial nano
preparation
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610035589
Other languages
English (en)
Other versions
CN100411063C (zh
Inventor
杨国伟
王冰
杨玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CNB2006100355894A priority Critical patent/CN100411063C/zh
Publication of CN1885442A publication Critical patent/CN1885442A/zh
Application granted granted Critical
Publication of CN100411063C publication Critical patent/CN100411063C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种二氧化锡/锡同轴纳米电缆及其制备方法和应用,该电缆内芯是锡纳米线,电缆外壳是二氧化锡纳米管,内芯和外壳为同轴结构,电缆的直径为20~30nm,长度为500~900微米。该制备方法如下:在耐高温内管中放入反应源,反应源附近放置单晶硅片,将单晶硅片放置于耐高温材料上,把耐高温内管放入耐高温外管内,然后放入加热炉中,抽真空,再通入惰性气体,使炉温上升到550~750℃,保温后冷却,即制得二氧化锡/锡同轴纳米电缆。本发明可在生物医药、微器件制备与电路连接、微器件通讯等领域应用。本发明制备工艺简单,成本低廉,可实现大批量生产。

Description

一种二氧化锡/锡同轴纳米电缆及其制备方法和应用
                          技术领域
本发明涉及纳米电缆技术,特别涉及一种二氧化锡/锡同轴纳米电缆及其制备方法和应用。
                          背景技术
自人类第一个晶体管问世以来,其尺寸每18个月缩小两倍,到如今的“奔四”仅有100多纳米;预计到2010年晶体管的尺寸将只有几十个纳米,那么这种超高密度集成线路的元件之间用什么连接呢?这是世界科学界共同面临的一道难题。现阶段技术已经难以突破超微极限,各国科学家都寄希望于纳米技术的应用。目前,科学家声称已经有能力制造出比人类最微细的血管还细的纳米电缆。这就意味着,科学家可以使纳米电缆在人体血管中任意穿行,达到任何指定的地点而不会阻碍血管中正常的血液、氧气与营养流动。科学家还观察到,纳米电缆中电子的传输不同于普通的导体,其传输速度快,能耗更小。它的诞生还可能为下一代光导纤维的产生奠定基础。
纳米电缆是指芯部为半导体或导体的纳米丝,外包敷异质纳米壳体(导体或非导体),外部的壳体和芯部是共轴的,因此称为同轴纳米电缆。由于这类材料所具有的特殊性能,在未来的纳米结构器件中占有重要的地位,特别是在生物医药、微器件制备与电路连接、微通讯器件制造等方面会起到举足轻重的作用。目前,国内已制备出了聚乙烯醇/银纳米电缆,硫化锌-氧化锌纳米电缆等,但合成方法往往需要高温、激光、溶液合成等苛刻的条件。
                          发明内容
为了解决上述现有技术存在的不足之处,本发明的首要目的在于提供一种制备工艺简单,应用范围较广的二氧化锡/锡同轴纳米电缆。
本发明的另一目的在于提供一种利用热蒸发法合成上述二氧化锡/锡同轴纳米电缆的制备方法,具有操作简单,成本低廉,耗时少,适合大批量生产的优点。
本发明的再一目的在于提供上述二氧化锡/锡同轴纳米电缆的应用。
本发明的目的通过下述技术方案实现:一种二氧化锡/锡同轴纳米电缆,其内芯是直径为10~15nm的锡纳米线,外壳是厚为5~7.5nm的二氧化锡纳米管,内芯和外壳为同轴结构,共同构成二氧化锡/锡同轴纳米电缆,内芯与外壳紧密结合在一起,两者之间不存在空隙;整个二氧化锡/锡同轴纳米电缆的直径为20~30nm,长度为500~900微米。
制备上述二氧化锡/锡同轴纳米电缆的方法包括如下步骤:在一个耐高温内管中放入反应源,并在内管中离反应源0.5~2.0cm的地方放置单晶硅片作为衬底,将单晶硅片置于耐高温材料上,然后把耐高温内管放入耐高温外管的内部,把耐高温外管放入加热炉中,然后加热炉抽真空15~60分钟,再通入惰性气体25~60sccm(每分钟标准毫升),使炉内真空度达到100~500Torr(1Torr=1/760标准大气压=133Pa),炉温上升到550~750℃,并保温550~750℃持续2~4小时后,停止加热,使炉温冷却至室温,即制得二氧化锡/锡同轴纳米电缆。
为了更好地实现本发明,所述反应源为纯度为99.99%的氧化亚锡粉末;所述耐高温内管的内径为1~3cm,耐高温外管的内径为5~10cm;所述耐高温材料为陶瓷片,所述单晶硅片表面喷了厚为10~50纳米左右的金银合金;所述单晶硅片面积为(2×2)~(6×6)mm2;所述耐高温内管和耐高温外管均可为石英管。所述加热炉的热偶位置与反应源所处的位置在一竖直直线上,所述惰性气体可以为氩气、氦气、氖气、氪气或氙气等。
