CN1855889B - 发射和接收系统,发射设备和方法,接收设备和方法 - Google Patents

发射和接收系统,发射设备和方法,接收设备和方法 Download PDF

Info

Publication number
CN1855889B
CN1855889B CN2006100755632A CN200610075563A CN1855889B CN 1855889 B CN1855889 B CN 1855889B CN 2006100755632 A CN2006100755632 A CN 2006100755632A CN 200610075563 A CN200610075563 A CN 200610075563A CN 1855889 B CN1855889 B CN 1855889B
Authority
CN
China
Prior art keywords
state
radio communication
data
information
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006100755632A
Other languages
English (en)
Other versions
CN1855889A (zh
Inventor
川田雅人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1855889A publication Critical patent/CN1855889A/zh
Application granted granted Critical
Publication of CN1855889B publication Critical patent/CN1855889B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Communication Control (AREA)

Abstract

一种发射和接收系统。其中,发射设备包括:发射数据的数据发射装置;从接收设备接收表示无线电通信状态的状态信息的状态信息接收装置;利用数据发射装置控制发射的控制装置。当状态信息接收装置收到指示无线电通信的退化状态的状态信息时,控制装置保存紧接在收到状态信息前,数据发射装置的控制发射的控制信息;当状态信息接收装置之后收到指示无线电通信的正常状态的状态信息时,控制装置使用最近保存的控制信息,通过数据发射装置控制发射。接收设备包括:通过无线电通信接收从数据发射装置发射的数据的数据接收装置;根据数据接收装置接收的数据,确定无线电通信状态的确定装置;和把指示确定装置确定的无线电通信状态的状态信息发射给发射设备的状态信息发射装置。

