CN1852973A - 从活检分离和扩充心脏干细胞的方法 - Google Patents

从活检分离和扩充心脏干细胞的方法 Download PDF

Info

Publication number
CN1852973A
CN1852973A CNA200480026720XA CN200480026720A CN1852973A CN 1852973 A CN1852973 A CN 1852973A CN A200480026720X A CNA200480026720X A CN A200480026720XA CN 200480026720 A CN200480026720 A CN 200480026720A CN 1852973 A CN1852973 A CN 1852973A
Authority
CN
China
Prior art keywords
cell
bulbus cordis
tissue
mouse
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200480026720XA
Other languages
English (en)
Inventor
A·贾科梅洛
E·梅西纳
M·巴塔利亚
G·弗拉蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universita degli Studi di Roma La Sapienza
Original Assignee
Universita degli Studi di Roma La Sapienza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universita degli Studi di Roma La Sapienza filed Critical Universita degli Studi di Roma La Sapienza
Publication of CN1852973A publication Critical patent/CN1852973A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/175Cardiotrophin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/32Polylysine, polyornithine

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Cardiology (AREA)
  • Cell Biology (AREA)
  • Vascular Medicine (AREA)
  • Rheumatology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

从人或动物组织活检样品分离、扩充和保存心脏干细胞以用于心肌或其它器官的细胞移植和功能修复的方法。细胞也可以在基因治疗中用于治疗遗传性心肌病,用于治疗缺血性心脏病和用于建立体外模型以研究药物。