由上述方法制备的二氧化锡/锡同轴纳米电缆可广泛应用于生物医药、微器件制备与电路连接、微器件通讯等领域中。
本发明与现有技术相比具有如下优点和有益效果:本发明首次利用热蒸发法合成了二氧化锡/锡同轴纳米电缆,该方法操作简单可靠,成本低廉,耗时少。本发明合成的二氧化锡/锡同轴纳米电缆的直径为20~30纳米左右,长度达500~900微米,在微器件制备领域足以胜任许多电路连接或通讯角色。与国内已制备出的聚乙烯醇/银纳米电缆(300纳米厚),硫化锌-氧化锌纳米电缆(460纳米厚)等电缆相比,本发明电缆的尺度更小,适用性更好;而且合成工艺简单,不需要高温、激光、溶液合成等苛刻的条件,更有利于集成化大批量生产。
                          附图说明
图1为本发明用热蒸发法制备二氧化锡/锡同轴纳米电缆的装置图。
图2为本发明二氧化锡/锡同轴纳米电缆的场发射电境照片。
图3为本发明二氧化锡/锡同轴纳米电缆的X射线衍射分析图谱。
图4为本发明二氧化锡/锡同轴纳米电缆在常温下的拉曼图谱。
图5(a)为本发明电缆的透射电子显微镜照片,图5(b)为内芯与外壳相接处的高分辨照片;图5(c)为外壳的电子衍射照片;图5(d)为内芯的电子衍射照片。
                          具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
如图1所示(其中4为加热部件),在一个一端开口的内径为2cm的小石英管(耐高温内管)7中放入纯度为99.99%的氧化亚锡粉末6作为反应源,这些反应源附近放置陶瓷片9,在这种陶瓷片9上离反应源1.0cm的地方放置喷了厚为20纳米左右的金银合金、面积为5×5mm2的单晶硅片8作为衬底,然后把这个小石英管(耐高温内管)7放入内径为8cm的大石英管(耐高温外管)3的内部,接下来把这个大石英管(耐高温外管)3放入加热炉2中,使加热炉2的热电偶1(热偶位置)与反应源所处的位置在一竖直直线上。整个系统(即加热炉2)开始抽真空20分钟,通入氩气5为30sccm,使加热炉内真空度达到200Torr,使炉温(热电偶处温度)从室温(25℃)迅速上升到650℃,保温650℃为2.5小时后,停止加热,使炉温自然冷却至室温(25℃),拿出衬底,经场发射电子显微镜放大观察到衬底上有二氧化锡/锡同轴纳米电缆生成。
如图2所示,为本发明二氧化锡/锡同轴纳米电缆的场发射电境照片。整个二氧化锡/锡同轴纳米电缆的直径为20~30nm,长度达500~900微米。
如图3、图4所示分别为本发明二氧化锡/锡同轴纳米电缆的X射线衍射分析图谱、及在常温下(25℃)的拉曼图谱。根据这两种测试手段,可以确认这种同轴纳米电缆是由二氧化锡和锡两种材料构成的。
本发明电缆的透射电子显微镜照片,内芯与外壳相接处的高分辨照片,外壳的电子衍射照片,内芯的电子衍射照片如图5中(a)、(b)、(c)、(d)所示。通过分析,可知本发明合成的二氧化锡/锡同轴纳米电缆的内芯是直径为10~15nm的锡纳米线,外壳是厚为5~7.5nm的二氧化锡纳米管,内芯和外壳是同轴结构,紧密结合在一起,内芯和外壳之间没有任何空隙。
通过上述表征手段,可知本发明合成的同轴纳米电缆的材料的外壳是由二氧化锡纳米管构成,内芯是由锡纳米线构成。其整体尺度,内芯尺度,外壳尺度也均一目了然。
实施例2
在一个一端开口的内径为3cm的小石英管(耐高温内管)中放入纯度为99.99%的氧化亚锡粉末作为反应源,这些反应源附近放置陶瓷片,在这种陶瓷片上离反应源2.0cm的地方放置喷了厚为50纳米左右的金银合金、面积为6×6mm2的单晶硅片作为衬底,然后把这个小石英管(耐高温内管)放入内径为10cm的大石英管(耐高温外管)的内部,接下来把这个大石英管(耐高温外管)放入加热炉中,使加热炉的热电偶(热偶位置)与反应源所处的位置在一竖直直线上。整个系统(即加热炉)开始抽真空15分钟,通入氦气为25sccm(每分钟标准毫升),使炉内真空度达到100Torr(1Torr=1/760标准大气压=133Pa),使炉温(热电偶处温度)从室温(25℃)迅速上升到550℃,保温550℃为4小时后,停止加热,使炉温自然冷却至室温(25℃),拿出衬底,经场发射电子显微镜放大观察到衬底上有二氧化锡/锡同轴纳米电缆生成。
实施例3
在一个一端开口的内径为1cm的小石英管(耐高温内管)中放入纯度为99.99%的氧化亚锡粉末作为反应源,这些反应源附近放置陶瓷片,在这种陶瓷片上离反应源0.5cm的地方放置喷了厚为10纳米左右的金银合金、面积为2×2mm2的单晶硅片作为衬底,然后把这个小石英管(耐高温内管)放入内径为5cm的大石英管(耐高温外管)的内部,接下来把这个大石英管(耐高温外管)放入加热炉中,使加热炉的热电偶(热偶位置)与反应源所处的位置在一竖直直线上。整个系统(即加热炉)开始抽真空60分钟,通入氩气为60sccm,使炉内真空度达到500Torr,使炉温(热电偶处温度)从室温(25℃)迅速上升到750℃,保温750℃为2小时后,停止加热,使炉温自然冷却至室温(25℃),拿出衬底,经场发射电子显微镜放大观察到衬底上有二氧化锡/锡同轴纳米电缆生成。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (11)