Description

发射和接收系统,发射设备和方法,接收设备和方法
相关申请的交叉参考
本发明包含与在2005年4月20日向日本专利局提出的日本专利申请JP 2005-122971相关的主题,该申请的全部内容包含于此,作为参考。
技术领域
本发明涉及发射和接收系统,发射设备,发射方法,接收设备,接收方法和程序。更具体地说,本发明涉及出于对无线电变化和无线电链路控制的考虑,根据退化之前的传输控制状态,在从退化状态恢复到正常状态期间,能够快速恢复数据传输质量的发射和接收系统,发射设备,发射方法,接收设备,接收方法和程序。
背景技术
由于近来的家庭连网的进展和日益增长的无线电通信(例如蜂窝网络、无线电LAN(局域网)和UWB(超宽带))的需要,预计未来对通过无线电网络的高质量视听数据的流式再现(streamingreproduction)的需求会日益增长。
在预计的情形下,例如,用户可能希望使用双向通信服务,比如内容提供商提供的视频点播服务和视频聊天。用户可能希望在家里与内容提供商无线连接的个人计算机(PC)或显示器上流式再现从内容提供商传来的数据。
IP(隔行逐行)网络上数据的传输要求根据数据再现编码速率、IP网络上的可用带宽和IP网络拥塞的状态,控制传输速率。控制传输速率的一般技术不仅包括使用具有数据到达可靠性的TCP(传输控制协议)的技术,而且包括使用在高度实时RFC(请求评议)1889中定义的RTP(实时传送协议)(例如在RFC3448中定义的TFRC(TCP友好的速率控制)的技术。针对具有少的通信差错的有线网络构成这些技术。
一般来说,由于来自各个障碍物的反射波的缘故,无线电网络使用多路传输线路(多径)。根据传输信道特性(通信信道特性),波传播延迟中的差异导致使传输频带内的频率特性失真的频率选择性衰落显著改变或恶化通信状态(即,通信质量)。
形成于发送方和接收方之间的无线电网络区域包括无线电基站和无线电终端。无线电网络区域具备诸如天线分集、抗差错比特编码和错误分组重传之类的特定技术(无线电链路控制),以尝试使通信状态的变化或恶化达到最小。
尽管提供了这些技术,无线电通信状态或周围环境恶化通信状态较短或较长的一段时间,例如增大无线电通信期间的分组差错率(无线电分组差错率)或者往返时间(RTT)。对于控制有线网络传输速率的上述技术来说,通信状态的这种恶化是异常的。从而,退化的通信状态导致无线电通信的拥塞,以及数据传输质量(传输速率(发送速率),传输延迟等)的降低或不稳定。在无线电通信状态恢复之后,传输速率恢复迟滞。因此,控制有线网络传输速率的上述技术不适合于流式再现。
图1A-1C表示了在无线电LAN上的室内环境的例子。参考图1A-1C,下面描述根据在衰落环境下,利用作用于UDP(用户数据报协议)的RTP的传输速率控制技术,控制传输速率的通信情形。
图1A表示无线电分组差错率(%)的时间变化。图1B表示传输速率(Mbps)的时间变化。图1C的上部表示RTT(ms)的时间变化。图1C的下部表示分组的损失率(分组损失率)(%)的时间变化。在图1A-1C中,横坐标代表时间(s)。
如图1A中所示,几种状态对应于在约20%的边界处的无线电分组差错率:短期(小于几百毫秒)的具有较大值的退化状态;长期(从几百毫秒到几秒)的具有较大值的退化状态;和具有较小值的正常状态。所述边界和值指示取决于衰落情况和无线电码片算法的特定趋势。
在图1A中,在42秒的时间点(图1A中的圆A1)附近出现一秒或更长的较高无线电分组差错率,降低对应的吞吐量(可传输的有效速率)以改进无线电网络。如图1C中所示,RTT和分组损失率相应地增大(图1C中的圆C1和D1)。从而,当RTT和分组损失率增大时,利用RTP的传输速率控制技术降低传输速率。
之后,如图1A中所示,在44或45秒的时间点附近,长期退化状态被恢复为差错率低的正常状态(图1A中的点A2)。另外在这种情况下,传输速率恢复到和退化无线电状态之前的状态等同的状态(图1B中的点B2)需要大约3-4秒b1。这是因为使用AIMD(和式增加,积式减少)算法逐渐增大传输速率来进行恢复。
类似地,在图1A中,在55秒的时间点(图1A中的圆A3)附近出现一秒或更长的较高无线电分组差错率。从而,无线电区域的吞吐量被降低。如图1C中所示,RTT和分组损失率相应地增大(图1C中的圆C2和D2)。另外在这种情况下,当RTT和分组损失率增大时,传输速率降低(图1B中的圆B3)。在无线电分组差错率恢复到正常状态的57秒的时间点(图1A中的点A4)附近,传输速率仍然较低。恢复传输速率需要约10秒b2(图1B中的点B4)。
从而,在图1A-1C中,根据利用RTP的传输速率控制技术控制传输速率。增大RTT(图1C中的点C1和C2)导致流式图像中的不规则成帧。之后,当传输速率降低(在图1B中的点B1和B2之间,和点B3和B4之间)时,发生显著的退化。
如上所述,利用RTP的传输速率控制技术导致长期退化无线电状态期间,无线电区域的传输速率和吞吐量之间的差异。RTT和分组损失率增大,以致显著降低传输速率。另外,在无线电状态恢复之后,传输速率缓慢恢复。由于这两个因素,该控制技术不适合于流式再现。
为了解决该问题,需要一种传输速率控制技术,该技术具有有线网络所要求的拥塞控制功能,符合上面提及的特定于无线电网络的传输信道特性和为无线电网络提供的控制的效果,并且提供高性能和稳定的数据传输质量。
最好避免改变现有的系统结构,比如引入新的设备。
例如,符合无线电网络的一种可能的传输速率控制技术根据RTT、分组损失率和无线电分组差错率确定拥塞状态和退化的无线电状态。为了校正退化的无线电状态,存在一种维持并稳定传输速率的技术(例如,参见专利文件1)。
但是,在专利文件1中公开的技术没有考虑到无线电链路控制,例如上面提及的在无线电网络上进行的分组重传,从而在无线电通信中导致拥塞。
根据其它技术(例如,参见专利文件2和3),无线电通信终端利用控制信息,例如1xEV-DO蜂窝分组网络系统中的DRC(数据速率控制)确定无线电通信传输速率,并把该传输速率传送给数据传送设备。在专利文件2和3中公开的技术不能应用于不具备传送诸如DRC之类控制信息的协议的无线电LAN。此外,专利文件2和3中公开的技术没有考虑对有线和无线通信的拥塞控制。
根据另一种技术,有线网络上的中继节点根据利用分组损失率检测到的无线电通信状态的退化,转换数据编码速率,以调整对无线电基站的传输速率。这样,中继节点防止数据到达方面的延迟增大。即,该技术把无线电通信和有线通信分开以便控制(例如参见专利文件4)。
但是,专利文件4中公开的技术使用分组损失率来检测通信状态的退化,从而使传输速率控制的响应时间减慢。利用这种技术的系统需要中继节点。
此外,专利文件1-4没有考虑到参考图1A-1C讨论的长期和短期状态,来提供对无线电通信状态的控制。
[专利文件1]JP-A No.160824/2001
[专利文件2]JP-A No.153616/2004
[专利文件3]JP-A No.153619/2004
[专利文件4]JP-A No.15761/2004
发明内容
如上述专利文件1-4中公开的那样,提出了和无线电网络相符的几种传输速率控制技术。但是,这些技术都不能在恢复无线电状态之后快速恢复数据传输速率,并且都不适合于流式再现。
本发明的一个优点是能够考虑到无线电状态变化和无线电链路控制。当无线电通信被恶化时,减少数据传输质量的降低,当无线电通信从退化状态恢复到正常状态时,根据退化之前的传输控制状态,快速恢复数据传输质量。
在根据本发明的一个实施例的第一发射和接收系统中,发射设备包括发射数据的数据发射装置,从接收设备接收表示无线电通信状态的状态信息的状态信息接收装置,和控制数据发射装置进行的发射的控制装置。当状态信息接收装置收到指示无线电通信的退化状态的状态信息时,控制装置保存紧接在收到状态信息之前,数据发射装置的控制发射控制信息。当状态信息接收装置之后收到指示无线电通信的正常状态的状态信息时,控制装置使用最新保存的控制信息,通过数据发射装置控制发射。接收设备包括:通过无线电通信接收从数据发射装置发射的数据的数据接收装置;根据数据接收装置接收的数据,确定无线电通信状态的确定装置;和把指示由确定装置确定的无线电通信状态的状态信息发射给发射设备的状态信息发射装置。
根据本发明的一个实施例的第一发射设备包括:发射数据的数据发射装置;从接收设备接收表示无线电通信状态的状态信息的状态信息接收装置;和利用数据发射装置控制发射的控制装置。当状态信息接收装置收到指示无线电通信的退化状态的状态信息时,控制装置保存紧接在收到状态信息之前,数据发射装置控制发射的控制信息。当状态信息接收装置之后收到指示无线电通信的正常状态的状态信息时,控制装置使用最新保存的控制信息,通过数据发射装置控制发射。
状态信息接收装置接收表示无线电通信的长期退化状态,短期退化状态和正常状态任意之一的状态信息。当状态信息接收装置收到指示无线电通信的长期退化状态的状态信息时,控制装置控制与无线电通信的退化状态对应的传输。
控制信息包括关于传输速率或RTT的信息。当状态信息接收装置收到指示退化状态的状态信息,随后收到指示正常状态的状态信息时,控制装置能够控制数据发射装置的发射,以致以最近保存的传输速率或者以利用包括RTT的控制信息计算的传输速率发射数据。
控制信息还包括往返时间(RTT)的信息。当状态信息接收装置收到指示退化状态的状态信息,随后收到指示正常状态的状态信息时,控制装置能够控制数据发射装置的发射,以致以根据最近保存的传输速率和RTT计算的传输速率发射数据。
根据本发明的一个实施例的第一发射方法包括:发射数据;从接收设备接收表示无线电通信状态的状态信息;和按照数据发射步骤的处理控制发射。当状态信息接收步骤的处理收到指示无线电通信的退化状态的状态信息时,控制步骤的处理保存紧接在收到状态信息之前,按照数据发射步骤的处理控制发射的控制信息。当状态信息接收步骤之后收到指示无线电通信的正常状态的状态信息时,控制步骤的处理使用最近保存的控制信息,按照数据发射步骤的处理控制发射。
根据本发明的一个实施例的第一发射程序包括:发射数据;从接收设备接收表示无线电通信状态的状态信息;和按照数据发射步骤的处理控制发射。当状态信息接收步骤的处理收到指示无线电通信的退化状态的状态信息时,控制步骤的处理保存紧接在收到状态信息之前,按照数据发射步骤的处理控制发射的控制信息。当状态信息接收步骤之后收到指示无线电通信的正常状态的状态信息时,控制步骤的处理使用最近保存的控制信息,按照数据发射步骤的处理控制发射。
根据本发明的一个实施例的第一接收设备包括:通过无线电通信接收从发射设备发射的数据的数据接收装置;根据数据接收装置接收的数据,确定无线电通信状态的确定装置;和把指示由确定装置确定的无线电通信状态的状态信息发射给发射设备的状态信息发射装置。
确定装置能够根据接收的数据,确定无线电通信状态对应于长期退化状态、短期退化状态和正常状态中的哪一个。
第一接收设备还包括根据数据检测关于无线电通信状态的无线电通信信息的检测装置。确定装置能够根据检测装置在规定时间检测的无线电通信状态的值,和在包括该时间的规定时段内检测的无线电通信信息的值的平均值,确定无线电通信状态。
根据本发明的一个实施例的第一接收方法包括下述步骤:通过无线电通信接收从发射设备发射的数据;根据数据接收步骤的处理接收的数据,确定无线电通信状态;和把指示确定步骤的处理确定的无线电通信状态的状态信息发射给发射设备。
根据本发明的一个实施例的第二程序包括下述步骤:通过无线电通信接收从发射设备发射的数据;根据数据接收步骤的处理接收的数据,确定无线电通信状态;和把指示确定步骤的处理确定的无线电通信状态的状态信息发射给发射设备。
在根据本发明的一个实施例的第二发射和接收系统中,发射设备包括:发射数据的数据发射装置;接收控制数据发射装置进行的发射的控制信息的控制信息接收装置;和根据控制信息接收装置接收的控制信息,控制数据发射装置进行的发射的控制装置。接收设备包括:通过无线电通信接收从数据发射装置发射的数据的数据接收装置;根据数据接收装置接收的数据,确定无线电通信状态的确定装置;根据确定装置确定的无线电通信状态,产生控制信息的产生装置;和把产生装置产生的控制信息发射给发射设备的控制信息发射装置。当确定装置确定无线电通信状态被恶化时,产生装置保存最近产生的控制信息。当确定装置之后确定无线电通信状态正常时,产生装置使用最近产生的控制信息来产生控制信息。