Description

从活检分离和扩充心脏干细胞的方法
技术领域
本发明涉及分离和扩充源自出生后的心脏组织活检的心脏干细胞的方法。
本发明涉及从人或动物组织活检样品中分离、扩充和保存心脏干细胞以用于心肌或其它器官的细胞移植和功能修复的方法。
该细胞也可以用在基因治疗中,通过在来自具有遗传缺陷的对象的活检的细胞中表达健康基因、在体外繁殖该细胞和然后将它们移植进患者,用于治疗遗传性心肌病;通过诱导移植的细胞释放血管生成性生长因子,用于治疗缺血性心脏病;和用于建立研究药物的体外模型。
现有技术
干细胞(SC)能对适当的信号作出响应,进行复制和分化,从而形成或再生特化组织。
认为心肌细胞是终末分化的细胞;但是,新出现的证据已经显示出这些细胞在动物模型和心脏移植患者中增殖的适度潜力(1-4)。
成年心肌细胞在损伤后经历有丝分裂和再生心肌的能力有限,导致有功能细胞数目的永久不足,心功能不全发生和进展。在疾病的晚期,移植的替代治疗是,将SC植入受损的心肌(心肌成形术)。该方法已经在动物模型中产生了有希望的结果,还已经在人中进行了实验。但是,仍然存在SC的来源和可用性的问题(5-7)。
尽管胚胎SC(来自胚胎的未分化的细胞,其可以产生多种特化细胞,且可以源自胚泡内的细胞团,在人中,所述的胚泡在卵子受精后4-5天形成)具有显著的增殖和分化能力,它们的潜在的免疫原性、致心律失常性(arrhythmogenicity)和尤其是伦理问题已经限制了它们的应用。而且,胚胎SC是多能性的,因而它们的应用具有产生畸胎瘤的潜在风险(如在动物模型中发生的)。因此,在这些细胞可以使用之前,它们需要在体外分化成心肌细胞。
存在多种类型的心肌细胞(心室的,心房的,窦房结,浦肯野,具有起搏功能,等)。胚胎SC具有在体外产生这些心肌细胞表型的潜在能力,但是产量是不足的。另外,源自胚胎SC的心肌细胞的体内增殖能力似乎受到多核细胞的生长的限制。
一个替代方案是使用成年SC(在分化的组织中发现的未分化的细胞,其能增殖、再生和分化成它们从其中分离的组织的特化细胞类型),优选地从同一患者得到,这会提供允许自体移植而无需免疫抑制疗法的优点。为此,已经使用了成骨骼肌细胞(卫星细胞);但是,它们分化成的骨骼肌细胞具有不同于心肌的形态和功能性质。成骨骼肌细胞不能转分化成心肌细胞并与它们偶联,可造成心律失常或其它异常。
源自骨髓的SC提供有吸引力的替代方案。骨髓的间充质SC(MSC)可以在体外(用DNA-脱甲基化试剂处理)和体内分化成心肌细胞,但是,在体内时,在有纤维变性存在下,它们主要形成成纤维细胞样细胞。骨髓的造血SC(HSC)(所谓的旁群细胞[SP细胞])是多能性的,在于它们可以产生血管上皮、平滑肌细胞和心肌细胞。但是,尚未充分表征HSC-和MSC-衍生的心肌细胞的功能和电生理学性质,且未分化的细胞替代心肌细胞的应用可造成在体内分化成成纤维细胞,而不是肌细胞,或者造成肿瘤的发生。
虽然已经常规地将人心肌细胞视作终末分化的细胞(即不能重新进入细胞周期和分裂),过去2年来积累的间接证据已经暗示在心脏中存在成年SC。这些细胞是心脏成形术(cardioplasty)的理想候选品,因为它们不需要改编程序,仅仅产生存在于心脏中的细胞(即心肌细胞)和血管(内皮细胞和平滑肌),且因为这是它们的生理功能而可以在移植患者中存活,整合进周围组织中,并长期执行它们的功能,而不会造成任何损伤。
专利申请WO 03/008535和WO 03/006950涉及从胚胎SC衍生心肌细胞的方法。专利申请WO 02/13760和WO 02/09650大体上涉及成年SC(尤其是造血和/或心脏细胞,没有指出分离它们的方法,组合亦然)在修复心脏损伤或治疗心血管疾病中的应用。
专利申请WO 99/49015涉及成年p53-/-小鼠的多能性心脏SC的分离。更具体地,说明书涉及心脏-衍生的多能SC,其分化和增殖产生许多细胞类型,包括心肌细胞,成纤维细胞,平滑肌细胞,骨骼肌细胞,角质形成细胞,成骨细胞和软骨细胞。这些细胞可以用于治疗患有心脏组织坏死的患者的方法中。SC能增殖和分化,产生能替代坏死的组织的心肌细胞。
但是,与本发明的方法不同,该方法是基于一个假设,即心肌细胞、横纹肌和平滑肌细胞源自共同的前体-成肌细胞。另外,没有来自心肌病动物的体内证据能够支持该方法的可应用性。最后,该方法实质上不同。在专利WO 99/49015所述的方法中,粉碎了成年p53-/-小鼠心脏,用脱氧核糖核酸酶和胶原酶解离。离心后,在不连续梯度(Percoll)上分离沉淀肌细胞,并铺到含有5%FBS的培养基上,再在20天后,铺到含有15%FBS的培养基上。在第20-26天之间,在悬浮液中形成小的(<5m)圆形的、非粘附的、缓慢生长的、相差显微镜下透亮的(phase-bright)、具有高核质比的细胞。在有10%马血清存在的情况下,这些细胞继续悬浮生长约1.5个月。然后,在不加入马血清的情况下,细胞保持悬浮。非粘附的SC不在甲基纤维素中形成菌落,且在有血清,SCF,aFGF,bFGF,和cFGF存在的情况下增殖。在没有马血清存在的情况下,非粘附的细胞分化成不同外观的粘附细胞,发明人已经根据主要的形态标准,将它们鉴别为心肌细胞,软骨细胞,成纤维细胞,平滑肌细胞,骨骼肌成肌细胞,周细胞,和发明人称作粘附SC的其它细胞。这些细胞中的约四分之一至五分之一是碱性磷酸酶阳性的(成骨细胞和内皮细胞);所有细胞都是乙酰化LDL(没有内皮细胞)和肌球蛋白重链(MF20)阴性的。当用bFGF,aFGF和cFGF刺激时,细胞经历有丝分裂。在没有血清的情况下,它们分化成类似于油煎蛋的细胞(肌细胞)。在用抗坏血酸/α-GP处理后,它们分化成软骨细胞样的细胞。
通过有限稀释而克隆的粘附细胞产生间充质细胞,包括成骨细胞,软骨细胞,脂肪细胞和肌细胞,尽管由于经常不适当的形态标准和标记而不能清楚地鉴别它们。所有细胞经测试都是乙酰化LDL阴性的(没有内皮细胞)。11个分离的克隆都不能被诱导向单一间充质系分化。
还描述了新生小鼠(1-4天)的心脏-衍生的SC的分离,其中加入了在人纤连蛋白上的肌细胞传代,以消除成纤维细胞。但是,没有给出关于分离的SC的特征的数据。另外,用前述方法分离的细胞不能形成心脏组织的必需组分,即血管和内皮。
发明简述
本发明的方法使用心脏活检组织作为原料,由此是不能用于专利申请WO 99/49015所述的方法中的选择材料,因为该材料是不足的。破碎活检标本后,且可能使用解离剂(例如胰蛋白酶,EDTA和胶原酶),将碎片平板接种并加入含有10%FBS的培养基;10-30天后,从外植块生长出成纤维细胞样粘附细胞,小圆形的、透亮的细胞在该外植块上迁移,其趋向于聚团,但是不粘附或仅仅较弱地粘附。通过洗涤和温和的解离(例如EDTA,胰蛋白酶-EDTA,2-3分钟),分离细胞。然后,将细胞平板接种在聚赖氨酸处理过的细胞基质上,在与在先前技术中使用的培养基不同的适当培养基中,在于所述培养基没有马血清,且含有其它的生长因子;2-3天后,细胞聚集体(心球体(cardiosphere))出现,其倾向于作为漂浮结构生长。发明人已经发现,心脏形成细胞是出生后的SC,其可以有利地用于重新植入心肌。
这些细胞能够倍增,同时维持它们的原始特征一段时间(至少60天),其长度足以显著地富集细胞群体。在至少前20天,通过每3天重复移液和更换培养基来机械解聚心球体(CS),从而增加CS的数目(每10天约100-倍)。考虑到可以从活检衍生的SC的数目和它们在体外倍增的能力,认为它们可以用于替代比取出的组织更大量的组织。
CS中的某些细胞呈现干细胞标记(ckit,sca-1,CD34),其能向心肌的主要组分(心肌细胞和血管)分化。如通过免疫组织化学和/或RT-PCR评价的,某些细胞自发地表达(尤其是在CS的边缘)心肌细胞的标记(肌钙蛋白I,ANP,肌球蛋白重链)和内皮细胞的标记(vonWillebrand因子和Ve-钙粘蛋白)。在与大鼠肌细胞的共培养中,人CS自发地搏动。当在SCID小鼠中皮下接种时,鼠CS在几天内产生含有心肌组织和血管的生长。
发明人因而已经证实,SC可以以可再现的方式从1个月至70岁年龄的人对象的心房、心室和心耳的活检组织中衍生。可以冷藏属于本发明的CS,它们在融化后维持它们的功能特征。
也可以从小鼠分离出具有类似特征的成年心脏SC。更具体地,为了更好地理解CS中的细胞分化,研究了几个转基因小鼠品种;结果证实了用人细胞得到的结果。
最后,发明人已经在动物模型中显示了人CS可以用于心脏成形术。当接种在SCID小鼠的梗塞区域(经胸廓的烧灼或LAD结扎)时,所述细胞形成心脏组织,其呈现与宿主组织的良好整合,如通过形态学和免疫组织化学研究所观察到的。
因此,与先前技术所述的相比,就样品来源、衍生的细胞的分离和扩充方法以及形态和功能特征而言,通过本发明的方法分离和扩充CS是新的且有利的。
发明详述
该方法包括下述步骤:在无菌条件下得到活检样品,并运送到实验室;制备碎片,其大小足以允许培养基中存在的营养物的扩散;将碎片分布到培养平板上,在适于细胞存活和生长的条件下温育;对培养基和细胞取样,并转移到处于适合细胞扩充的条件下的其它培养平板。
本发明的一个目的是,获得能修复受损的心肌组织的干细胞的方法,其包括下述步骤:
a)取心脏组织的活检标本,并将其保持在适当的培养基中;
b)在适当的条件下,用温和的机械的和/或化学的和/或酶促技术处理标本,得到组织碎片,其大小足以允许培养基中存在的营养物的扩散;
c)使组织碎片粘附到适当的固相支持体上,并将它们维持在含有合适的血清和/或生长因子的培养基中;
d)使细胞生长,部分地或全部地更换培养基,直到形成多细胞结构,其弱粘附或不粘附到支持体上;
e)从剩余的培养物中分离所述的多细胞结构;
f)通过温和的解离处理所述的多细胞结构,直到大部分小的透亮的球形细胞脱附,但是维持它们的形态和功能特征;
g)将细胞平板接种在用聚赖氨酸或其它促进培养物向支持体粘附的试剂处理的培养基质上,在至少含有用于哺乳动物细胞生长的极限必需组分的培养基中;
h)可能重复步骤d)-g)至少一次;
i)选择聚集成透亮的球形体结构(心球体)的细胞;
l)通过它们的温和解离和新的形成,有选择地促进新心球体的形成;
m)最后冷藏心球体,准备在融化后使用。
优选地,干细胞源自非-胚胎的心脏组织活检。
在本发明的一个实施方案中,至少一个步骤是在用不同于大气中正常存在的氧浓度处理以改变培养物的生物学特征之后。
本领域的专家能够明白,源自本发明的方法的CS能够在自发转化或由化学的、物理的或生物的活性因子诱导的转化后,产生连续细胞系。
在另一个实施方案中,将产生和/或构成心球体的细胞与其它细胞融合。
在另一个实施方案中,将产生和/或构成心球体的细胞用于向和从其它细胞核转移。
在另一个实施方案中,使产生和/或构成心球体的细胞在至少一个阶段中生长在可生物降解的和/或生物相容的支持体上。
在另一个实施方案中,在生物反应器和/或发酵罐中培养产生和/或构成心球体的细胞。
本发明的另一个目的是,可以根据前述权利要求的方法得到的产生和/或构成心球体的能修复心肌组织的细胞。
优选地,所述的细胞将要用于基因治疗中。优选地,所述的细胞将要用于向和从其它细胞进行核转移。源自本发明的方法的CS可以不同地用于修复心肌组织,用于从和向其它细胞核转移,在基因疗法中用于遗传起源的心脏病。
附图简述
图1-CS增殖。a,源自人心房活检样品的原代培养物的漂浮CS(从<24小时至>48小时培养)的相差显微照片。b,在有(左图)和没有(右图)3.5%血清存在的情况下,人和小鼠CS[分别源自8名不同的对象(上图)和源自出生前的和出生后的心脏(下图)]的增殖曲线。球体的数目是指每孔的平均数目,在每个时间点从孔中取90%球体用于进一步分析。注意到人和小鼠CS之间不同的增殖方式,和曲线的快速升高,然后是在无血清的条件下的不可逆的下降。c,当通过有限稀释铺板到丝裂霉素-处理过的STO-成纤维细胞包被的96孔平板上CGM中时,在GFP-标记的克隆的产生过程中,单细胞的荧光分析(右上图)(从解离的表达GFP的CS得到)。该克隆可以在聚-D-赖氨酸涂层上传代和扩充(左下图)。d,暴露于无生长因子的培养基48小时后,eGFP/MLC3F克隆(作为那些人的得到)的x-Gal染色:在这些条件下,克隆中的细胞变得更扁平,许多核显示出蓝色,这证实发生了分化过程。