1、一种二氧化锡/锡同轴纳米电缆,其特征在于:其内芯是直径为10~15nm的锡纳米线,其外壳是厚为5~7.5nm的二氧化锡纳米管,内芯和外壳为同轴结构,两者之间不存在空隙;整个电缆的直径为20~30nm,长度为500~900微米。
2、一种制备权利要求1所述的二氧化锡/锡同轴纳米电缆的方法,其特征在于包括如下步骤:在一个耐高温内管中放入反应源,并在内管中离反应源0.5~2.0cm的地方放置单晶硅片作为衬底,将单晶硅片置于耐高温材料上,然后把耐高温内管放入耐高温外管的内部,把耐高温外管放入加热炉中,然后加热炉抽真空15~60分钟,再通入惰性气体25~60sccm,使炉内真空度达到100~500Torr,使炉温上升到550~750℃,并保温550~750℃持续2~4小时后,停止加热,使炉温冷却至室温,即制得二氧化锡/锡同轴纳米电缆。
2、根据权利要求2所述的二氧化锡/锡同轴纳米电缆的制备方法,其特征在于:所述反应源为纯度为99.99%的氧化亚锡粉末。
3、根据权利要求2所述的二氧化锡/锡同轴纳米电缆的制备方法,其特征在于:所述耐高温内管的内径为1~3cm,耐高温外管的内径为5~10cm。
4、根据权利要求2所述的二氧化锡/锡同轴纳米电缆的制备方法,其特征在于:所述耐高温材料为陶瓷片。
5、根据权利要求2所述的二氧化锡/锡同轴纳米电缆的制备方法,其特征在于:所述单晶硅片表面喷了厚为10~50纳米的金银合金。
6、根据权利要求2所述的二氧化锡/锡同轴纳米电缆的制备方法,其特征在于:所述单晶硅片面积为(2×2)~(6×6)mm2
7、根据权利要求2所述的二氧化锡/锡同轴纳米电缆的制备方法,其特征在于:所述耐高温内管和耐高温外管为石英管。
8、根据权利要求2所述的二氧化锡/锡同轴纳米电缆的制备方法,其特征在于:所述加热炉的热偶位置与反应源所处的位置在一竖直直线上。
9、根据权利要求2所述的一种二氧化锡/锡同轴纳米电缆的制备方法,其特征在于:所述惰性气体为氩气、氦气、氖气、氪气或氙气。
10、一种根据权利要求1所述的二氧化锡/锡同轴纳米电缆在生物医药、微器件制备与电路连接、微器件通讯领域中的应用。
CNB2006100355894A 2006-05-24 2006-05-24 一种二氧化锡/锡同轴纳米电缆及其制备方法和应用 Expired - Fee Related CN100411063C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100355894A CN100411063C (zh) 2006-05-24 2006-05-24 一种二氧化锡/锡同轴纳米电缆及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100355894A CN100411063C (zh) 2006-05-24 2006-05-24 一种二氧化锡/锡同轴纳米电缆及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN1885442A true CN1885442A (zh) 2006-12-27
CN100411063C CN100411063C (zh) 2008-08-13