根据本发明的一个实施例的第二发射设备包括:发射数据的数据发射装置;接收控制信息的控制信息接收装置,所述控制信息根据无线电通信状态从接收设备发射,并被用于控制数据发射装置进行的发射;和根据控制信息接收装置接收的控制信息,控制数据发射装置进行的发射的控制装置。
根据本发明的一个实施例的第二发射方法包括下述步骤:发射数据;接收控制信息,所述控制信息根据无线电通信状态从接收设备发射,并被用于按照数据发射步骤的处理控制发射;和根据在控制信息接收步骤的处理接收的控制信息,按照数据发射步骤的处理控制发射。
根据本发明的一个实施例的第三程序包括:发射数据;接收控制信息,所述控制信息根据无线电通信状态从接收设备发射,并被用于按照数据发射步骤的处理控制发射;和根据在控制信息接收步骤的处理接收的控制信息,按照数据发射步骤的处理控制发射。
根据本发明的一个实施例的第二接收设备包括:通过无线电通信接收从发射设备发射的数据的数据接收装置;根据数据接收装置接收的数据,确定无线电通信状态的确定装置;根据确定装置确定的无线电通信状态,产生控制发射设备进行的发射的控制信息的产生装置;和把产生装置产生的控制信息发射给发射设备的控制信息发射装置。当确定装置确定无线电通信状态被恶化时,产生装置保存最近产生的控制信息。当确定装置之后确定无线电通信状态正常时,产生装置使用最近产生的控制信息来产生控制信息。
确定装置根据接收的数据确定无线电通信状态对应于长期退化状态,短期退化状态和正常状态中的哪一个。
当确定装置确定无线电通信状态被长期退化时,产生装置产生与无线电通信状态的退化状态对应的控制信息。
第二接收设备还包括根据数据,检测关于无线电通信的无线电通信信息的检测装置。确定装置根据检测装置在规定时间检测的无线电通信状态的值,和在包括该时间的规定时段内检测的无线电通信信息的值的平均值,确定无线电通信状态。
控制信息包括关于传输速率的信息或者往返时间(RTT)的信息。当确定装置确定无线电通信状态被退化并随后正常时,产生装置根据最近保存的包括传输速率和RTT的控制信息,产生控制信息。
根据本发明的一个实施例的第二接收方法包括下述步骤:通过无线电通信接收从发射设备发射的数据;根据数据接收装置的处理接收的数据,确定无线电通信状态;根据确定步骤的处理确定的无线电通信状态,产生控制发射设备进行的发射的控制信息;和把产生步骤的处理产生的控制信息发射给发射设备。当确定步骤的处理确定无线电通信状态被恶化时,产生步骤的处理保存最近产生的控制信息。当确定步骤的处理之后确定无线电通信状态正常时,产生步骤的处理使用最近产生的控制信息来产生控制信息。
根据本发明的一个实施例的第四程序包括下述步骤:通过无线电通信接收从发射设备发射的数据;根据数据接收装置的处理接收的数据,确定无线电通信状态;根据确定步骤的处理确定的无线电通信状态,产生控制发射设备进行的发射的控制信息;和把产生步骤的处理产生的控制信息发射给发射设备。当确定步骤的处理确定无线电通信状态被恶化时,产生步骤的处理保存最近产生的控制信息。当确定步骤的处理之后确定无线电通信状态正常时,产生步骤的处理使用最近产生的控制信息来产生控制信息。
当发射设备从接收设备收到状态信息时,状态信息可能指示无线电通信的退化状态。这种情况下,根据本发明的一个实施例的第一发射和接收系统保存紧接在收到状态信息之前的控制数据发射的控制信息。当发射设备之后收到指示无线电通信的正常状态的状态信息时,第一发射和接收系统使用最近保存的控制信息来控制数据发射。接收设备使用无线电通信从发射设备接收数据。根据该数据,接收设备确定无线电通信状态,并把指示无线电通信状态的状态信息发射给发射设备。
当发射设备从接收设备收到状态信息时,状态信息可能指示无线电通信的退化状态。这种情况下,根据本发明的一个实施例的第一发射设备,第一发射方法和第一程序保存紧接在收到状态信息之前的控制数据发射的控制信息。当发射设备之后收到指示无线电通信的正常状态的状态信息时,发射和接收系统,第一发射设备,第一发射方法和第一程序使用最近保存的控制信息来控制数据发射。
根据本发明的一个实施例的第一接收设备,第一接收方法和第二程序通过无线电通信接收从发射设备发射的数据。根据该数据,第一接收设备,第一接收方法和第二程序确定无线电通信状态,并把指示无线电通信状态的状态信息发射给发射设备。
在根据本发明的一个实施例的第二发射和接收系统中,发射设备接收控制发射的控制信息,并根据控制信息控制数据发射。接收设备通过无线电通信接收从发射设备发射的数据,并根据该数据确定无线电通信状态。当无线电通信状态被确定为退化时,接收设备保存最近产生的控制信息。当无线电通信状态之后被确定为正常时,接收设备使用最近保存的控制信息来产生控制信息,并把控制信息发射给发射设备。
根据本发明的一个实施例的第二发射设备,第二发射方法和第三程序接收根据无线电通信状态从接收设备发射的并被用于控制数据发射的控制信息。根据该控制信息,第二发射设备,第二发射方法和第三程序控制数据发射。
根据本发明的一个实施例的第二接收设备,第二接收方法和第四程序通过无线电通信接收从发射设备发射的数据,并根据该数据确定无线电通信状态。当无线电通信状态被确定为退化时,第二接收设备,第二接收方法和第四程序保存最近产生的控制信息。当无线电通信状态之后被确定为正常时,第二接收设备,第二接收方法和第四程序使用最近保存的控制信息来产生控制信息,并把该控制信息发射给发射设备。
根据本发明的实施例,当无线电通信退化时,能够减小数据传输质量的下降,当无线电通信从退化状态恢复到正常状态时,能够根据退化之前的传输控制状态,快速恢复数据传输质量。
附图说明
下面根据附图详细说明本发明的实施例,其中:
图1A-1C举例说明当使用公知的传输速率控制技术控制传输速率时的传输速率;
图2表示根据本发明的一个实施例的传输系统的功能结构例子;
图3是举例说明图2中的发射器的硬件结构的方框图;
图4描述由图2中的分析单元确定的状态s;
图5是表示图2中的接收终端进行的数据接收处理的流程图;
图6是表示图5中的步骤S6的无线电状态确定处理的流程图;
图7是表示图2中的速率计算单元进行的传输速率计算处理的流程图;
图8表示图2中的发射器向接收终端发射数据的数据发射处理;
图9A-9C表示当图2中的传输系统在衰减环境下控制传输速率时的传输速率;
图10表示根据本发明的一个实施例的传输系统的另一功能结构例子;
图11是表示图10中的接收终端进行的数据接收处理的流程图;
图12表示图10的发射器向接收终端发射数据的数据发射处理。
具体实施方式
下面将参考附图,更详细地说明本发明的实施例。
图2表示根据本发明的一个实施例的传输系统1的功能结构例子。
图2的传输系统1由发射器11,接收终端12,有线IP网络13和无线电基站14组成。发射器11通过IP网络13和无线电基站14向接收终端12发送(发射)数据。接收终端12借助无线电通信接收数据。在附加的权利要求中,数据传输装置可由例如图2中的发射单元24A体现;状态信息接收装置可由例如图2中的接收装置24B体现;控制装置可由例如图2中的速率计算单元25体现;数据接收装置可由例如图2中接收装置42B体现;确定装置可由例如图2中的分析单元47体现;状态信息传输装置例如可由图2中的发射单元42A体现。
发射器11由内容存储单元21,编码单元22,发射控制单元23,通信单元24,速率计算单元25,存储单元26,和计时器单元27构成。
发射器11的内容存储单元21保存通过IP网络13,先前从外部个人计算机(未示出)传送的数据。此外,内容存储单元21保存由为发射器11提供的数字照相机(未示出)捕捉的数据。内容存储单元21还读取保存在内容存储单元21中的数据,并把读取的数据提供给编码单元22。
编码单元22根据来自速率计算单元25的传输速率,确定编码速率。利用该编码速率,编码单元22对从内容存储单元21提供的数据编码,对该数据分包,并将其提供给发射控制单元23。从而,以来自速率计算单元25的传输速率发射该数据。
发射控制单元23把来自编码单元22的分包数据提供给通信单元24。每个分组配有有序数(下面称为顺序号),并且具有包括该顺序号等的报头信息。
通信单元24由发射单元24A和接收装置24B组成。发射单元24A通过IP网络13和基站14,发射为自发射控制单元23的分包数据。接收装置24B接收控制消息。控制消息是代表:通过IP网络13和基站14从天线41发射的无线电通信状态s;无线电分组差错率;分组损失率;顺序号;和在对应于接收装置24B本身的接收终端12接收数据的时间(下面称为数据接收时间)与从它自己传送控制消息的时间(下面称为控制消息发射时间)之间的时间t的信息。接收装置24B把该控制消息提供给速率计算单元25。
速率计算单元25根据来自接收装置24B的控制消息和从计时器单元27提供的表示当前时间的信息,计算传输速率和RTT。根据需要,速率计算单元25把传输速率和RTT提供给内容存储单元26以便存储,和读取已保存在存储单元26中的传输速率和RTT。速率计算单元25把传输速率提供给编码单元22。
编码单元22可提供遵守JPEG(联合图象专家组)2000的分级编码。这种情况下,速率计算单元25向发射控制单元23提供传输速率。发射控制单元23根据传输速率调整待发射的数据量,以改变传输速率。
存储单元26保存来自速率计算单元25的传输速率和RTT。计时器单元27记录当前时间,并把表示当前时间的信息提供给速率计算单元25。
为提供商或者家庭内部提供IP网络13,IP网络13与基站14连接。数据从通信单元24的发射单元24A发射,并通过有线IP网络13被提供给基站14。基站14接收对应于无线电波的控制消息。该控制消息通过有线IP网络13被提供给发射器11的接收装置24B。
基站14输出与通过IP网络13提供的数据对应的无线电波,并通过天线41接收输出的无线电波,以进行无线电通信。
接收终端12由天线41、无线电通信单元42、接收检测单元43、解码单元44、输出单元45、无线电监视单元46、分析单元47、存储单元48和计时器单元49组成。
基站14输出无线电波,该无线电波在天线41被接收,随后被提供给无线电通信单元42。无线电通信单元42由发射单元42A和接收装置42B组成。分析单元47向发射单元42A提供控制消息,即,表示无线电通信状态s,无线电分组差错率,分组损失率、序列号和时间t的信息。发射单元42A分包控制消息,并通过天线41输出与分包的控制消息对应的无线电波。
接收装置42B通过天线41接收无线电波,并将其转换成对应于无线电波的数据。接收装置42B把该数据提供给接收检测单元43和无线电监视单元46。即,接收装置42B使用无线电通信,通过天线41从基站14接收数据,并把接收的数据提供给接收检测单元43和无线电监视单元46。
接收检测单元43根据来自接收装置42B的分包数据,检测整个通信信道(IP网络13和基站14与天线41之间的无线电区域)中的分组损失率,并把分包数据提供给分析单元47。接收检测单元43获得附于分组上的报头信息中的顺序号。从计时器单元49向接收检测单元43提供表现当前时间的时间信息。根据该时间信息,接收检测单元43获得当前时间作为数据接收时间。接收检测单元43把所述顺序号和数据接收时间提供给分析单元47。此外,接收检测单元43为解码单元44提供来自接收装置42B的数据。
接收检测单元43不仅可检测分组损失率,而且可以检测接收分组的数目和RTT。
解码单元44对来自接收检测单元43的数据解码,并把该数据提供给输出单元45。输出单元45输出与来自解码单元44的数据对应的图像和声音。
无线电监视单元46根据来自接收装置42B的分包数据,监视和由衰减等产生的无线电特有通信状态相关的信息。例如,无线电监视单元46监视物理误差,比如验证误差和CRC(循环冗余检验)误差作为关于无线电特有通信状态的信息,以计算无线电分组差错率。无线电监视单元46把无线电分组差错率提供给分析单元47。