图2-CS表征。a,对BrdU-标记的人CS进行的心脏分化标记的荧光-共焦分析:6μm扫描(从球体的外周到中心)和最终的图片(分别是小图和大图)。BrdU(绿色),cTnI和ANP(红色)。b,培养12小时后人CS的共焦分析:产生CS的细胞在开始形成球体时的CD-34,CD-31,KDR和c-Kit标记。c,人CS(冷冻切片)的荧光表型分析:cTnI(红色),肌节肌球蛋白和vWf(绿色)。d-d1,在CEM中胶原涂层上培养4天后,人的部分解离的-CS的荧光表型分析:cTnl(红色)表达出现在人细胞(从球体迁移)的细胞质中,显示出三角形及行排列)。e,与大鼠心肌细胞共培养96小时时,部分解离的eGFP-标记的人CS的荧光分析:表现出与心肌细胞同步收缩的相同的绿色细胞表达cTnI。f,与大鼠心肌细胞共培养的eGFP-标记的人CS中的连接蛋白-43表达的荧光分析(红色)(如在小图e中):加强红色荧光存在于人细胞的细胞膜中。g,来自MLC3F-nlacZ和cTnI-nlacZ小鼠的CS的相差显微照片:在距它们的形成较短的时间后(插图)和在培养几天后(右图和中间图),核lacZ表达主要定位于胚胎和成年CS的外层。细胞(源自部分解离的CS,在胶原-包被的表面上培养了5天)的核也被蓝染。h,自发地分化的小鼠CS的荧光分析:如在培养物中显示出的同步收缩所暗示的,cTnI(红色)在球体和迁移的细胞中表达;最后,肌节也是明显的。i,来自GFP-cKit,GFP-cKit/MLC3F-nLacZ和GFP-cKt/cTnI-nlacZ小鼠的CS的荧光和相差分析。在将它们接种到含有CGM的培养物中后几分钟,在开始形成CS时,随后在它们的内部块中,和在它们从最老的粘附球体(箭头)迁移出来后,存在GFP-标记的细胞(上图、下图和左图和中间图)。GFP-标记的细胞不与染成蓝色的细胞(箭头)共同定位在来自GFP-cKit/MLC3F-nLacZ和GFP-cKt/cTnI-nlacZ小鼠的CS中;荧光细胞也存在于CS的生长区(箭头)(右侧的上图和下图)。荧光,相差(小的)和融合的(大的)图像。1,出生后小鼠CS-衍生的细胞的FACS分析。进行了在0和6天的时间进程,并分析了CD34,cKit,Cd31和sca-1表达的表型特征,显示为阳性事件的百分比。将数据表达为平均值±SD(n=3)。*指示着与T0的统计学显著差异。
图3-体内分析。a,来自MLC3F-nlacZ/B5-eGFP小鼠的CS在SCID小鼠中的异位移植(左上图)。来自皮下背部接种物(第17天)的未固定冷冻切片的荧光分析(左上小图,右上和左下大图):GFP-细胞似乎已经从球体迁移,而血管样结构簇主要在外部区域观察到(插图)。对这些冷冻切片之一进行SMA染色,显示了球体和接种物内的一些细胞的阳性免疫反应。b,来自MLC3F-nlacZ/CD-1和cTnI-lacZ/CD-1小鼠的CS的背部接种物的固定的和免疫染色的冷冻切片的荧光(右图)和相差分析(左图,融合的):对管状结构进行肌节肌球蛋白和cTnI染色(分别是中图和下图)。X-Gal染色标记了在CS内的和从CS迁移的细胞(右上图)。内皮标记(SMA和Ve-钙粘蛋白)染色了脉管系统(″黑洞″)(小图)。c,在SCID-bg小鼠上,将冷藏的人CS同位移植进新产生的梗塞边界处的活心肌中。自冠脉结扎18天后,冷冻切片的左心室心脏的共焦分析表明(左上小图)在再生心肌(特别是用2个中心箭头指示的那些)中表达MHC(红色)的心肌细胞对于核纤层蛋白A/C(一种特异性的人核标记)也呈染色阳性(绿色)。在这些细胞中,MHC表达主要在核周区域明显。核纤层蛋白A/C-标记的细胞(红色)存在于新产生的毛细血管中,后者对平滑肌α-肌动蛋白(右上图)和PECAM(左下图)染色;连接蛋白-43(红色)(右下高放大率图),如在共培养实验中,衬在再生心肌中的一些人细胞(绿色)的细胞质膜。表1.人CS同位移植对心肌性能的超声心动图指数的影响。将数据表达为平均值±SD。缩写:LVIDd,舒张末期左心室内部尺寸;AWThd,前壁厚度;FS,缩短分数;EF,射血分数。*:vs CAL+CS p<0.05,§:vs CALp<0.05
图4-a)(左图)来自少儿(pCS)、成年(aCS)对象的人CS和心脏碎片(H)的RT-PCR分析(ANF,NKx2.5,Ve-钙粘蛋白,GAPDH),和b)(右图)鼠CS(mCS)和小鼠心脏碎片(H)的RT-PCR分析(α-MHC,TnC,心脏α-肌动蛋白,GAPDH)。
方法和材料
组织样品
人组织取自成年人或经历了开放式心脏手术(主动脉冠状动脉分流术,心脏瓣膜置换,法洛四联症,室间隔缺损)或由于晚期扩张性心肌病或梗塞后慢性充血性心肌病而进行了心脏移植的其它患者的心肌活检。鼠组织取自先前表征为纯合MLC3F-nLacZ小鼠(8)纯合肌钙蛋白-I-nLacZ(9)和EGFP/ckit(10)CD1-杂交小鼠的心脏。小鼠分别表现出肌球蛋白轻链启动子的β-半乳糖苷酶转基因的局限定位性核表达(心脏和骨骼肌),肌钙蛋白-I转基因的组织特异性核表达(唯一地在心脏)和ckit启动子的EGFP转基因(在这些细胞实验中的基因)的细胞质表达。使用B5-EGFP小鼠(11)作为基本株,其表现出普遍的细胞质GFP表达。根据实验方法,培育繁殖杂交的MLC3F-nLacZ/EGFP,MLC3F-nLac-Z/EGFP-ckit,Tn-I-nLac-Z/EGFP-ckit小鼠。将人心脏组织活检保藏在0℃无血清的IMDM(Euroclone)中,并维持在该条件,直到到达实验室(在2小时内)。
球体-形成细胞的加工、分离和冷藏
小心地切离肉眼可见的结缔组织后,将样品切成1-2mm3碎块,用无Ca++/Mg++的磷酸盐缓冲溶液(PBS,Invitrogen)洗涤3次,相继用0.2%胰蛋白酶(Gibco)和0.1%胶原酶IV(Sigma)在37℃消化3次,每次5分钟。抛弃得到的细胞,其大部分是污染血液的成分,用完全外植块培养基(CEM)[IMDM,其添加了10%胎牛血清(FCS)(Hyclone),100mg/ml青霉素,100U/ml链霉素(Gibco),2mM L-谷氨酰胺(Gibco),0.1mM 2-巯基乙醇(Sigma)]洗涤剩余的组织碎片。然后,通过用解剖刀在塑料表面上轻刮,将组织碎块固定到培养皿(Falcon)上。在37℃、5%CO2,在完全IMDM中培养外植块。类似地处理鼠心脏组织,例外是对于胚胎心脏,省略了外植块消化之前的酶消化,用25号针部分解离器官。1-3周后(根据样品的来源,即对于胚胎组织更短的时间,对于成年组织更长的时间),形成一层成纤维细胞样细胞,其源自或围绕着外植块。然后定期处理外植块(每6-10天,最多4次),以分离球体-形成细胞。为了仅仅取出透亮的细胞-其从外植块向外细胞层迁移,取出培养基,如下收集材料:通过用无Ca++-Mg++的PBS洗涤2次、并用0.53mM EDTA(Versene,Gibco)洗涤1-2分钟1次,随后,在肉眼显微镜控制下,在室温用0.5g/L-0.53mM胰蛋白酶-EDTA(Gibco)温和地胰蛋白酶消化再2-3分钟。收集细胞后,将完全培养基加入外植块,通过离心(1200rpm,7分钟)收集经洗涤和酶处理得到的细胞,并重悬于心球体-生长培养基(CGM)(35%完全IMDM/65%DMEM-Ham′s F-12混合物,含有2%B27[Gibco],0.1mM 2-巯基乙醇,10ng/ml EGF(Prepotek EC,Ltd.),40ng/ml bFGF(Prepotek EC,Ltd.),4nM cardiotrophin-1(RD),40nM凝血酶(Sigma)(终浓度),抗生素和L-Glu,如在完全培养基中的。根据得到的细胞的数目(104-4×105细胞/外植块),通过重复吸取它们,然后以约2×105细胞/ml平板接种到聚-D-赖氨酸(BD)包被的多孔平板上,重悬细胞。12-24小时后,若干细胞开始分裂,48小时后,形成细胞团,其经常被薄膜围绕,且可以作为漂浮的球体和粘附的球体生长。每2-3天,部分地更换生长培养基,使用吸管或1ml针头,机械地捣碎球体。为了冷藏,将球体(在无Ca++-Mg++的PBS和Versene中洗涤)重悬在冷冻培养基(完全IMDM/DMEM-Ham-F-12 50∶50,5%B27,10%DMSO)中。为了计算生长曲线,在生长的第一周中,计数所有的球体,然后在指定的时间取出90%球体(并用于RT-PCR或免疫组织化学分析);加入CGM和机械地捣碎剩余的球体后,使它们增殖,直到下一次取样,那时对它们重新计数。如(Roche)所述,对新产生的球体进行BrdU标记12小时,并在指定的时间在其它球体中进行标记。为了克隆分析,如别处所述(12),用表达绿色荧光蛋白(GFP)的第3代慢病毒载体pRRLsin.PPT-PGK.GFP感染了人CS。洗涤2次后,通过依次在无Ca++-Mg++的PBS、Versene和1×胰蛋白酶-EDTA溶液中捣碎,将GFP-标记的CS解离成单个细胞,重悬在CGM中,然后以假定的1细胞/孔的浓度接种到用丝裂霉素-C处理的STO成纤维细胞(2ug/ml)的滋养层包被的96-孔平板中。为了在基质-包被的表面上分化,重复吸取经无Ca++/Mg++的PBS洗涤的、离心的和部分解离的CS,然后在小体积的CEM(200-300μl)中接种到I型胶原-(Sigma)或Matrigel-(Falcon)包被的培养皿上,培养3-6天。
体内分析
为了异位移植,将从出生前的和出生后的EGFP/MLC3F-nLacZ或EGFP/TnI-nLacZ或MLC3F/nLacZ,TnI-nLacZ小鼠得到的约60个混合CS在PBS中洗2次,并悬浮在100μl Matrigel(BD)中,皮下注射到麻醉的(氯胺酮,35mg/kg,肌肉内地)成年NOD-SCID小鼠的背部。透过皮肤直接触摸搏动,监视移植的心球体的存活和功能。约3周后,处死小鼠,将分离的接种物包埋入OCT,用于免疫细胞化学分析。融化后,将源自成年对象的心室和心房心脏外植块的冷藏的人CS的10天培养物用于同位移植。将约20个经洗涤的和部分解离的CS悬浮在3μl PBS中,并使用27号针头和Hamilton注射器,注射进梗塞的心肌区域。如别处所述(13),略作改动,诱导了心肌梗塞。简而言之,用通过心脏前表面上第4肋间隙内的肋间内肌插入的改进的电灼探头,使受体NOD-SCID小鼠(用氯胺酮[35mg/kg]+甲苯噻嗪[5mg/kg]i.p.麻醉)接受经胸廓烧灼(Surgitron 140v)。在注射CS之前,以切割模式应用电灼术(ca.40W)2次1秒(将相同体积的PBS注射进对照小鼠中)。在一些小鼠中,还已经通过LAD结扎诱发了心肌梗塞。约3周后,处死小鼠,在PBS中泛泛洗涤并用在PBS pH 7.4中的低聚甲醛(4%)固定后,将分离的心脏包埋入OCT中。
免疫细胞化学
如别处所述(14),使用下面的抗体,对组织切片和细胞培养物进行了免疫细胞化学分析:单克隆的抗-人-cTnI,抗-人-心脏-MHC,抗-人核和多克隆的(pAb)抗-人ANP(Chemicon);mAb抗-CD-31,CD-34(BD Biosciences),mAb抗-人Cripto-1(RD),单克隆的抗-Ve-钙粘蛋白,抗-sca-1,mAb抗-小鼠-cKit(Pharmigen),mAb抗-人-c-Kit(DAKO);pAb抗-人-von-Willebrand-因子和mAb抗-人-KDR(Sigma);mAb MF20和pAb抗-小鼠/人MHC(14),抗-desmine和抗-平滑肌-肌动蛋白(Sigma),mAb抗-人/小鼠-cTnI(15),由S.Schiaffino(Dept.of Pathology,Univ.of Padua)捐赠,pAb抗-小鼠-flk-1(Santa Cruz,USA)。如别处所述(14),通过光学显微镜检测了β-半乳糖苷酶活性。
反向-PCR转录分析
如别处所述(16),进行了反向-PCR转录分析。用于扩增源自少儿(pCS)、成年对象(aCS)的CS和心脏碎片(H)的基因的寡核苷酸如下:
hNkx2,5(150bp)正向5′-CTCCCAACATGACCCTGAGT-3′和
反向5′-GAGCTCAGTCCCAGTTCCAA-3′,
hANF(350bp)正向5′-AATCAAGTTCAGAGGATGGG-3′和
反向5′-AATGCATGGGGTGGGAGAGG-3′,
hVe-Cad(330bp)正向5′-TCTCTGTCCTCTGCACAA-3′和
反向5′-ATGCAGAGGCTCATGATG-3′,
hGAPDH正向5′-GAAGAGCCAAGGACAGGTAC-3′和
反向5′-CTGCACCACCAACTGCTTAG-3;
用于扩增鼠CS和心脏碎片(H)的基因的寡核苷酸如下:
mMHC(302bp)正向5′-GAAGAGTGAGCGGCGCATCAAGGA-3′和
反向5′-TCTGCTGGAGAGGTTATTCCTCG-3′,
m
Figure A20048002672000161
心脏肌动蛋白(494bp)
正向5′-TGTTACGTCGCCTTGGATTTTGAG-3′和
反向5′-AAGAGAGAGACATATCAGAAGC-3′,
m心脏TnC(410bp)正向5′-AATGGATGACATCTACAAAG-3′和
反向5′-TGAGCTCTTCAATGTCATCT-3′.
mGAPDH正向5′-CCTCTGGAAAGCTGTGGCGT-3′和
反向5′-TTGGAGGCCATGTAGGCCAT-3′。
结果
CS的分离和扩充