Family

ID=37583549

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100355894A Expired - Fee Related CN100411063C (zh) 2006-05-24 2006-05-24 一种二氧化锡/锡同轴纳米电缆及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN100411063C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879527A (zh) * 2012-09-26 2013-01-16 深圳大学 单根准一维二氧化锡-锡同轴纳米电缆氢敏传感器
CN103447546A (zh) * 2012-05-28 2013-12-18 南京大学 同轴电缆结构Ag/C纳米互连线的制备方法
CN103811131A (zh) * 2012-11-13 2014-05-21 中国科学院物理研究所 一种同轴纳米电缆的制备方法
CN109553126A (zh) * 2019-01-02 2019-04-02 华南理工大学 一种热蒸发制备二氧化锡晶体的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3365883B2 (ja) * 1995-02-20 2003-01-14 石原産業株式会社 針状導電性酸化錫微粉末およびその製造方法
US6200674B1 (en) * 1998-03-13 2001-03-13 Nanogram Corporation Tin oxide particles
CN1194427C (zh) * 2003-07-10 2005-03-23 上海大学 二氧化锡纳米传感器件的制造方法
CN1270327C (zh) * 2004-10-09 2006-08-16 北京科技大学 一种制备高产量氧化锌纳米电缆的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447546A (zh) * 2012-05-28 2013-12-18 南京大学 同轴电缆结构Ag/C纳米互连线的制备方法
CN102879527A (zh) * 2012-09-26 2013-01-16 深圳大学 单根准一维二氧化锡-锡同轴纳米电缆氢敏传感器
CN102879527B (zh) * 2012-09-26 2015-07-01 深圳大学 单根准一维二氧化锡-锡同轴纳米电缆氢敏传感器
CN103811131A (zh) * 2012-11-13 2014-05-21 中国科学院物理研究所 一种同轴纳米电缆的制备方法
CN103811131B (zh) * 2012-11-13 2016-08-03 中国科学院物理研究所 一种同轴纳米电缆的制备方法
CN109553126A (zh) * 2019-01-02 2019-04-02 华南理工大学 一种热蒸发制备二氧化锡晶体的方法

Also Published As

Publication number Publication date
CN100411063C (zh) 2008-08-13

Similar Documents

Publication Publication Date Title
CN100402432C (zh) 一种氧化铜纳米线阵列定域生长方法
Zhu et al. Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties
Kumar et al. General route to single-crystalline SnO nanosheets on arbitrary substrates
CN100411063C (zh) 一种二氧化锡/锡同轴纳米电缆及其制备方法和应用
Yuan et al. Spontaneous ZnO nanowire formation during oxidation of Cu-Zn alloy
Ma et al. Synthesis and characterization of one-dimensional WO2 nanorods
Wang et al. Nanostructures and self-catalyzed growth of SnO2
CN101748380A (zh) 制备碳纳米管膜的方法、碳纳米管膜和碳纳米管元件
CN113501505A (zh) 一种二维硒化钨纳米材料及其制备方法
Li et al. Highly efficient mass production of boron nitride nanosheets via a borate nitridation method
CN112645295A (zh) 一种黑磷纳米带材料及其制备方法
Gao et al. Coaxial Metal Nano‐/Microcables with Isolating Sheath: Synthetic Methodology and Their Application as Interconnects
CN103322800A (zh) 一种全透明管式电阻炉
CN112158810A (zh) 一种化学气相传输制备二维InGeTe3纳米片及其异质结的方法
CN1262692C (zh) 一种硅纳米线及其制备方法
CN102320566A (zh) 一种采用自对准成型制备三维纳米空间电极的方法
Li et al. Synthesis and properties of aligned ZnO microtube arrays
CN107574475B (zh) 一种HfS2单晶纳米片的制备方法
Predoana et al. Comparative study of the thermal behavior of Sr–Cu–O gels obtained by sol–gel and microwave-assisted sol–gel method
US20090087567A1 (en) Method of fabricating one-dimensional metallic nanostructure
Hao et al. A novel approach to the preparation of a highly crystallized BaTiO 3 layer on Ni nanoparticles
CN101525767B (zh) 一维纳米单晶管状碳化硅及其制备方法
WO2005040455A1 (fr) Nanofil et nanoreseau constitues de tungstene, de molybdene et de leur oxyde, presentant une grande surface, procede de preparation et application de ces derniers
Dennenwaldt et al. Bonding behavior and chemical stability of silica-based nanotubes and their 3D assembly
Xu et al. Patterned growth of ZnO nanorod arrays on a large-area stainless steel grid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080813

Termination date: 20180524