无线电监视单元46可监视关于无线电特有通信状态的信息,所述信息不仅包括无线电分组差错率,而且包括接收波的强度,信噪比,通信速度模式,无线电误码率和重传的次数。但是,根据本实施例,该信息代表出于对利用无线电LAN的试验性测量的考虑,由衰减引起的对通信信道的影响(RTT、吞吐量等)。另外,该实施例举例说明接收终端12能够获得的无线电分组差错率。
分析单元47把无线电分组差错率从无线电监视单元46提供给存储单元48以便保存。分析单元47读取已保存在存储单元48中的无线电分组差错率,并根据该无线电分组差错率确定无线电通信状态。分析单元47根据来自计时器单元49的时间信息工作,把发射控制消息的时间确定为控制消息发射时间。分析单元47计算控制消息发射时间和来自接收检测单元43的数据接收时间之间的时间t。分析单元47把控制消息提供给无线电通信单元42的发射单元42A。这种情况下,控制消息包含表示状态s,来自无线电监视单元46的无线电分组差错率,来自接收检测单元43的分组损失率和序列号,以及时间t的信息。
存储单元48保存来自分析单元47的无线电分组差错率。计时器单元49记录当前时间,并把表示该时间的信息提供给接收检测单元43和分析单元47。
图3是举例说明图2中的发射器的硬件结构的方框图。
如图3中所示,CPU(中央处理器)61通过总线64与ROM(只读存储器)62和RAM(随机存取存储器)63连接。CPU 61根据保存在ROM 62中的程序或者记录在记录单元68中的程序,进行各种处理。RAM 63保存CPU 61需要使用的程序和数据。
此外,CPU 61通过总线64与输入/输出接口65连接。输入/输出接口65与由键盘、鼠标等构成的输入单元66,和由LCD(液晶显示器)、CRT(阴极射线管)等构成的输出单元67连接。CPU 61执行与从输入单元66提供的命令对应的各种处理。CPU 61把由所述处理产生的图像和声音输出给输出单元67。
记录单元68与由例如硬盘构成的输入/输出接口65,并记录用于CPU 61的程序和各种数据。例如,通信单元69通过IP网络13和基站14与接收终端12通信。
程序可通过通信单元69获得,并且可被记录在记录单元68中。
驱动器70与输入/输出接口65连接,驱动可拆卸介质71,例如磁盘、光盘、磁光盘或者半导体存储器(当安装时),并获得保存在可拆卸介质71中的程序或数据。获得的程序或数据被传送给记录单元68以便记录。
类似于发射器11构成接收终端12,其描述被省略。接收终端12的通信单元69由天线41等构成,以便提供无线电通信。
现在参见图4,下面说明由图2中的分析单元47确定的状态s。
如图4中所示,无线电通信状态s被表示成三个等级0-2。具体地说,所述确定使用瞬时值err和移动平均值err_ave。瞬时值err指示在规定时间,由无线电监视单元46计算(检测)的无线电分组差错率之间的差异。移动平均值err_ave指示在包括给定时间的规定时期内检测的无线电分组差错率之间的差异的平均值。当值err和err_ave都较小时,分析单元47认为无线电通信状态是稳定的(正常状态),并把无线电通信状态s设为1。这种情况下,出于对有线通信拥塞的考虑,发射器11的速率计算单元25提供传输速率控制(下面称为有线拥塞控制)。
可能存在移动平均值err_ave较小,而瞬时值err较大的情况。这种情况下,分析单元47认为无线电通信状态是短暂恶化状态(差错状态),并把无线电通信状态s设为1。速率计算单元25使用存储单元26存储(保存)当最新的无线电通信状态s为0时计算的RTT和传输速率,以便提供有线拥塞控制。
当无线电通信状态s从1变成0时,速率计算单元25认为保存在存储单元26中的具有设为1的状态s的传输速率是新的传输速率。
当移动平均值err_ave较大时,分析单元47认为无线电通信状态s为长期恶化状态,并把无线电通信状态s设为2。这种情况下,速率计算单元25提供适合于无线电通信状态(情形)的传输速率控制。
当无线电通信状态s从0变成2时,速率计算单元25也使用存储介质26来保存当最新的无线电通信状态s为0时计算的RTT和传输速率。当无线电通信状态s从2恢复为0时,速率计算单元25认为该传输速率是新的传输速率。
下面说明利用三个等级,即正常状态、短期退化状态和长期退化状态来表示无线电通信状态s的原因。申请人利用无线电LAN(例如遵守IEEE(电气和电子工程师协会)802.11的无线电LAN)在几种条件下进行实验,检查衰减发生及其影响。从而,申请人发现无线电通信既受到无线电通信的短期退化状态的发生的影响,又受到稍长的几百毫秒到几秒的无线电通信的退化状态的发生的影响。
作为更详细检查的结果,申请人发现当存在许多反射障碍物,并且周围环境极大地受到衰减的影响,或者当基站14提供改变传输模式或编码速率的控制时,出现无线电通信的长期退化状态。
另外,申请人检查了发射器11和接收终端12之间总的通信状态,发现无线电通信的短期退化状态通常不会立即影响总的通信状态,无线电通信的长期退化状态大大增大RTT,并降低吞吐量。这可能是因为当无线电通信包含额外的频带时,基站14的缓冲控制可能消除无线电通信的瞬时退化状态的影响。
如上所述,在对发射器11和接收终端12之间总的通信状态的影响方面,无线电通信的短期退化状态不同于无线电通信的长期退化状态。传输系统1利用三个等级,即正常状态、短期退化状态和长期退化状态表示无线电通信状态s。速率计算单元25按照各个等级提供传输速率控制。
当被设为1时,状态s代表不会立即影响总的通信状态的短期退化状态。当状态s被设为1时,类似于状态s被设为0以代表正常状态的情况,速率计算单元25提供有线拥塞控制。另一方面,当被设为2时,状态s代表大大增大RTT,并降低吞吐量的无线电通信的长期退化状态。当状态s被设为2时,速率计算单元25提供适合于该无线电通信状态(情形)的传输速率控制。
现在参见图5,下面说明由图2中的接收终端2进行的数据(内容)接收处理。例如,当接收装置42B通过IP网络13、基站14和天线41收到与从发射器11的发射单元24A发射的数据对应的无线电波时,开始该数据接收处理。
在步骤S1,无线电监视单元46根据从接收装置42B提供的分包数据计算作为初始值的无线电分组差错率,并将其提供给分析单元47。分析单元47把其瞬时值err保存在存储单元48中,随后进入步骤S2。
在步骤S2,分析单元47确定规定的时间(例如20~50毫秒)是否已过去。即,分析单元47确定是否从计数时间的计时器(未示出)产生了中断,以获得无线电分组差错率。当确定规定的时间还未过去时,分析单元等待,直到规定的时间过去为止。
在步骤S2之后,处理进入步骤S3。接收检测单元43根据从接收装置42B提供的分包数据和来自计时器单元49的时间信息进行工作,以获得分组差错率,顺序号和数据接收时间,并把它们提供给分析单元47。
更具体地说,接收检测单元43根据来自接收装置42B的分包数据工作,检测(获得)整个通信信道的分组损失率,并将其提供给分析单元47。接收检测单元43获得附于分组上的报头信息中的顺序号。此外,接收检测单元43根据从计时器单元49提供的表示当前时间的时间信息工作,获得该时间作为数据接收时间,并把顺序号和数据接收时间提供给分析单元47。
在步骤S3之后,处理进入步骤S4。无线电监视单元46根据从接收装置42B提供的数据工作,以获得无线电分组差错率,并将其提供给分析单元47,随后进入步骤S5。
在步骤S5,分析单元47计算两个值之间的差值作为瞬时值err。一个值是在步骤S1提供的初始值或者在早先的步骤S4提供的无线电分组差错率。另一个值是在最新的步骤S4提供的无线电分组差错率。把来自无线电监视单元46的无线电分组差错率不变地用作瞬时值err,可省略步骤S5的处理。
在步骤S5之后,处理进入步骤S6。分析单元47根据在步骤S5计算的瞬时值err工作,从而进行确定无线电通信状态s的无线电状态确定处理。后面将参考图6详细说明无线电状态确定处理。
在步骤S6,处理进入步骤S7。分析单元47把当前从计时器单元49提供的时间假定为控制消息发射时间。根据控制消息发射时间和在步骤S3提供的数据接收时间,分析单元47计算控制消息发射时间和数据接收时间之间的时间t,随后进入步骤S8。
在步骤S8,分析单元47把控制消息提供给无线电通信单元42的发射单元42A。控制消息包含表示在步骤S6确定的状态s,在步骤S4提供的无线电分组差错率,在步骤S3提供的分组损失率和顺序号,和在步骤7计算的时间t的信息。发射单元42A对控制消息分包。发射单元42A通过天线41发射与分包的控制消息对应的无线电波,随后返回步骤S2重复上述处理。即,获得分组损失率,顺序号,时间t和瞬时值err,并且每隔规定的时间发射控制消息。
现在参见图6,下面说明在图5的步骤S6的无线电状态确定处理。
在步骤21,分析单元47根据在图5中的最新步骤S5计算的瞬时值err和已保存在存储单元48中的瞬时值err,计算移动平均值err_ave。具体地说,分析单元47计算在前的平均值err_ave′,即和出自保存在存储单元48中的瞬时值err的最新值的数目(例如29个)一样多的瞬时值err的平均值。分析单元47根据在前的平均值err_ave′和在最新的步骤S5计算的瞬时值err工作,利用下面的等式(1)计算移动平均值err_ave。
err_ave=αerr_ave′+(1-α)err    (1)
其中α是小于1的预定常数(例如0.9)。
在步骤S21之后,处理进入步骤S22。分析单元47使用存储单元48保存在图5中的步骤S5计算的瞬时值err和移动平均值err_ave。当存储单元48没有自由空间时,分析单元47删除最早的瞬时值err和移动平均值err_ave。
在步骤S22之后,处理进入步骤S23。分析单元47确定在步骤S22保存的移动平均值err_ave是否小于预定阈值Th1。当确定移动平均值err_ave小于预定阈值Th1时,处理进入步骤S24。
在步骤S24,分析单元47确定瞬时值err是否小于预定阈值Th2。当确定瞬时值err小于预定阈值Th2时,处理进入步骤S25。
在步骤S25,分析单元47把无线电通信状态s设为0,返回图5中的步骤S6,随后进入步骤S7。
当在步骤S23确定移动平均值err_ave不小于(大于或等于)预定阈值Th1时,处理进入步骤S27。分析单元47把状态s设为2,返回图5中的步骤S6,随后进入步骤S7。
当在步骤S24确定瞬时值err大于或等于预定阈值Th2时,处理进入步骤S26。分析单元47把状态s设为1,返回图5中的步骤S6,随后进入步骤S7。
现在参见图7,下面说明由图2中的速率计算单元25进行的传输速率计算处理。例如,当接收装置24B通过基站14和IP网络13,收到在图5中的步骤S8,从接收终端12发射的控制消息时,开始传输速率计算处理。
在步骤S41,速率计算单元25根据从接收装置24B提供的控制消息中的顺序号和时间t,计算RTT。具体地说,数据发射时间T表示发射单元24A发射数据的时间。速率计算单元25把与附于该数据上的顺序号相关的数据发射时间T保存在存储单元26中。速率计算单元25根据来自接收装置24B的顺序号工作,从存储单元26读取与该顺序号对应的数据发射时间T1。速率计算单元25使用数据发射时间T1,从计时器单元27提供的时间T2和时间t,利用下面的等式(2)计算RTT。
RTT=T2-T1-t    (2)
在步骤S41之后,处理进入步骤S42。速率计算单元24把来自接收装置24B的控制消息的状态s保存在存储单元26中,并确定状态s是否被设为0。
当在步骤S42确定状态s被设为0,那么处理进入步骤S43。速率计算单元24确定在前的状态p_s,即,在较早的步骤S42保存在存储单元26中的状态s是否被设为0。当确定在前的状态p_s不为0时,处理进入步骤S44。
在步骤S44,速率计算单元24从存储单元26读取在步骤S47(后面说明)保存(存储)的RTT和传输速率,并进入S45。
在步骤S45,速率计算单元24不仅利用读取的传输速率或RTT,而且利用有线拥塞控制的TCP友好的传输速率计算等式(例如在RFC3448中规定的TFRC),计算传输速率。