通过温和地酶消化外植的人心房或心室活检和胎儿、胚胎和出生后小鼠的心脏,获得球体-产生细胞。从较好粘附的外植块产生一层成纤维细胞样细胞后不久,小的、圆形的透亮的细胞开始在该层上迁移。通过EDTA处理和温和的胰蛋白酶消化,可以定期地收获这些细胞,并使其在低血清(3.5%FCS)培养基(添加了血清替代物(B27),生长因子(EGF和bFGF),cardiothrophin-1(CT-1)(17)和凝血酶(18))中在聚-D-赖氨酸-包被的培养表面上生长,在培养的第一周,与使用单独地或组合地添加了其它因子的培养基得到的结果相比,这使球体数目增加了7倍。对源自人和鼠外植块的细胞的时间进程观察表明,它们接种后早期(30分钟),这些细胞中的一些开始分裂,同时仍然悬浮;大多数细胞变成松散粘附的,其它的保持悬浮,且一些污染性成纤维细胞样细胞紧紧地附着在聚-D-赖氨酸层上。从松散粘附的细胞群也明显地观察到了细胞分裂,并在10-12小时后,产生了小的、圆形的透亮的细胞团[我们将其称作心球体(CS)](图1a)。自它们出现24-36小时内,CS的大小增加,它们中的一些从培养表面脱附;48-72小时后,大多数CS是20-150μm大小,当不进行机械解离时,最大的在它们的内部团块中含有黑色区(图1a)。
鼠CS在它们产生后不久开始自发的节律性收缩活性,并在它们的寿命过程中维持该功能,而人CS仅仅在与大鼠心肌细胞共培养时才这样。为了确认收缩是cs细胞获得的新性状,将gfp-标记的人CS(部分地或完全地解离的)与用或未用dil预染色的心肌细胞共培养。在共培养48小时后,观察到了收缩的gfp-标记的细胞;另外,从该时间起,绿色荧光细胞也染上了红色,表明人CS和大鼠心肌细胞之间建立了联系。实际上,用cx-43(主要的心室间隙连接蛋白)标记人cs/大鼠-心肌细胞共培养物(其中仅人细胞通过慢病毒感染预标记了gfp),证实了沿着细胞质膜的典型的加强荧光图案(图2f),表明在这2个细胞群体之间建立了功能联系。
发现CS由克隆衍生的细胞组成,且并不简单地代表细胞聚集体。实际上,当将人CS[在感染了表达报告基因的慢病毒载体后,表达绿色荧光蛋白(GFP)]或鼠CS(源自eGFP/MLC3F或eGFP/cTrI-小鼠)解离并作为单个细胞平板接种在经丝裂霉素-处理的STO-成纤维细胞-包被的96-孔上或以克隆稀释接种到10cm直径的培养皿上时,以1-10%效率产生了可以亚克隆到聚-D-赖氨酸-包被的表面上的荧光球体(图1c)。这些亚克隆衍生的CS在培养中表现出相同的功能和表型行为:自它们出现3天后,一些鼠克隆开始表现,并在用CEM培养48小时后,它们中的大多数(6/7)表现出核内的lac-Z转基因的表达(在特异性的组织化学染色后)(图1d)。同样地,源自单个GFP-标记的细胞的人克隆在与大鼠心肌细胞共培养48小时后开始同步搏动并表达cTnI。
另外,当将BrdU加入培养基中时,实际上小CS中的几乎所有细胞和最大CS内部的那些细胞被标记(图2a),表明这些细胞是新产生的。
人CS-产生细胞能自我更新。利用定期的解离,以及每2-3天部分地更换生长培养基,得到了球体的对数期扩充(图1b)。小鼠CS的生长较慢(可能是由于培养中承担的更为分化的特征,例如搏动),且如同人的一样是血清-依赖性的(图1b)。
如图2a所示,用抗-BrdU(绿色)和心脏-肌钙蛋白i(ctni)或心房利钠肽(anp)(红色)共焦免疫荧光分析BrdU标记的人CSS,揭示了BrdU-阳性的细胞特别地在球体内部,而ctni-或anp-阳性的细胞主要定位于外层。另外,若干cs-细胞表达心脏分化标记(ctni,anp),同时仍在分裂,如BrdU掺入所表明的(图2a),这表明在对数期生长的过程中,已经发生了早期的心脏分化;一般地,在2-3周内,一些球体变成粘附的,表现出更扁平的形态。一些小细胞最终以能产生新球体的粘附的(分化的)或小的圆形细胞的形式,从这些″太阳样″球体迁移出来。从冷藏融化后,CS再次增殖,维持它们搏动的倾向。
新发生的人和小鼠CS的表型分析揭示了内皮(KDR(人)/flk-1(小鼠),CD-31)和干-细胞(CD-34,ckit,sca-1)标记物的表达。如图2b所示,在2-10细胞阶段的CS能强烈地与针对这些抗原的抗体反应。在更大的球体中,这些标记物中的一些(尤其是cKit)的表达模式类似于BrdU标记(在中心和在一些产生卫星球体的周围区域的阳性染色)。
通过FACS分析,用这些干细胞和内皮标记进行了CS细胞的定量表征的时间进程(0和6天)(图21:如所示的,在它们开始形成时(T0),这些细胞的表型似乎反映epi-荧光显微分析,对所有4种表型有约10%阳性染色。但是,在第6天(T6),cKit作为唯一保守的标记物出现,表明cKit+细胞可能是有助于维持增殖的主要细胞,而对其它标记的初始阳性可能反映出早期活化状态,如已经在几个系统中关于CD-34所指明的(19)。对冷冻切片的人CS进行的荧光显微术分析揭示了心脏-分化标记(cTnI,MHC)和内皮标记[von Willebrand因子(vWf)]的表达(图2c)。当完全地或部分解离成单细胞并在胶原-包被的培养皿上在与外植块相同的培养基中培养时,小鼠和人CS-衍生的细胞呈现出了典型的心肌细胞形态学,表型(图d-d1,h)和功能(通过自发性收缩证实(仅仅在小鼠中))。
如前所述,人CS不能自发地搏动;但是,当与出生后的大鼠心肌细胞共培养时,它们在24小时内开始搏动,在该时刻之后,丧失它们的球体形状,并呈现出″太阳样″外观。在人标记的CS-细胞中,心脏分化的标记物与GFP共表达(图2e)。
为了追踪在出生前和出生后年龄过程中CS的分化过程,使用了MLC3F-nlacZ和cTnI-nlacZ小鼠(8,9)。这些小鼠表达定位于核内的一种形式的lacZ转基因,该转基因分别在骨骼肌和心肌肌球蛋白轻链或心脏肌钙蛋白I启动子的控制下。从胚胎第9-12天、胎儿第17-18天、新生的和成年的小鼠得到的CS,表现出了报告基因的自发表达,在采用的不同培养条件下,以可变的球体百分比(10-60%)(图2e);另外,如同人的,来自小鼠的CS产生细胞表达干细胞(CD-34,sca-1,cKit)和内皮细胞标记物(flk-1,CD-31)。
在此基础上,我们使用表达在c-kit启动子控制下的绿色荧光蛋白(GFP)的转基因小鼠(10),进一步阐明这些球体的细胞来源,并追踪它们的生长过程的模式。如图2i所示,从开始形成CS时,就存在GFP-阳性的细胞,且虽然具有减低的荧光强度,以后也在CS的细胞团块内和在从老的″太阳样″粘附CS迁移的细胞中。另外,如人CS的生长模式所暗示的,当卫星二代CS表现出从原代CS脱附时,GFP-阳性细胞定位于后者的边缘和在前者的内部。
我们在由GFP-cKit/MLC3F-nlacZ或GFP-cKit/cTnI-nLacZ杂交得到的双-杂合小鼠中研究了该过程:如图2i所示,β-Gal-阳性没有与GFP共同定位于存在于生长区内的细胞中。
总之,CS似乎是心脏干细胞、分化祖细胞和甚至自发分化的心肌细胞的混合物。取决于球体的大小和培养的时间,也可以存在血管细胞。关于神经球体(20),分化中的/分化了的细胞可能停止分裂和/或死亡,而干细胞以明显非对称的方式继续增殖,产生许多二代球体,并在体外指数生长。机械的解离有利于该过程。在CS内的不同细胞的死亡、分化和对生长因子的反应性,可取决于它的三维结构和在CS内的定位(21-22)。球体的自发形成是神经干细胞、一些肿瘤细胞系(LIM)(22)、内皮细胞(23)和胎鸡心肌细胞(24)的已知特权。所有这些模拟组织的真实三维结构的模型(包括我们的),由聚集细胞的球形体组成,所述聚集细胞发展成由分化细胞表层和无组织细胞核心组成的双区室系统,所述无组织细胞首先增殖,此后随时间消失(可能通过凋亡性细胞死亡)。如在胎鸡心肌细胞和内皮细胞球形体培养中充分证实的,三维结构影响细胞对存活和生长因子的敏感性(22,23)。更具体地,中心的球形体细胞不分化,且依赖于存活因子而防止细胞凋亡,而表层细胞的分化似乎超过了可以在二维培养中得到的程度,且变得不依赖于存活因子的活性。另外,如″生态位″假说所提出的(26),根据干细胞只在适当的环境中保持它们的多能性的观点,已知细胞-细胞接触和膜-相关因子对于神经前体细胞的分裂是重要的(25)。
为了研究CS在体内的存活和形态-功能潜力,进行了2组实验:在第一组中,将CS细胞注射进SCID小鼠的背部皮下区域;在第二组中,将它们注射进心肌梗塞后急性期的SCID-浅褐色小鼠的心脏。异位移植实验的目的是研究CS在中性环境(即没有特殊心脏诱导的环境)中的生长模式和行为,以验证它们产生主要心脏细胞类型的独特潜力,并排除致瘤性转化的可能性。为了这些实验,使用了来自出生前的和出生后的MLC3F-nlacZ/B5-eGFP TnI-nlacZ/B5-eGFP小鼠或MLC3F-nlacZ/CD-1和cTnI-nlacZ/CD-1小鼠的约60混合球体/接种物/小鼠。在前10天,通过远离大血管的注射部位上方的皮肤,可感知搏动。在第17天,处死动物,识别接种物为半透明的结构、谷粒样大小、包在有分支的血管样结构中。通过荧光显微术观察未固定的冷冻切片,揭示了开放球体的存在,细胞似乎已从该球体迁移;″黑洞″簇,尤其是在该结构的周边,是明显的。该组织包含管状结构,被核围绕(Hoechst-阳性),鉴定为心肌节,因为它们是cTnI和肌节肌球蛋白阳性的(图3a)。α-SMA-阳性结构(已知在心肌发生过程中瞬时表达(27))存在于球体的剩余部分中,且与脉管系统(″黑洞″簇)相关:这呈现出具有表达Ve-钙粘蛋白的薄内皮的良好分化的结构(图3a)和相对较大的含有红细胞的内腔,表明宿主建立了成功的灌注。X-Gal染色后,通过光学显微镜观察接种物,显示出横纹肌-特异性的lacZ在球体的剩余部分和靠近它们的一些细胞中强烈的核表达。没有观察到提示存在肿瘤形成的多分化结构。
为了测试当激发到梗塞的心肌中时CS的功能能力和心脏再生潜力的获得,用人CS进行了同位移植实验。为此,将融化的(冷藏的)取自三个心房(1名男性和2名女性)和一个心室(1名女性)的活检的成年人CS注射进新鲜产生的梗塞边缘处的活心肌。每只小鼠接受了来自单一传代外植块(源自单一对象)的CS。给4只对照梗塞动物注射了等体积的PBS。自干预起18天后,处死动物,测量梗塞大小。在CS-处理组和PBS-注射组中,梗塞大小分别是34.9±7.1(3.6)和31.9±6.9(3.5)(p=n.s.)。但是,超声心动图显示了与PBS-注射组相比,在CS-处理组中更好地保存了梗塞的前壁厚度(0.80±0.29(0.15)vs.0.60±0.20(0.08)p=n.s.),特别是FS%(36.85±16.43(8.21)vs.17.87±5.95(2.43)p<0.05)(图3-表1)。
在评价时,如用苏木精-伊红组织化学和MHC免疫荧光所评价的,在大部分梗塞区中,存在再生心肌带(具有不同程度的组构和厚度)(图3c)。在再生心肌中,表达核纤层蛋白A/C(一种特异性的人核标记物)的细胞也与MHC染色阳性的心肌细胞、平滑肌α-肌动蛋白和PECAM染色的新产生的毛细血管(图3c)和表达连接蛋白-43的细胞(如在共培养实验中,其定义了人细胞和再生心肌之间的关联)共定位。
因而,可以将CS视作成年干细胞的克隆,在冷藏后也能维持它们在体外和体内的功能性质。
在准备本原稿的同时,已经公开了2篇文章,它们涉及从成年哺乳动物心脏分离心脏干细胞或祖细胞(28,29)。这些细胞的分离仅仅基于干细胞-相关表面抗原的表达:第一篇文章中的c-kit和第二篇文章中的Sca-1。在第1项研究中(28),发现从大鼠心脏新鲜分离的c-kit阳性Lin-细胞是自我更新的、可形成克隆的和多能性的,表现出向生肌的平滑肌细胞或内皮细胞系的生化分化,但是与在本文所述的条件下生长的细胞不同,不能自发地收缩。当注射进缺血的心脏中时,这些细胞再生功能性心肌。在第2项研究中(29),在体外诱导来自小鼠心脏的Sca-1+ cKit阴性细胞,以对5′-氮杂胞苷作出响应而向生心肌系分化。当在缺血/再灌注后静脉内地施用时,这些细胞归巢至受损的心肌,并分化成与和不与宿主细胞融合的心肌细胞。我们在GFP-cKit转基因小鼠上得到的数据也表明,该成年心脏干细胞是cKit阳性。可能CS包封混合的细胞群,后者作为生态位可促进cKit祖细胞的生存力,并有助于它们的增殖。在本文章中得到的数据,证实了成年心脏干细胞的存在。更重要地,它们首次证实了可以从非常小的人心肌碎片分离细胞,并在体外扩充这些细胞许多倍(达到适于在患者中进行体内移植的数目),而不丧失它们的分化潜力,从而开辟以前未预见到的心肌修复的机会。
转基因小鼠
为了追踪在出生前和出生后的年龄过程中CS的分化过程,使用了MLC3F-nlacZ和TnI-nLacZ小鼠。这些小鼠表达定位于核内的一种形式的lacZ转基因,该转基因分别在骨骼肌和心肌肌球蛋白轻链或心脏肌钙蛋白I启动子的控制下(8,9)。从胚胎第9-12天、胎儿第17-18天、新生的和成年的小鼠得到的CS,表现出了报告基因的自发表达,在采用的不同培养条件下以可变的球体百分比(10-60%)(图4a);另外,小鼠CS在开始形成时(特别是在胚胎中)就开始搏动,并在它们的寿命过程中持续搏动。人CS表达干细胞(CD-34,sca-1,cKit)和内皮细胞标记物(flk-1,CD-31)。
为了进一步阐明这些球体的细胞来源,并追踪它们的生长过程的模式,我们使用了在c-kit启动子控制下表达绿色荧光蛋白(GFP)的转基因小鼠(10)。从开始形成CS时,就存在GFP-阳性的细胞,且虽然具有减低的荧光强度,以后也是如此。另外,如人CS的生长模式所提示的,当卫星二代CS开始从原代CS脱附时,GFP-阳性的细胞定位于后者的边缘和在前者的内部。我们在通过EGFP-cKit/MLC3F-nlacZ或TnI-nLacZ杂交得到的双-杂合的小鼠中研究了该过程。如图4b所示,β-Gal-阳性没有与EGFP共同定位在存在于生长区内的细胞中。
遗传表型
图5显示了在鼠或人CS RNA提取物上建立的RT-PCR图。与鼠样品相比,心脏祖细胞的更典型的特征似乎是人样品的(在对数生长期),其中增殖和分化更容易一起发生。
参考文献
1.Soonpaa MH,Field LJ.Survey of studies examining mammaliancardiomyocyte DNA synthesis.Circ Res.1998 Jul 13;83(1):15-26.
2.Nadal-Ginard B,Kajstura J,Leri A,Anversa P.Myocyte death,growth,and regeneration in cardiac hypertrophy and failure.Circ Res.2003 Feb 7;92(2):139-50.
3.Laflamme MA,Myerson D,Saffitz JE,Murry CE.Evidence forcardiomyocyte repopulation by extracardiac progenitors in transplanted humanhearts.Circ Res.2002Apr 5;90(6):634-40.
4.Glaser R,Lu MM,Narula N,Epstein JA.Smooth muscle cells,but notmyocytes,of host origin in transplanted human hearts.Circulation.2002 Jul.2;106(1):17-9.
5.Reffelmann T,Kloner RA.Cellular cardiomyoplasty-cardiomyocytes,skeletal myoblasts,or stem cells for regenerating myocardium and treatmentof heart failure?Cardiovasc Res.2003 May 1;58(2):358-68.
6.Dowell JD,Rubart M,Pasumarthi KB,Soonpaa MH,Field LJ.Myocyte andmyogenic stem cell transplantation in the heart.Cardiovasc Res.2003 May 1;58(2):336-50.
7.Passier R,Mummery C.Origin and use of embryonic and adult stem cellsin differentiation and tissue repair.Cardiovasc Res.2003 May 1;58(2):324-35.
8.Kelly R,Alonso S,Tajbakhsh S,Cossu G,Buckingham M.Myosin lightchain 3F regulatory sequences confer regionalized cardiac and skeletal muscleexpression in transgenic mice.J Cell Biol.1995 Apr;129(2):383-96.
9.Di Lisi R,Millino C,Calabria E,Altruda F,Schiaffino S,Ausoni S.Combinatorial cis-acting elements control tissue-specific activation of thecardiac troponin I gene in vitro and in vivo.J Biol Chem.1998 Sep 25;273(39):25371-80.
10.Cairns L A,Moroni E,Levantini E,Giorgetti A,Klinger F G,RonzoniS,Tatangelo L,Tiveron C,De Felici M,Dolci S,Magli M C,Giglioni B,Ottolenghi S.c-kit regulatory elements required for expression in developinghematopoietic and germ cell lineages.Blood.2003 Dec 1;102(12):3954-62.
11.Hadjantonakis AK,Gertsenstein M,Ikawa M,Okabe M,Nagy A.Generatinggreen fluorescent mice by germline transmission of green fluorescent ES cells.Mech Dev.1998 Aug;76(1-2):79-90.
12.Follenzi A,Ailles LE,Bakovic S,Geuna M,Naldini L.Gene transferby lentiviral vectors is limited by nuclear translocation and rescued by HIV-1pol sequences.Nat Genet.2000 Jun;25(2):217-22.
13.Brooks WW,Garibaldi BA,Conrad CH.Myocardial injury in the mouseinduced by transthoracic cauterization.Lab Anim Sci.1998 Aug;48(4):374-8.
14.Tajbakllsh S,Vivarelli E,Cusella-De Angelis G,Rocancourt D,Buckingham M,Cossu G.A population of myogenic cells derived from the mouseneural tube.Neuron.1994 Oct;13(4):813-21.
15.Ausoni S,Campione M,Picard A,Moretti P,Vitadello M,De Nardi C,Schiaffino S.Structure and regulation of the mouse cardiac troponin I gene.J Biol Chem.1994 Jan 7;269(1):339-46.
16.Ferrari S,Molinari S,Melchionna R,Cusella-De Angelis MG,BattiniR,De Angelis L,Kelly R,Cossu G.Absence of MEF2 binding to the A/T-richelement in the muscle creatine kinase(MCK)enhancer correlates with lack ofearly expression of the MCK gene in embryonic mammalian muscle.Cell GrowthDiffer.1997 Jan;8(1):23-34.
17.Pennica D,King KL,Shaw KJ,et al.Expression cloning ofcardiotrophinl,a cytokine that induces cardiac myocyte hypertrophy.Proc NatlAcad Sci USA.1995;92:1142-1146.
18.Sabri A,Guo J,Elouardighi H,Darrow AL,Andrade-Gordon P,SteinbergSF.Mechanisms of protease-activated receptor-4 actions in cardiomyocytes.Role of Src tyrosine kinase.J Biol Chem.2003 Mar 28;278(13):11714-20.
19.Zammit PS,Beauchamp jr.The skeletal muscle satellite cell.:stemcell or son of stem cell?Differentiation 2001;68:193-204.
20.Galli R,Gritti A,Bonfanti L,Vescovi Al.Neural Stem Cells:AnOverview.Circ Res.2003;92:598-608.
21.Layer Pg,Robitzki A,Rothermel A,Willbold E.Of Layers And Spheres:The Reaggregate Approach In Tissue Engineering.Trends Neurosci.2002;25:131-134.
22.Bates Rc,Edwards Ns,Yates Jd.Spheroids And Cell Survival.Crit RevOncol Hematol.2000;36:61-74.
23.Korff T,Augustin Hg.Integration Of Endothelial Cells InMulticellular Spheroids Prevents Apoptosis And Induces differentiation.J cellbiol.1998;143:1341-1352.
24.Armstrong Mt,Lee Dy,Armstrong Pb.Regulation Of Proliferation OfThe Fetal Myocardium.Dev Dyn.2000;219:226-36.
25.Svendsen Cn,Ter  Borg Mg,Armstrong Rj,Rosser Ae,Chandran S,Ostenfeld T,Caldwell Ma.A New Method For The Rapid And Long Term Growth OfHuman Neural Precursor Cells.J Neurosci Methods.1998;85:141-152.
26.Schofield R.The Relationship Between The Spleen Colony-Forming CellAnd The Haemopoietic Stem Cell.Blood Cells.1978;4:7-25.
27.Kruithof Bp,Van Den Hoff Mj,Tesink-Taekema S,Moorman  Af.Recruitment Of Intra-And Extracardiac Cells Into The Myocardial Lineage DuringMouse Development.Anat Rec.2003;271a:303-314.
28.Beltrami Ap,Barlucchi L,Torella D,Baker M,Limana F,Chimenti S,Kasahara H,Rota M,Musso E,Urbanek K,Leri A,Kajstura J,Nadal-Ginard B,Anversa P.Adult Cardiac Stem Cells Are Multipotent And Support MyocardialRegeneration.Cell.2003;114:763-776.
29.Oh H,Bradfute Sb,Gallardo Td,Nakamura T,Gaussin V,Mishina Y,Pocius J,Michael Lh,Behringer Rr,Garry Dj,Entman M1,Schneider Md.CardiacProgenitor Cells From Adult Myocardium:Homing,Differentiation,And FusionAfter Infarction.Proc Natl Acad Sci USA.2003;100:12313-12318.