具体地说,速率计算单元24认为读取的传输速率原样为新的传输速率。这种情况下,速率计算单元24把无线电通信状态s的短期或长期退化状态恢复为正常状态,以便快速恢复传输速率。
速率计算单元24能够利用在步骤S41计算的RTT或者在步骤S44读取的RTT,和刚刚从接收装置24B提供的控制消息中的分组损失率,计算传输速率。传输速率24能够比较计算的传输速率与读取的传输速率,从而把较小的传输速率认为是新的传输速率。这种情况下,考虑了有线通信拥塞。但是,由于无线电通信的退化状态的残余影响,传输速率可能变得较小。
速率计算单元24把传输速率提供给编码单元22,结束该过程。从而,发射单元24A以速率计算单元24计算的传输速率发射数据。
当在步骤S3确定在前的状态p_s也被设为0时,处理进入步骤S45。根据有线拥塞控制技术,速率计算单元24类似地利用在步骤S41计算的RTT和来自接收装置24B的控制消息中的分组损失率,计算TCP友好的传输速率。速率计算单元24根据AIMD算法,校正传输速率。速率计算单元24把校正后的传输速率提供给编码单元22。
当在步骤S42确定控制消息的状态s未被设为0时,处理进入步骤S46。速率计算单元24确定在前状态p_s是否也被设为0。
当在步骤S46确定在前状态p_s被设为0,那么处理进入步骤S47。速率计算单元24把在以前的步骤S41计算的RTT和在以前的步骤S45计算的传输速率保存(存储)在存储单元26中。即,在无线电通信状态s退化之前,速率计算单元保存正常状态(状态s=1)下的RTT和传输速率。
当在步骤S46确定在前状态p_s不为0时,或者在步骤S47的处理之后,处理进入步骤S48。速率计算单元24确定控制消息的状态s是否被设为2。
当在步骤S48,确定控制消息的状态s不为2,即控制消息的状态s为1时,速率计算单元24进入步骤S45。根据有线拥塞控制技术,速率计算单元24利用在步骤S41计算的RTT和来自接收装置24B的控制消息中的分组损失率,计算传输速率。速率计算单元24把计算的传输速率提供给编码单元22。
当在步骤S48确定状态s为2时,处理进入步骤S49。速率计算单元25根据从接收装置24B提供的控制消息中的无线电分组差错率,计算到达概率P(=1-(无线电分组差错率)),随后进入步骤S50。
在步骤S50,速率计算单元25把到达概率P乘以在最新的步骤S47保存的对应于正常无线电通信状态的传输速率,以找出新的传输速率。这样,能够计算退化的无线电通信状态的可用传输速率。
现在参见图8,下面说明图2中的发射器11的向接收终端12发射数据的数据发射处理。
在步骤S61,通过IP网络13和基站14,发射器11的发射单元24A以预定的传输速率把具备顺序号i1的分包数据发射给接收终端12。此时,无线电通信状态被假定为正常。
在步骤S80,接收终端12执行图5中的步骤S1-S5的处理,和图6中的步骤S21-S25的处理,把无线电通信状态s设为0(没有无线电影响)。接收终端12随后进行图5中的步骤S7和S8的处理。接收终端12传送与包含表示顺序号i1,时间t1,分组损失率p_loss_1,设为0的状态s和无线电分组差错率err_r1的信息的控制消息对应的无线电波。
在步骤S61之后,处理进入步骤S62。发射器11的接收装置24B接收从接收终端12传送的控制消息。速率计算单元25进行图7中的步骤S41-S43和S45的处理,并根据有线拥塞控制技术计算传输速率rate1。速率计算单元25把传输速率rate1提供给编码单元22。
在步骤S62之后,处理进入步骤S63。发射单元24A以传输速率rate1发射数据。此时,无线电通信状态被认为被短暂(瞬时)退化。
在步骤S80之后,处理进入步骤S81。接收终端12进行图5中的步骤S2-S5的处理和图6中的步骤S21-S24的处理,并把无线电通信状态s设为1(确定为短暂退化)。接收终端12随后进行图5中的步骤S7和S8的处理。接收终端12传送与包含表示顺序号i2,时间t2,分组损失率p_loss_2,设为1的状态s和无线电分组差错率err_r2的信息的控制消息对应的无线电波。
在步骤S63之后,处理进入步骤S64。发射器11的接收装置24B接收从接收终端12传送的控制消息。速率计算单元25进行图7中的步骤S41、S42、S46和S47的处理,允许存储单元26保存在步骤S62(图7中的步骤S41)计算的RTT和在步骤S62(图7中的步骤S45)计算的传输速率rate1。
在步骤S64之后,处理进入步骤S65。速率计算单元25进行图7中的步骤S48和S45的处理。根据有线拥塞控制技术,速率计算单元25利用在步骤S64(图7中的步骤S41)计算的RTT和在步骤S64接收的控制消息的分组损失率p_loss_2,计算传输速率rate2。速率计算单元25把传输速率rate2提供给编码单元22,并进入步骤S66。
在步骤S66,发射单元24A以传输速率rate2发射数据。此时,无线电通信状态被认为长期(持续)退化。
在步骤S81之后,处理进入步骤S82。接收终端12进行图5中的步骤S2-S5的处理和图6中的步骤S21-S23和S27的处理,并把无线电通信状态s设为2(确定为长期退化)。接收终端12随后进行图5中的步骤S7和S8的处理。接收终端12传送与包含表示顺序号i3,时间t3,分组损失率p_loss_3,设为2的状态s和无线电分组差错率err_r3的信息的控制消息对应的无线电波。
在步骤S66之后,处理进入步骤S67。发射器11的接收装置24B接收从接收终端12传送的控制消息。速率计算单元25进行图7中的步骤S41、S42、S46和S48-S50的处理。根据到达概率P,速率计算单元25把在步骤S64(图7中的S47)保存的传输速率rate1乘以到达概率P。速率计算单元25认为所得到的值是传输速率rate3。速率计算单元把传输速率rate3提供给编码单元22,并进入步骤S68。
在步骤S68,发射单元24A以传输速率rate3发射数据。此时,无线电通信状态被认为恢复正常。
在步骤S82之后,处理进入步骤S83。接收终端12进行图5中的步骤S2-S6的处理和图6中的步骤S21-S25的处理,随后把无线电通信状态s设为0(确定为已恢复)。接收终端12随后进行图5中的步骤S7和S8的处理。接收终端12传送与包含表示顺序号i4,时间t4,分组损失率p_loss_4,设为0的状态s和无线电分组差错率的err_r4的信息的控制消息对应的无线电波。
在步骤S68之后,处理进入步骤S69。发射器11的接收装置24B接收从接收终端12传送的控制消息。速率计算单元25进行图7中的步骤S41-S43和S44的处理,并读取在无线电通信状态退化之前,在步骤S64(图7中的S47)保存的RTT和传输速率rate1。速率计算单元25进行图7中的步骤S45的处理,认为读取的传输速率rate1是新的传输速率,并把传输速率rate1提供给编码单元22。
在步骤S69之后,处理进入步骤S70。发射单元24A以传输速率rate1发射数据。
为了便于说明,图8表示发射器11接收控制消息,随后发射数据。实际上,发射器11根据需要发射数据,而不必等待收到控制消息。
现在参见图9A-9C,下面说明在衰减环境下,在图2中的传输系统1中控制的传输速率。
图9A表示无线电分组差错率(%)的时间变化。图9B表示传输速率(Mbps)的时间变化。图9C的上部表示RTT(ms)的时间变化。图9C的下部表示分组损失率(%)的时间变化。在图9A-9C中,横坐标代表时间(s)。
在图9A中,在30-35秒的时间点(图9A中的圆E1),38-40秒的时间点(图9A中的圆E2),45-50秒的时间点(图9A中的圆E3),和62秒的时间点(图9A中的圆E4)附近出现一秒或更长的较高无线电分组差错率。即,在30-35秒,38-40秒,45-50秒和62秒的时间点附近出现无线电通信的长期退化状态。
这种情况下,速率计算单元25根据从接收装置24B提供的控制消息中的无线电分组差错率,在图7中的步骤S49计算到达概率P。在步骤S50,速率计算单元25使用到达概率P,把在无线电通信的退化之前在最新的步骤S47保存的传输速率乘以到达概率P,得到新的传输速率。因此,当无线电分组差错率增大时,传输速率降低。当无线电分组差错率降低时,传输速率增大。
如图9A中所示,在38-40秒的时间(图9A中的圆E2)附近出现无线电通信的长期退化状态(图9A中的圆E2)。这种情况下,如图9B中所示,当无线电分组差错率增大时,传输速率降低。当无线电分组差错率降低(图9A中的圆E1)时,传输速率增大。当无线电通信状态s长期退化时,根据到达概率P(吞吐量变化)计算传输速率。于是,速率计算单元25能够计算无线电通信状态s下的可用传输速率。从而,RTT和分组损失率降低(图9C中的圆G1和H1),使得能够提供稳定的传输速率。
在图9A中的大约40秒的时间点,无线电通信的长期退化状态被恢复为正常状态,即,无线电分组差错率变得接近于0(图9A中的点E5)。这种情况下,速率计算单元25认为在无线电通信的退化之前,在图7的步骤S47保存的传输速率原样地为新的传输速率。从而,在无线电通信的长期退化状态被恢复为正常状态之后大约1秒的时间f1,传输速率被恢复为发生长期退化之前有效的传输速率(图9B中的点F2)。
如图9A中所示,在45-50秒的时间点出现无线电通信的长期退化状态(图9A中的E3)。这种情况下,如图9B中所示,当无线电分组差错率增大时,传输速率降低。当无线电分组差错率降低时,传输速率增大(图9B中的F3)。从而,RTT和分组损失率降低(图9中的圆G2和H2)。
在图9A中大约48秒的时间点,无线电通信的长期退化状态被恢复为正常状态(图9A中的圆E6)。这种情况下,在无线电通信的长期退化状态被恢复为正常状态之后短于1秒的时间f2,传输速率被恢复为发生长期退化之前有效的传输速率(图9B中的点F4)。
如上所述,速率计算单元25保存当无线电通信状态正常时有效的传输速率。当无线电通信状态被恢复正常时,速率计算单元25认为该传输速率为新的传输速率。在图1A-1C中,在无线电通信状态被恢复正常之后,在传输速率恢复以前,需要大约2-3秒的时间b1或者大约8秒的时间b2。相反,在无线电通信状态被恢复正常之后,速率计算单元25能够立即恢复传输速率。
从而,当传输速率较低时(例如图9B中的圆F1和F3),图2中的传输系统1短暂恶化在输出单元45上显示与该数据对应的图像。但是,由于RTT仍然较低(例如图9C中的圆G1和G2),因此不会发生不规则的成帧。这样,通过进行图7中的传输速率计算处理,图2中的传输系统1能够改进显示在输出单元45上的图像的质量。
图10表示根据本发明的一个实施例的传输系统1的另一功能结构例子。
图10中的传输系统1由有线IP网络13、无线电基站14、发射器81和接收终端82组成。不同于图2中的传输系统1,图10中的传输系统1使用接收终端82来计算传输速率。接收终端82把该传输速率作为控制消息发射给发射器81。图10和图2中相互对应的部件由相同的附图标记表示,为了简洁起见,其详细说明将被省略。在附加权利要求中,例如数据发射装置可由图10中的发射单元91A具体体现;例如控制信息接收装置可由图10中的接收装置91B具体体现;例如控制装置可由图10中的编码单元22具体体现;例如数据接收装置可由图10中的接收装置101B具体体现;例如确定装置可由图10中的分析单元104具体体现;例如产生装置可由图10中的速率计算单元105具体体现;例如控制信息发射装置可由图10中的发射单元101A具体体现。
发射器81由内容存储单元21、编码单元22、发射控制单元23和通信单元91组成。
通信单元91由发射单元91A和接收装置91B组成。类似于图2中的发射单元24A,发射单元91A通过IP网络13和基站14,发射来自发射控制单元23的分包数据。接收装置91B从接收终端82接收传输速率。以附有顺序号的控制消息的形式接收传输速率。此时,发射单元91A通过把控制消息的顺序号附于响应消息上,把对应于控制消息的响应消息发射给接收终端82。
接收装置91B通过IP网络13和基站14,从天线41接收以控制消息的形式传送的传输速率。接收装置91B把传输速率提供给编码单元22。
接收终端82由天线41、解码单元44、输出单元45、无线电监视单元46、无线电通信单元101、接收检测单元102、计时器单元103、分析单元104、速率计算单元105和存储单元106组成。
无线电通信单元101由发射单元101A和接收装置101B组成。发射单元101A认为从速率计算单元105提供的传输速率是控制消息。发射单元101A对控制消息分包,并通过天线41输出与分包的控制消息对应的无线电波。
接收装置101B把通过天线41接收的无线电波转换成与无线电波对应的数据或响应消息。接收装置101B把该数据提供给无线电监视单元46和接收检测单元102,和把响应消息提供给接收检测单元102。
接收检测单元102根据来自接收装置101B的分包数据,检测整个通信信道的分组损失率,并把分组损失率提供给分析单元47。接收检测单元102获得附于分组上的顺序号。接收检测单元102被供给表示当前时间的时间信息,并获得该时间作为数据接收时间。接收检测单元102把与其顺序号相关的数据接收时间保存在内置存储单元(未示出)中。此外,接收检测单元102把顺序号提供给分析单元104。
另外,接收检测单元102不仅从接收装置101B获得附于响应消息上的顺序号,而且获得从计时器单元103提供的表示当前时间的时间信息,作为接收响应消息的时间(下面称为响应消息接收时间)。接收检测单元102根据保存的与顺序号相关的数据接收时间和响应消息接收时间,计算RTT,并把RTT提供给分析单元104。另外,接收检测单元102把来自接收装置101B的数据提供给解码单元44。
计时器单元103记录当前时间,并把表示当前时间的时间信息提供给接收检测单元102和速率计算单元105。
类似于图2中的分析单元47,分析单元104把来自无线电监视单元46的无线电分组差错率提供给存储单元106以便存储。分析单元104读取已保存在存储单元106中的无线电分组差错率,并根据无线电分组差错率确定无线电通信状态s。分析单元47向速率计算单元105提供状态s和无线电分组差错率,以及来自接收检测单元102的分组损失率、RTT和顺序号。
速率计算单元105根据状态s、无线电分组差错率、分组损失率和RTT计算传输速率。根据需要,速率计算单元105把计算的传输速率和来自分析单元104的RTT提供给存储单元106以便存储。速率计算单元105读取已保存在存储单元104中的传输速率和RTT。速率计算单元105把附有来自分析单元104的顺序号的传输速率作为控制消息提供给无线电通信单元101的发射单元101A。存储单元106保存来自分析单元104的无线电分组差错率和来自速率计算单元105的传输速率和RTT。
现在参见图11,下面说明由图10中的接收终端82进行的数据接收处理。例如,当接收装置101B通过IP网络13,基站14和天线41,收到与来自发射器81的发射单元24A的数据对应的无线电波时,开始数据接收处理。
步骤S91和S92的处理与图5中的步骤S1和S2的处理相同,不再赘述。
在步骤S93,接收检测单元102根据从接收装置101B提供的分包数据,获得分组损失率和顺序号。接收检测单元102根据从接收装置101B提供的响应消息获得RTT,从计时器单元103获得时间信息,并把它们提供给分析单元104。
具体地说,接收检测单元102根据来自接收装置101B的分包数据,获得分组损失率和附于分组上的顺序号。接收检测单元102被供给表示当前时间的时间信息,并获得该时间作为数据接收时间。接收检测单元102把与其顺序号相关的数据接收时间保存在内置存储单元中。此外,接收检测单元102把分组损失率和顺序号提供给分析单元104。
另外,接收检测单元102不仅从接收装置101B获得附于响应消息上的顺序号,而且获得从计时器单元103提供的表示当前时间的时间信息,作为响应消息接收时间。接收检测单元102根据保存的与顺序号相关的数据接收时间和响应消息接收时间,计算RTT,并把RTT提供给分析单元104。
步骤S94-S96的处理与图5中的步骤S4-S6的处理相同,不再赘述。
在步骤S96的处理之后,分析单元47把在步骤S96确定的状态s,在步骤S94供给的无线电分组差错率,和在步骤S93供给的分组损失率、序列号和RTT提供给速率计算单元105,随后进入步骤S97。
在步骤S97,速率计算单元105通过利用状态s,无线电分组差错率,分组损失率和RTT来计算传输速率,进行与图7中的步骤S42-S50相同的处理。
在步骤S97之后,处理进入步骤S98。速率计算单元105向在步骤S97计算的传输速率提供从分析单元47供给的序列号,从而创建一个控制消息,并把该控制消息提供给无线电通信单元101的发射单元101A。发射单元101A分包控制消息,并通过天线41发射与分包的控制消息对应的无线电波。处理返回步骤S92。
现在参见图12,下面说明图10中的发射器81的把数据发射给接收终端82的数据发射处理。
在步骤S101,类似于图8中的步骤S61,发射器81的发射装置91A通过IP网络13和基站14,以预定的传输速率把具有顺序号i1的数据发射给接收终端82。此时,无线电通信状态被认为是正常的。
在步骤S121,接收终端82进行图11中的步骤S91-S95的处理和图6中的步骤S21-S25的处理,把无线电通信状态s设为0(没有无线电影响),随后进入步骤S122。在步骤S122,接收终端82的速率计算单元105进行图7中的步骤S42、S43和S45的处理,并按照有线拥塞控制技术计算传输速率rate1。
速率计算单元105进行图11中的步骤S98的处理,向传输速率rate1提供从分析单元104提供的顺序号i1,以产生控制消息,并将其提供给发射单元101A。发射单元101A对控制消息分包,并通过天线41把与分包的控制消息对应的无线电波发射给发射器81。
在步骤S101之后,处理进入步骤S102。发射器81的接收装置91B从接收终端82的发射单元101A接收在步骤S122作为控制消息发射的传输速率rate1,并把传输速率rate1提供给编码单元22。
此时,发射单元91A通过向响应消息提供附于控制消息上的顺序号,发射与接收装置91B接收的控制消息对应的响应消息。响应消息被用于在接收检测单元102中计算RTT。
在步骤S102之后,处理进入步骤S103。类似于图8中的步骤S63,发射单元91A以传输速率rate1发射数据。此时,无线电通信状态被认为被短暂退化。
在步骤S122之后,处理进入步骤S123。接收终端82进行图11中的步骤S92-S95的处理和图6中的步骤S21-S24和S26的处理,并把无线电通信状态s设为1(确定为短暂退化),随后进入步骤S124。
在步骤S124,接收终端82的速率计算单元105进行图7中的步骤S42、S46和S47的处理,允许存储单元26保存在步骤S123(图11中的步骤S93)获得的RTT,和在步骤S122(图7中的步骤S45)计算的传输速率rate1。
在步骤S124之后,处理进入步骤S125。速率计算单元105进行图7中的步骤S48和S45的处理。根据有线拥塞控制技术,速率计算单元105利用在步骤S123(图11中的步骤S93)获得的RTT和分组损失率,计算传输速率rate2。速率计算单元105进行步骤S98的处理。速率计算单元105向传输速率rate2提供来自分析单元104的顺序号,并将其作为控制消息传送给发射单元101A。发射单元101A对控制消息分包,并传送与分包的控制消息对应的无线电波。
在步骤S103之后,处理进入步骤S104。发射器81的接收装置91B接收从接收终端82的发射单元101A传来的控制消息,并把所述控制消息提供给编码单元22。
在步骤S104之后,处理进入步骤S105。类似于图8中的步骤S66,发射单元91A以传输速率rate2传送数据。此时,无线电通信状态被认为长期退化。
在步骤S125之后,处理进入步骤S126。接收终端82进行图11中的步骤S92-S95的处理和图6中的步骤S21-S23和S27的处理。接收终端82把无线电通信状态s设为2(确定为长期退化),随后进入步骤S127。
在步骤S127之后,接收终端82的速率计算单元105进行图7中的步骤S42、S46和S48-S50的处理。根据到达概率P,速率计算单元105把到达概率P乘以在步骤S124(图7中的步骤S47)保存的传输速率rate1,以得到新的传输速率rate3。速率计算单元25进行图11中的步骤S98的处理。速率计算单元25向传输速率rate3提供来自分析单元104的顺序号,并将其作为控制消息传送给发射单元101A。发射单元101A对控制消息分包,并将其转换成无线电波以便发射。
在步骤S105之后,处理进入步骤S106。发射器81的接收装置91B从接收终端82的发射单元101A接收在步骤S127作为控制消息发射的传输速率,并把该传输速率提供给编码单元22。
在步骤S106之后,处理进入步骤S107。类似于图8中的步骤S68,发射单元91A以传输速率rate3发射数据。此时,无线电通信状态被认为恢复正常。
在步骤S127之后,处理进入步骤S128。接收终端82进行图11中的步骤S92-S95的处理和图6中的步骤S21-S25的处理。接收终端82把无线电通信状态s设为0(确定为被恢复),随后进入步骤S129。
在步骤S129,速率计算单元105进行图7中的步骤S42-S45的处理。速率计算单元105读取在无线电通信状态退化之前,在步骤S124(图7中的S47)保存的RTT和传输速率rate1,认为rate1是新的传输速率。速率计算单元105进行图11中的步骤S98的处理。速率计算单元105向传输速率rate1提供顺序号,并将其作为控制消息提供给发射单元101A。发射单元101A对控制消息分包,并传送与分包的控制消息对应的无线电波。
在步骤S107之后,处理进入步骤S108。发射器81的接收装置91B从接收终端82的发射单元101A接收在步骤S129作为控制消息发射的传输速率rate1,并把该传输速率提供给编码单元22。
在步骤S108之后,处理进入步骤S109。类似于图8中的步骤S70,发射单元91A以传输速率rate1发射数据。
如上所述,图10中的传输系统1使用接收终端82来计算传输速率。对于发射器81来说,能够节省处理负荷和存储器存储容量。因此,对于传送数据的诸如服务器之类的发射器同时向许多接收终端82传送(发射)数据的情况,图10中的传输系统10更可取。
在不增加或改变IP网络13和基站14的功能的情况下,利用现有的IP网络13和基站14,能够容易地构成图1和10中的传输系统1。也可利用使发射器81和接收终端82能够交换更详细并且实时的控制消息的复杂基站14,也能够构成图1和10中的传输系统1。
当基站14提供有用的参数作为和特定于有线通信的状态有关的信息,比如控制信息时,无线电监视单元46对这些参数和其它计算技术的使用没有任何限制。
虽然本实施例利用无线电分组差错率来计算传输速率,不过最好利用无线电分组差错率的平均值来计算传输速率。
图1和10中的传输系统1可与基站14无线连接,而不是利用IP网络13。
图10中的接收检测单元102的计算RTT的技术并不局限于上面提及的利用响应消息的技术。
如上所述,当无线电通信状态s被设为2,以指示长期退化状态时,传输系统1把传输速率保存为控制紧接在无线电通信状态s被设为2之前的数据传输的信息。当无线电通信状态s之后被设为0,以指示正常状态时,传输系统1使用最新保存的传输状态来控制数据传输。当无线电通信从退化状态恢复到正常状态时,传输系统1能够根据退化之前的传输控制状态,快速恢复数据传输质量。
在本说明书中,处理步骤描述允许计算机执行各种处理的程序。处理步骤不必总是按照在流程图中描述的时间先后顺序来执行,可包括同时或者单独执行的处理(例如并行处理或者面向对象的处理)。
程序可由一个计算机执行,或者可由多个计算机以分布方式执行。此外,程序可被传送给远程计算机来执行。
本领域的技术人员应明白,根据设计要求和其它因素,可能发生各种修改、组合、子组合和变更,只要它们在附加权利要求或其等同物的范围内。