Claims (11)

1.获得能修复受损的心肌组织的干细胞的方法,其包括下述步骤:
a)取心脏组织的活检标本,并将其保持在适当的培养基中;
b)在适当的条件下,用温和的机械的和/或化学的和/或酶促技术处理标本,得到组织碎片,其大小足以允许培养基中存在的营养物的扩散;
c)使组织碎片粘附到适当的固相支持体上,并将它们维持在含有合适的血清和/或生长因子的培养基中;
d)使细胞生长,部分地或全部地更换培养基,直到形成多细胞结构,其弱粘附或不粘附到所述支持体上;
e)从剩余的培养物中分离所述的多细胞结构;
f)通过温和的解离处理所述的多细胞结构,直到大部分小的透亮的球形细胞脱附,但是维持它们的形态和功能特征;
g)将细胞平板接种在用聚赖氨酸或其它促进培养物向支持体粘附的试剂处理的培养基质上,在至少含有用于哺乳动物细胞生长的极限必需组分的培养基中;
h)可能重复步骤d)-g)至少一次;
i)选择聚集成透亮的球形体结构(心球体)的细胞;
l)通过它们的温和解离和新的形成,有选择地促进新心球体的形成;
m)最后冷藏心球体,准备在融化后使用。
2.根据权利要求1的方法,其中干细胞源自非-胚胎的心脏组织活检。
3.根据权利要求1的方法,其特征在于,至少一个步骤是在用不同于正常情况存在于大气中的氧浓度处理以改变培养物的生物学特征之后。
4.根据权利要求1的方法,其特征在于,衍生的心球体能在自发转化或由化学的、物理的或生物的活性因子诱导的转化后,产生连续细胞系。
5.根据权利要求1的方法,其特征在于,产生和/或构成心球体的细胞进一步与其它细胞融合。
6.根据权利要求1的方法,其特征在于,产生和/或构成心球体的细胞用于向和从其它细胞核转移。
7.根据权利要求1的方法,其中使产生和/或构成心球体的细胞在至少一个阶段生长在可生物降解的和/或生物相容的支持体上。
8.根据权利要求1的方法,其中在生物反应器和/或发酵罐中培养产生和/或构成心球体的细胞。
9.可以根据前述权利要求的方法得到的产生和/或构成心球体的能修复心肌组织的细胞。
10.根据权利要求9的产生和/或构成心球体的细胞用于基因治疗。
11.根据权利要求9的产生和/或构成心球体的细胞用于向和从其它细胞核转移。
CNA200480026720XA 2003-07-31 2004-07-29 从活检分离和扩充心脏干细胞的方法 Pending CN1852973A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITRM2003A000376 2003-07-31
IT000376A ITRM20030376A1 (it) 2003-07-31 2003-07-31 Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.