Claims (16)

1.一种具有通过有线IP网络和基站发射数据的发射设备和通过无线电通信接收数据的接收设备的发射和接收系统,
其中发射设备包括:
发射数据的数据发射装置;
从接收设备接收表示无线电通信状态的状态信息的状态信息接收装置,所述状态信息表示无线电通信的长期退化状态、短期退化状态和正常状态任意之一;和
利用数据发射装置控制发射的控制装置;
其中,当状态信息接收装置收到指示无线电通信的退化状态的状态信息时,控制装置保存紧接在收到状态信息之前,数据发射装置控制发射的控制信息;当状态信息接收装置之后收到指示无线电通信的正常状态的状态信息时,控制装置使用最近保存的控制信息,通过数据发射装置控制发射;并且当状态信息接收装置收到指示无线电通信的长期退化状态的状态信息时,控制装置控制与无线电通信的退化状态对应的发射;
其中接收设备包括:
通过无线电通信接收从数据发射装置发射的数据的数据接收装置;
根据数据接收装置接收的数据,确定无线电通信状态的确定装置;和
把指示由确定装置确定的无线电通信状态的状态信息发射给发射设备的状态信息发射装置。
2.一种通过有线IP网络和基站把数据发射给通过无线电通信接收数据的接收设备的发射设备,包括:
发射数据的数据发射装置;
从接收设备接收表示无线电通信状态的状态信息的状态信息接收装置,所述状态信息表示无线电通信的长期退化状态、短期退化状态和正常状态任意之一;和
利用数据发射装置控制发射的控制装置,
其中,当状态信息接收装置收到指示无线电通信的退化状态的状态信息时,控制装置保存紧接在收到状态信息之前,数据发射装置控制发射的控制信息;当状态信息接收装置之后收到指示无线电通信的正常状态的状态信息时,控制装置使用最近保存的控制信息,通过数据发射装置控制发射;并且其中当状态信息接收装置收到指示无线电通信的长期退化状态的状态信息时,控制装置控制与无线电通信的退化状态对应的发射。
3.按照权利要求2所述的发射设备,
其中控制信息涉及传输速率;
其中当状态信息接收装置收到指示退化状态的状态信息并随后收到指示正常状态的状态信息时,控制装置控制数据发射装置的发射,以致以根据最近保存的传输速率计算的传输速率发射数据。
4.按照权利要求3所述的发射设备,
其中控制信息还包含往返时间RTT信息;
其中当状态信息接收装置收到指示退化状态的状态信息并随后收到指示正常状态的状态信息时,控制装置控制数据发射装置的发射,以致以根据最近保存的传输速率和RTT计算的传输速率发射数据。
5.一种由发射设备通过有线IP网络和基站向通过无线电通信接收数据的接收设备发射数据的发射方法,包括下述步骤:
发射数据;
从接收设备接收表示无线电通信状态的状态信息,所述状态信息表示无线电通信的长期退化状态、短期退化状态和正常状态任意之一;和
按照数据发射步骤的处理控制发射,
其中,当状态信息接收步骤的处理收到指示无线电通信的退化状态的状态信息时,控制步骤的处理保存紧接在收到状态信息之前,按照数据发射步骤的处理控制发射的控制信息,当状态信息接收步骤之后收到指示无线电通信的正常状态的状态信息时,控制步骤的处理使用最近保存的控制信息,按照数据发射步骤的处理控制发射;并且其中当状态信息接收步骤收到指示无线电通信的长期退化状态的状态信息时,控制步骤控制与无线电通信的退化状态对应的发射。
6.一种通过无线电通信从通过有线IP网络和基站发射数据的发射设备接收数据的接收设备,包括:
通过无线电通信接收从发射设备发射的数据的数据接收装置;
根据数据接收装置接收的数据,确定无线电通信状态的确定装置;和
把指示由确定装置确定的无线电通信状态的状态信息发射给发射设备的状态信息发射装置,所述状态信息表示无线电通信的长期退化状态、短期退化状态和正常状态任意之一,从而当发射设备收到指示无线电通信的长期退化状态的状态信息时,发射设备控制与无线电通信的退化状态对应的发射。
7.按照权利要求6所述的接收设备,还包括:
根据数据检测关于无线电通信状态的无线电通信信息的检测装置,
其中确定装置根据检测装置在规定时间检测的无线电通信状态的值,和在包括该时间的规定时段内检测的无线电通信信息的值的平均值,确定无线电通信状态。
8.一种接收设备通过无线电通信从通过有线IP网络和基站发射数据的发射设备接收数据的方法,所述方法包括下述步骤:
通过无线电通信接收从发射设备发射的数据;
根据数据接收步骤的处理接收的数据,确定无线电通信状态;和
把指示由确定步骤的处理确定的无线电通信状态的状态信息发射给发射设备,所述状态信息表示无线电通信的长期退化状态、短期退化状态和正常状态任意之一,从而当发射设备收到指示无线电通信的长期退化状态的状态信息时,发射设备控制与无线电通信的退化状态对应的发射。
9.一种具有通过有线IP网络和基站发射数据的发射设备和通过无线电通信接收数据的接收设备的发射和接收系统,
其中发射设备包括:
发射数据的数据发射装置;
接收控制数据发射装置进行的发射的控制信息的控制信息接收装置;和
根据控制信息接收装置接收的控制信息,控制数据发射装置进行的发射的控制装置,
其中接收设备包括:
通过无线电通信接收从数据发射装置发射的数据的数据接收装置;
根据数据接收装置接收的数据,确定无线电通信状态的确定装置,所述无线电通信状态对应于长期退化状态、短期退化状态和正常状态中的一个;
根据确定装置确定的无线电通信状态,产生控制信息的产生装置;和
把产生装置产生的控制信息发射给发射设备的控制信息发射装置,
其中,当确定装置确定无线电通信状态退化时,产生装置保存最近产生的控制信息,当确定装置之后确定无线电通信状态正常时,产生装置使用最近产生的控制信息来产生控制信息;并且当确定装置确定无线电通信状态长期退化时,产生装置产生与无线电通信状态的退化状态对应的控制信息。
10.一种通过有线IP网络和基站向通过无线电通信接收数据的接收设备发射数据的发射设备,所述发射设备包括:
发射数据的数据发射装置;
接收控制信息的控制信息接收装置,所述控制信息根据无线电通信状态从接收设备发射,并被用于控制数据发射装置进行的发射,所述无线电通信状态对应于长期退化状态、短期退化状态和正常状态中的一个;和
根据控制信息接收装置接收的控制信息,控制数据发射装置进行的发射的控制装置,其中当收到指示无线电通信的长期退化状态的控制信息时,控制装置控制与无线电通信的退化状态对应的发射。
11.一种发射设备通过有线IP网络和基站向通过无线电通信接收数据的接收设备发射数据的发射方法,包括下述步骤:
发射数据;
接收控制信息,所述控制信息根据无线电通信状态从接收设备发射,并被用于按照数据发射步骤的处理控制发射,所述无线电通信状态对应于长期退化状态、短期退化状态和正常状态中的一个;和
根据在控制信息接收步骤的处理接收的控制信息,按照数据发射步骤的处理控制发射,其中当收到指示无线电通信的长期退化状态的控制信息时,控制与无线电通信的退化状态对应的发射。
12.一种通过无线电通信从通过有线IP网络和基站发射数据的发射设备接收数据的接收设备,所述接收设备包括:
通过无线电通信接收从发射设备发射的数据的数据接收装置;
根据数据接收装置接收的数据,确定无线电通信状态的确定装置,所述无线电通信状态对应于长期退化状态、短期退化状态和正常状态中的一个;
根据确定装置确定的无线电通信状态,产生控制发射设备进行的发射的控制信息的产生装置;和
把产生装置产生的控制信息发射给发射设备的控制信息发射装置,
其中,当确定装置确定无线电通信状态退化时,产生装置保存最近产生的控制信息,当确定装置之后确定无线电通信状态正常时,产生装置使用最近产生的控制信息来产生控制信息;并且当确定装置确定无线电通信状态长期退化时,产生装置产生与无线电通信状态的退化状态对应的控制信息。
13.按照权利要求12所述的接收设备,还包括:
根据数据检测关于无线电通信的无线电通信信息的检测装置,
其中确定装置根据检测装置在规定时间检测的无线电通信状态的值,和在包括该时间的规定时段内检测的无线电通信信息的值的平均值,确定无线电通信状态。
14.按照权利要求12所述的接收设备,
其中控制信息涉及传输速率;和
其中,当确定装置确定无线电通信状态退化并随后正常时,产生装置根据最近保存的传输速率,产生控制信息。
15.按照权利要求14所述的接收设备,
其中控制信息还包含往返时间RTT信息;
其中,当确定装置确定无线电通信状态退化并随后正常时,产生装置根据最近保存的传输速率和RTT,产生控制信息。
16.一种接收设备通过无线电通信从通过有线IP网络和基站发射数据的发射设备接收数据的方法,所述方法包括下述步骤:
通过无线电通信接收从发射设备发射的数据;
根据数据接收装置的处理接收的数据,确定无线电通信状态,所述无线电通信状态对应于长期退化状态、短期退化状态和正常状态中的一个;
根据确定步骤的处理确定的无线电通信状态,产生控制发射设备进行的发射的控制信息;和
把产生步骤的处理产生的控制信息发射给发射设备,
其中,当确定步骤的处理确定无线电通信状态退化时,产生步骤的处理保存最近产生的控制信息,当确定步骤的处理之后确定无线电通信状态正常时,产生步骤的处理使用最近产生的控制信息来产生控制信息;并且当确定步骤确定无线电通信状态长期退化时,产生步骤产生与无线电通信状态的退化状态对应的控制信息。
CN2006100755632A 2005-04-20 2006-04-20 发射和接收系统,发射设备和方法,接收设备和方法 Expired - Fee Related CN1855889B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005122971A JP4697525B2 (ja) 2005-04-20 2005-04-20 送受信システム、送信装置および送信方法、受信装置および受信方法、並びにプログラム
JP2005122971 2005-04-20
JP2005-122971 2005-04-20

Publications (2)

Publication Number Publication Date
CN1855889A CN1855889A (zh) 2006-11-01
CN1855889B true CN1855889B (zh) 2010-08-18

Family

ID=37187566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100755632A Expired - Fee Related CN1855889B (zh) 2005-04-20 2006-04-20 发射和接收系统,发射设备和方法,接收设备和方法

Country Status (4)

Country Link
US (2) US7710906B2 (zh)
JP (1) JP4697525B2 (zh)
KR (1) KR20060110783A (zh)
CN (1) CN1855889B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100080205A1 (en) * 2007-04-18 2010-04-01 Nxp B.V. Rate recovery mechanisim, method and system for a wlan-bluetooth coexistance system
JP4883801B2 (ja) * 2007-08-14 2012-02-22 キヤノン株式会社 通信制御装置、通信制御方法、及びコンピュータプログラム
KR101391847B1 (ko) * 2007-09-08 2014-05-14 삼성전자주식회사 다중 홉 중계 방식의 무선통신 시스템에서 재전송 응답시점 결정 장치 및 방법
EP2056512B1 (en) * 2007-09-08 2018-02-14 Samsung Electronics Co., Ltd. Apparatus and method for determining time to response of retransmission in a multihop relay wireless comunication system
EP2152046B1 (en) 2007-12-25 2013-02-13 Panasonic Corporation Communication device, communication method, and program
CN102017548B (zh) * 2008-06-12 2013-08-28 松下电器产业株式会社 网络监视装置、总线系统监视装置以及方法
US8001260B2 (en) 2008-07-28 2011-08-16 Vantrix Corporation Flow-rate adaptation for a connection of time-varying capacity
CN102106113B (zh) * 2008-07-28 2014-06-11 万特里克斯公司 一种用于控制通过时变传输媒介发送数据流的方法和系统
US7975063B2 (en) * 2009-05-10 2011-07-05 Vantrix Corporation Informative data streaming server
US9166875B2 (en) * 2009-06-22 2015-10-20 Qualcomm Incorporated Method and apparatus for network optimization using SON solutions
EP2302828A1 (en) 2009-09-29 2011-03-30 Thomson Licensing WLAN data rate adaption method
JP5152940B2 (ja) * 2011-08-10 2013-02-27 株式会社Skeed バルクデータを効率的に転送するためのデータ転送方法
US9137551B2 (en) 2011-08-16 2015-09-15 Vantrix Corporation Dynamic bit rate adaptation over bandwidth varying connection
JP2013085135A (ja) * 2011-10-11 2013-05-09 Panasonic Corp ネットワーク端末装置およびデータ伝送方法
JP5981734B2 (ja) * 2012-03-09 2016-08-31 キヤノン株式会社 通信装置、通信システム、制御方法及びプログラム
JP5867188B2 (ja) 2012-03-12 2016-02-24 富士通株式会社 情報処理装置、輻輳制御方法および輻輳制御プログラム
US9363185B2 (en) * 2012-10-17 2016-06-07 Opanga Networks, Inc. Method and system for determining sustainable throughput over wireless networks
US20140149611A1 (en) * 2012-11-26 2014-05-29 Qualcomm Incorporated CHANNEL CONDITION AWARE USB DATA DELIVERY OVER Wi-Fi WITH DIFFERENTIAL TREATMENT ON DISTINCT USB ENDPOINTS
JP2014229985A (ja) * 2013-05-20 2014-12-08 富士通株式会社 通信システム、通信制御方法、移動局、及び、制御装置
EP3958512A1 (en) * 2013-07-31 2022-02-23 Assia Spe, Llc Method and apparatus for continuous access network monitoring and packet loss estimation
KR20150057345A (ko) * 2013-11-19 2015-05-28 (주)스파코사 통신 단말기를 통한 상황 알림 방법
US9462489B2 (en) 2014-05-15 2016-10-04 Qualcomm Incorporated Using client-specific RGS to improve performance on multi-SIM and multi-RAT devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363165A (zh) * 2000-02-15 2002-08-07 三菱电机株式会社 通信系统和通信方法以及发送终端和接收终端
CN1447530A (zh) * 2002-03-25 2003-10-08 佳能株式会社 无线通信装置,无绳电话,显示操作控制方法,程序及存储介质

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145963A (ja) * 1985-12-20 1987-06-30 Fujitsu Ltd フアクシミリ装置
US5564077A (en) * 1992-02-05 1996-10-08 Kabushiki Kaisha Toshiba Dual mode radio communication apparatus having function of selectively designating analog or digital mode
JP2503888B2 (ja) * 1993-06-30 1996-06-05 日本電気株式会社 移動無線通信におけるデ―タ伝送方式
KR100288375B1 (ko) * 1998-05-25 2001-06-01 윤종용 역방향링크와독립적인순방향링크의전력제어방법
JP3636620B2 (ja) * 1999-08-31 2005-04-06 三菱電機株式会社 無線通信装置
JP4101993B2 (ja) 1999-12-03 2008-06-18 三菱電機株式会社 有線無線混在網データ配信装置及び有線無線混在網データ配信方法
US20020172166A1 (en) * 2001-03-22 2002-11-21 Huseyin Arslan Communications system and method for measuring short-term and long-term channel characteristics
US7221686B1 (en) * 2001-11-30 2007-05-22 Meshnetworks, Inc. System and method for computing the signal propagation time and the clock correction for mobile stations in a wireless network
JP4029670B2 (ja) 2002-06-11 2008-01-09 日本電気株式会社 無線アクセスにおける輻輳制御方法並びにシステム
JP3918669B2 (ja) * 2002-07-24 2007-05-23 株式会社デンソー 車載無線通信装置
US7133354B2 (en) * 2002-08-26 2006-11-07 Qualcomm Incorporated Synchronization techniques for a wireless system
US7388845B2 (en) * 2002-08-26 2008-06-17 Qualcomm Incorporated Multiple access wireless communications system using a multisector configuration
JP2004140726A (ja) * 2002-10-21 2004-05-13 Hitachi Kokusai Electric Inc 無線通信装置
JP4000046B2 (ja) * 2002-10-31 2007-10-31 京セラ株式会社 通信システム、無線通信端末、データ配信装置及び通信方法
JP2004153619A (ja) * 2002-10-31 2004-05-27 Kyocera Corp 通信システム、無線通信端末、データ配信装置及び通信方法
EP2608420B1 (en) * 2003-01-23 2016-06-22 Qualcomm Incorporated Methods and apparatus of providing transmit diversity in a multiple access wireless communication system
JP4173755B2 (ja) * 2003-03-24 2008-10-29 富士通株式会社 データ伝送サーバ
JP4283589B2 (ja) * 2003-03-25 2009-06-24 株式会社エヌ・ティ・ティ・ドコモ 通信装置、通信制御方法及びプログラム
JP3731665B2 (ja) * 2003-03-27 2006-01-05 ソニー株式会社 データ通信システム、情報処理装置および情報処理方法、記録媒体、並びに、プログラム
EP1618748B1 (en) * 2003-04-23 2016-04-13 QUALCOMM Incorporated Methods and apparatus of enhancing performance in wireless communication systems
US7280581B2 (en) * 2003-05-12 2007-10-09 Lucent Technologies Inc. Method of adaptive Walsh code allocation
JP4275483B2 (ja) * 2003-08-07 2009-06-10 Nttエレクトロニクス株式会社 データレート選択回路、電子装置およびデータレート選択方法
JP4215601B2 (ja) * 2003-09-05 2009-01-28 富士通株式会社 無線通信装置
JP4674054B2 (ja) * 2004-03-31 2011-04-20 京セラ株式会社 通信システム、通信装置及び送信レート制御方法
KR20050089698A (ko) * 2004-03-05 2005-09-08 삼성전자주식회사 어레이 안테나를 갖는 이동통신시스템에서 데이터 송/수신장치 및 방법
WO2005096532A1 (en) * 2004-03-31 2005-10-13 Nortel Networks Limited Adaptive scheduling of voice traffic in a multi-carrier communication environment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363165A (zh) * 2000-02-15 2002-08-07 三菱电机株式会社 通信系统和通信方法以及发送终端和接收终端
CN1447530A (zh) * 2002-03-25 2003-10-08 佳能株式会社 无线通信装置,无绳电话,显示操作控制方法,程序及存储介质

Also Published As

Publication number Publication date
US8514755B2 (en) 2013-08-20
US20090209213A1 (en) 2009-08-20
US7710906B2 (en) 2010-05-04
US20060240783A1 (en) 2006-10-26
KR20060110783A (ko) 2006-10-25
JP4697525B2 (ja) 2011-06-08
CN1855889A (zh) 2006-11-01
JP2006303925A (ja) 2006-11-02

Similar Documents

Publication Publication Date Title
CN1855889B (zh) 发射和接收系统,发射设备和方法,接收设备和方法
JP5878614B2 (ja) ワイヤレスハンドヘルドコンピューティングデバイスの媒体再生品質を最適化するためのシステムおよび方法
Lindeberg et al. Challenges and techniques for video streaming over mobile ad hoc networks
KR101101719B1 (ko) 통신 시스템의 링크 에러 예측을 위한 방법 및 시스템
US8165613B2 (en) Method and apparatus for transmitting data using information on communication environment
KR100750170B1 (ko) 통신 네트워크에서 데이터 프레임을 효율적으로 전송하는방법 및 장치
US8553550B2 (en) Wireless transmission device, wireless transmission method, program, and integrated circuit
US20110066746A1 (en) Synchronized data streaming
US20080181259A1 (en) Method and system for dynamically adjusting packet size to decrease delays of streaming data transmissions on noisy transmission lines
US7792026B2 (en) Method of calculating a time period to wait for missing data packets
EP1626552B1 (en) Multiple independent pathway communications
US20060203729A1 (en) Dynamic adaptation of MAC-layer retransmission value
US20030165126A1 (en) Communication apparatus, method and programs
Tian et al. Optimal packet scheduling for wireless video streaming with error-prone feedback
KR100823263B1 (ko) QoS 보장 방법 및 장치
US7168022B2 (en) Transmission control method and system
Sarvi et al. An adaptive and reliable forward error correction mechanism for real-time video delivery from UAVs
JP4884922B2 (ja) 通信装置および通信方法
Cao et al. CMT‐CQA: Cross‐layer QoS‐aware adaptive concurrent multipath data transfer in heterogeneous networks
Kapoor et al. Link layer support for streaming MPEG video over wireless links
US8924579B2 (en) Data streaming method
JP2005033499A (ja) 音声ip端末の伝搬時間ゆらぎ吸収方法と装置
Huang et al. Adaptive forward error correction with cognitive technology mechanism for video streaming over wireless networks
Srinivasan Improving TCP Using Working Memory Capacity and Network Coding
KR20100060435A (ko) 이동 애드 혹 네트워크에서 멀티미디어 데이터 전송 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100818