Publications (1)

Publication Number Publication Date
CN1852973A true CN1852973A (zh) 2006-10-25

Family

ID=29765944

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200480026720XA Pending CN1852973A (zh) 2003-07-31 2004-07-29 从活检分离和扩充心脏干细胞的方法

Country Status (6)

Country Link
US (6) US8268619B2 (zh)
EP (2) EP2465921A3 (zh)
CN (1) CN1852973A (zh)
CA (2) CA2534378C (zh)
IT (1) ITRM20030376A1 (zh)
WO (1) WO2005012510A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215547B (zh) * 2008-01-15 2011-06-08 刘岱良 一种分离、纯化及提取脂肪间充质干细胞的方法
CN108179133A (zh) * 2018-02-06 2018-06-19 广州大学 c-kit+心脏干细胞聚集体及分泌合成培养液在制备药物中应用
CN108359635A (zh) * 2018-02-06 2018-08-03 广州大学 一种用于富集纯化c-kit+心脏干细胞的复合涂层及其制备方法
CN113207298A (zh) * 2019-12-02 2021-08-03 T&R碧欧法博有限公司 提高在冷冻保存及低氧条件下的存活率的心肌细胞聚集体制备技术

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075881B2 (en) * 1999-08-05 2011-12-13 Regents Of The University Of Minnesota Use of multipotent adult stem cells in treatment of myocardial infarction and congestive heart failure
US7015037B1 (en) * 1999-08-05 2006-03-21 Regents Of The University Of Minnesota Multiponent adult stem cells and methods for isolation
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
WO2006052925A2 (en) * 2004-11-08 2006-05-18 The Johns Hopkins University Cardiac stem cells
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
US8119123B2 (en) * 2006-02-16 2012-02-21 New York Medical College Compositions comprising vascular and myocyte progenitor cells and methods of their use
CN101384706B (zh) 2006-02-16 2013-11-06 圣拉法埃莱医院有限公司 骨骼肌周成血管细胞和心脏中成血管细胞、其分离方法和用途
GB2452466B (en) 2006-07-13 2011-08-31 Cellartis Ab A novel population of multipotent cardiac precursor cells derived from human blastocysts derived stem cells
US20100093089A1 (en) * 2006-11-09 2010-04-15 Eduardo Marban Dedifferentiation of adult mammalian cardiomyocytes into cardiac stem cells
WO2008080200A1 (en) * 2006-12-29 2008-07-10 Irina Kerkis Process for obtaining stem cells
WO2008081457A2 (en) * 2007-01-04 2008-07-10 Ramot At Tel Aviv University Ltd. Methods of isolating cardiac stem cells, banking and uses thereof
DE102007008650B4 (de) * 2007-02-20 2012-06-06 Charité - Universitätsmedizin Berlin Zellen zur Therapie des Herzens
EP2451941B1 (en) * 2009-07-09 2018-06-13 Janssen Biotech, Inc. Cardiac tissue-derived cells
SG10201404280XA (en) * 2009-07-21 2014-10-30 Abt Holding Co Use of stem cells to reduce leukocyte extravasation
US20150010640A1 (en) * 2009-10-27 2015-01-08 Cedars-Sinai Medical Center Bi-functional compositions for targeting cells to diseased tissues and methods of using same
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
CA2798895A1 (en) 2010-05-12 2011-11-17 Abt Holding Company Modulation of splenocytes in cell therapy
WO2012048275A2 (en) 2010-10-08 2012-04-12 Caridianbct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US20150064141A1 (en) 2012-04-05 2015-03-05 The Regents Of The University Of California Regenerative sera cells and mesenchymal stem cells
EP2861238A4 (en) * 2012-06-05 2016-03-16 Capricor Inc OPTIMIZED METHODS FOR GENERATING CARDIAC STEM CELLS FROM CARDIAC TISSUE AND THEIR USE IN CARDIAC THERAPY
EP2882445B1 (en) 2012-08-13 2019-04-24 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
US20160022870A1 (en) * 2013-03-15 2016-01-28 Cyfuse Biomedical K.K. Cardiac or vascular tissue spheroid
GB201304831D0 (en) 2013-03-15 2013-05-01 Coretherapix Slu Adult cardiac stem cell population
PT2983680T (pt) 2013-04-12 2020-10-29 Abt Holding Co Melhoria de órgãos para transplante
JP6612227B2 (ja) 2013-11-16 2019-11-27 テルモ ビーシーティー、インコーポレーテッド バイオリアクターにおける細胞増殖
US9987310B2 (en) 2013-11-27 2018-06-05 University Of Louisville Research Foundation, Inc. Cardiac progenitor cells and methods of use therefor
EP3122866B1 (en) 2014-03-25 2019-11-20 Terumo BCT, Inc. Passive replacement of media
JP6830059B2 (ja) 2014-09-26 2021-02-17 テルモ ビーシーティー、インコーポレーテッド スケジュール化された細胞フィーディング
US11357799B2 (en) 2014-10-03 2022-06-14 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
EP3402543B1 (en) 2016-01-11 2021-09-08 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
WO2017160884A1 (en) 2016-03-14 2017-09-21 Capricor, Inc. Methods of treating ocular inflammation and chemical injuries of the eye with extracellular vesicles
EP3432988B1 (en) 2016-03-22 2023-12-06 Capricor, Inc. Extracellular vesicles for preventing or treating cutaneous injury
JP7034949B2 (ja) 2016-05-25 2022-03-14 テルモ ビーシーティー、インコーポレーテッド 細胞の増殖
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
WO2018057542A1 (en) 2016-09-20 2018-03-29 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
CN110612344B (zh) 2017-03-31 2023-09-12 泰尔茂比司特公司 细胞扩增
EP3612191A4 (en) 2017-04-19 2020-12-30 Cedars-Sinai Medical Center METHODS AND COMPOSITIONS FOR TREATING SKELETAL MUSCLE DYSTROPHY
KR102182513B1 (ko) * 2017-06-30 2020-11-25 인제대학교 산학협력단 인간 유래 심장 줄기세포 미세구의 제조 방법 및 용도
US20210085724A1 (en) 2017-08-04 2021-03-25 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles for treatment and prevention of cancer
US11660355B2 (en) 2017-12-20 2023-05-30 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery
GB2619893A (en) 2021-03-23 2023-12-20 Terumo Bct Inc Cell capture and expansion

Family Cites Families (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470876A (en) * 1966-09-28 1969-10-07 John Barchilon Dirigible catheter
US4106488A (en) 1974-08-20 1978-08-15 Robert Thomas Gordon Cancer treatment method
US3964468A (en) * 1975-05-30 1976-06-22 The Board Of Trustees Of Leland Stanford Junior University Bioptome
US4659839A (en) 1984-10-10 1987-04-21 Mallinckrodt, Inc. Coupling agents for radiolabeled antibody fragments
US4960134A (en) * 1988-11-18 1990-10-02 Webster Wilton W Jr Steerable catheter
US5175004A (en) * 1988-12-27 1992-12-29 Matsumura Kenneth N Propagatable, new combinant cells for cellular replacement therapy
US4921482A (en) * 1989-01-09 1990-05-01 Hammerslag Julius G Steerable angioplasty device
US5052402A (en) * 1989-01-31 1991-10-01 C.R. Bard, Inc. Disposable biopsy forceps
US6326198B1 (en) 1990-06-14 2001-12-04 Regents Of The University Of Michigan Methods and compositions for the ex vivo replication of stem cells, for the optimization of hematopoietic progenitor cell cultures, and for increasing the metabolism, GM-CSF secretion and/or IL-6 secretion of human stromal cells
US5401629A (en) * 1990-08-07 1995-03-28 The Salk Institute Biotechnology/Industrial Associates, Inc. Assay methods and compositions useful for measuring the transduction of an intracellular signal
ES2077007T3 (es) * 1990-12-07 1995-11-16 Ruesch Willy Ag Instrumento medico con cabeza orientable.
US5228441A (en) 1991-02-15 1993-07-20 Lundquist Ingemar H Torquable catheter and method
US5329923A (en) 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
US5454787A (en) 1991-02-15 1995-10-03 Lundquist; Ingemar H. Torquable tubular assembly and torquable catheter utilizing the same
AU660444B2 (en) 1991-02-15 1995-06-29 Ingemar H. Lundquist Torquable catheter and method
US5315996A (en) 1991-02-15 1994-05-31 Lundquist Ingemar H Torquable catheter and method
US5981165A (en) * 1991-07-08 1999-11-09 Neurospheres Holdings Ltd. In vitro induction of dopaminergic cells
US6291384B1 (en) * 1991-11-06 2001-09-18 Mobil Oil Corporation High activity catalyst prepared with alkoxysilanes
US5287857A (en) * 1992-06-22 1994-02-22 David Mann Apparatus and method for obtaining an arterial biopsy
US5243167A (en) 1992-09-16 1993-09-07 Ingemar H. Lundquist Apparatus and method for manufacturing a slotted torque tube
US5334145A (en) 1992-09-16 1994-08-02 Lundquist Ingemar H Torquable catheter
US5383852A (en) * 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
US5368564A (en) 1992-12-23 1994-11-29 Angeion Corporation Steerable catheter
US5492825A (en) * 1993-08-06 1996-02-20 The Regents Of The University Of California Mammalian inward rectifier potassium channel cDNA, IRK1, corresponding vectors, and transformed cells
US5616568A (en) * 1993-11-30 1997-04-01 The Research Foundation Of State University Of New York Functionalized derivatives of hyaluronic acid
US5454827A (en) 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
US5840502A (en) 1994-08-31 1998-11-24 Activated Cell Therapy, Inc. Methods for enriching specific cell-types by density gradient centrifugation
US5702905A (en) 1994-09-28 1997-12-30 Spectral Diagnostics Monoclonal antibody to human ventricular myosin light chains
US5551427A (en) 1995-02-13 1996-09-03 Altman; Peter A. Implantable device for the effective elimination of cardiac arrhythmogenic sites
US5715832A (en) * 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US5925567A (en) 1995-05-19 1999-07-20 T. Breeders, Inc. Selective expansion of target cell populations
US5702433A (en) * 1995-06-27 1997-12-30 Arrow International Investment Corp. Kink-resistant steerable catheter assembly for microwave ablation
ATE365808T1 (de) 1995-07-28 2007-07-15 Marie Curie Cancer Care Transportproteine und deren verwendungen
FR2739621B1 (fr) 1995-10-05 1997-12-05 Centre Nat Rech Scient Peptides utilisables comme vecteurs pour l'adressage intracellulaire de molecules actives
US6337387B1 (en) 1995-11-17 2002-01-08 Asahi Kasei Kabushiki Kaisha Differentiation-suppressive polypeptide
US5762069A (en) 1995-12-29 1998-06-09 Akos Biomedical, Inc. Multiple sample biopsy forceps
US5856155A (en) * 1996-02-23 1999-01-05 The Johns Hopkins University School Of Medicine Compounds and related methods for modulating potassium ion channels and assays for such compounds
US5824031A (en) 1996-02-28 1998-10-20 Cardio Source Apparatus and method for deflecting a tip of a lead or catheter
US6132390A (en) 1996-02-28 2000-10-17 Eupalamus Llc Handle for manipulation of a stylet used for deflecting a tip of a lead or catheter
US5782748A (en) * 1996-07-10 1998-07-21 Symbiosis Corporation Endoscopic surgical instruments having detachable proximal and distal portions
GB9615726D0 (en) 1996-07-26 1996-09-04 Medical Res Council Anti-viral agent 11
US5955275A (en) * 1997-02-14 1999-09-21 Arcaris, Inc. Methods for identifying nucleic acid sequences encoding agents that affect cellular phenotypes
US6017735A (en) 1997-01-23 2000-01-25 Marie Curie Cancer Care Materials and methods for intracellular transport and their uses
US6416510B1 (en) 1997-03-13 2002-07-09 Biocardia, Inc. Drug delivery catheters that attach to tissue and methods for their use
US6547787B1 (en) 1997-03-13 2003-04-15 Biocardia, Inc. Drug delivery catheters that attach to tissue and methods for their use
US6086582A (en) 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US6443949B2 (en) 1997-03-13 2002-09-03 Biocardia, Inc. Method of drug delivery to interstitial regions of the myocardium
US6511477B2 (en) 1997-03-13 2003-01-28 Biocardia, Inc. Method of drug delivery to interstitial regions of the myocardium
US6099832A (en) 1997-05-28 2000-08-08 Genzyme Corporation Transplants for myocardial scars
US5851212A (en) 1997-06-11 1998-12-22 Endius Incorporated Surgical instrument
US5899914A (en) 1997-06-11 1999-05-04 Endius Incorporated Surgical instrument
US6004295A (en) 1997-06-26 1999-12-21 An-Go-Gen Inc. Catheters
EP1007631B2 (en) * 1997-07-14 2009-02-18 Osiris Therapeutics, Inc. Cardiac muscle regeneration using mesenchymal stem cells
US7514074B2 (en) * 1997-07-14 2009-04-07 Osiris Therapeutics, Inc. Cardiac muscle regeneration using mesenchymal stem cells
GB9718609D0 (en) 1997-09-02 1997-11-05 Imp College Innovations Ltd Fusion protein
US6123699A (en) 1997-09-05 2000-09-26 Cordis Webster, Inc. Omni-directional steerable catheter
US7037648B1 (en) * 1997-11-07 2006-05-02 John Hopkins University Somatic transfer of modified genes to predict drug effects
US5938603A (en) 1997-12-01 1999-08-17 Cordis Webster, Inc. Steerable catheter with electromagnetic sensor
US6203487B1 (en) * 1997-12-31 2001-03-20 Thomas Jefferson University Use of magnetic particles in the focal delivery of cells
WO1999039624A1 (en) 1998-02-05 1999-08-12 Biosense Inc. Intracardiac drug delivery
WO1999049015A2 (en) 1998-03-23 1999-09-30 Zymogenetics, Inc. Cardiac-derived stem cells
US6296630B1 (en) 1998-04-08 2001-10-02 Biocardia, Inc. Device and method to slow or stop the heart temporarily
US20010044619A1 (en) 1998-04-08 2001-11-22 Peter A. Altman Cardiac drug delivery system and method for use
US6171610B1 (en) * 1998-04-24 2001-01-09 University Of Massachusetts Guided development and support of hydrogel-cell compositions
US6165164A (en) 1999-03-29 2000-12-26 Cordis Corporation Catheter for injecting therapeutic and diagnostic agents
US6540725B1 (en) 1998-06-04 2003-04-01 Biosense Webster, Inc. Injection catheter with controllably extendable injection needle
DE19833476B4 (de) 1998-07-24 2005-08-25 Huss, Ralf, Dr. Genetisch modifizierte CD34-Negative, adhärent wachsende hämatopoetische Stammzellen und deren Verwendung in der Gentherapie
US6102887A (en) 1998-08-11 2000-08-15 Biocardia, Inc. Catheter drug delivery system and method for use
US6074408A (en) * 1998-10-13 2000-06-13 Freeman; Kenneth V. Modular medical instrument and method of using same
US6572611B1 (en) * 1998-11-23 2003-06-03 C. R. Bard, Inc. Intracardiac grasp catheter
US6193763B1 (en) 1998-12-17 2001-02-27 Robert A. Mackin Apparatus and method for contemporaneous treatment and fluoroscopic mapping of body tissue
AUPP785098A0 (en) * 1998-12-21 1999-01-21 Victor Chang Cardiac Research Institute, The Treatment of heart disease
US6783510B1 (en) * 1999-07-08 2004-08-31 C.R. Bard, Inc. Steerable catheter
US7015037B1 (en) 1999-08-05 2006-03-21 Regents Of The University Of Minnesota Multiponent adult stem cells and methods for isolation
AU6519100A (en) 1999-08-05 2001-03-05 Biocardia, Inc. A system and method for delivering thermally sensitive and reverse-thermal gelation matrials
SE9903185D0 (sv) 1999-09-08 1999-09-08 Europ I Of Science Ab Terapeutisk metod och anordning baserad på magnetism
EP1218489B1 (en) * 1999-09-24 2009-03-18 Cybios LLC Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US20030161817A1 (en) * 2001-03-28 2003-08-28 Young Henry E. Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US6716242B1 (en) 1999-10-13 2004-04-06 Peter A. Altman Pulmonary vein stent and method for use
CA2403279A1 (en) 1999-10-13 2001-04-19 Biocardia, Inc. Pulmonary vein arrhythmia diagnostic device and method for use
US6224587B1 (en) * 1999-11-22 2001-05-01 C.R. Bard, Inc. Steerable catheter
WO2001037721A2 (en) 1999-11-22 2001-05-31 The Research Foundation Of State University Of New York Magnetic nanoparticles for selective therapy
US6866843B2 (en) * 1999-12-06 2005-03-15 Viacell, Inc. Method of transplanting in a mammal and treating diabetes mellitus by administering a pseudo-islet like aggregate differentiated from a nestin-positive pancreatic stem cell
WO2001048151A1 (fr) 1999-12-28 2001-07-05 Kyowa Hakko Kogyo Co., Ltd. Cellules pouvant induire une differenciation dans des cellules du muscle cardiaque
US6818757B2 (en) * 2000-01-14 2004-11-16 Beth Israel Deaconess Medical Center Cardiac-cell specific enhancer elements and uses thereof
US6530944B2 (en) 2000-02-08 2003-03-11 Rice University Optically-active nanoparticles for use in therapeutic and diagnostic methods
US6585716B2 (en) 2000-04-05 2003-07-01 Biocardia, Inc. Method of treating the heart
US6478776B1 (en) 2000-04-05 2002-11-12 Biocardia, Inc. Implant delivery catheter system and methods for its use
US20040087016A1 (en) * 2000-05-12 2004-05-06 University Of Utah Research Foundation Compositions and methods for cell dedifferentiation and tissue regeneration
ATE401920T1 (de) 2000-07-13 2008-08-15 Abbott Cardiovascular Systems Einbringungssystem für myokardiales, zellulares material
US7547674B2 (en) * 2001-06-06 2009-06-16 New York Medical College Methods and compositions for the repair and/or regeneration of damaged myocardium
WO2002009650A2 (en) * 2000-07-31 2002-02-07 New York Medical College Methods and compositions for the repair and/or regeneration of damaged myocardium
CA2423592A1 (en) 2000-07-31 2002-02-21 New York Medical College Methods and compositions for the repair and/or regeneration of damaged myocardium
US20110091428A1 (en) * 2000-07-31 2011-04-21 New York Medical College Compositions of adult organ stem cells and uses thereof
US7862810B2 (en) 2000-07-31 2011-01-04 New York Medical College Methods and compositions for the repair and/or regeneration of damaged myocardium
WO2002019966A2 (en) * 2000-09-06 2002-03-14 Johns Hopkins University Cardiac arrhythmia treatment methods
US6569105B1 (en) 2000-09-14 2003-05-27 Syntheon, Llc Rotatable and deflectable biopsy forceps
FR2814752A1 (fr) * 2000-10-02 2002-04-05 Chru Lille Procede d'obtention in vitro de cellules insulino- secretrices de mammifere et leurs utilisations
US6511471B2 (en) 2000-12-22 2003-01-28 Biocardia, Inc. Drug delivery catheters that attach to tissue and methods for their use
EP2316919B1 (en) 2001-02-14 2015-10-07 Anthrogenesis Corporation Post-partum mammalian placenta, its use and placental stem cells therefrom
EP1372916A2 (en) 2001-03-21 2004-01-02 Vitrox APS Method and housing for performing operations on a material
WO2003016507A2 (en) * 2001-03-23 2003-02-27 Regents Of The University Of California Generation of multipotent central nervous system stem cells
US6905827B2 (en) 2001-06-08 2005-06-14 Expression Diagnostics, Inc. Methods and compositions for diagnosing or monitoring auto immune and chronic inflammatory diseases
US7026121B1 (en) 2001-06-08 2006-04-11 Expression Diagnostics, Inc. Methods and compositions for diagnosing and monitoring transplant rejection
US6796963B2 (en) 2001-07-10 2004-09-28 Myocardial Therapeutics, Inc. Flexible tissue injection catheters with controlled depth penetration
US7425448B2 (en) 2001-07-12 2008-09-16 Geron Corporation Cardiomyocyte precursors from human embryonic stem cells
IL159895A0 (en) * 2001-07-20 2004-06-20 Technion Res & Dev Foundation Methods of generating human cardiac cells and tissues and uses thereof
US7074175B2 (en) 2001-07-25 2006-07-11 Erik Schroeder Handy Thermotherapy via targeted delivery of nanoscale magnetic particles
US7731648B2 (en) 2001-07-25 2010-06-08 Aduro Biotech Magnetic nanoscale particle compositions, and therapeutic methods related thereto
US6997863B2 (en) 2001-07-25 2006-02-14 Triton Biosystems, Inc. Thermotherapy via targeted delivery of nanoscale magnetic particles
WO2003018780A1 (en) * 2001-08-27 2003-03-06 Advanced Cell Technology, Inc. De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
US6805860B1 (en) * 2001-09-30 2004-10-19 Eckhard Alt Method of transluminal application of myogenic cells for repair or replacement of heart tissue
US7452532B2 (en) * 2001-09-30 2008-11-18 Scicotec Gmbh Transluminal application of adult stem cells for body organ tissue repair
US20030082153A1 (en) * 2001-10-22 2003-05-01 The Government Of The United States Of America Stem cells that transform to beating cardiomyocytes
MXPA04004387A (es) 2001-11-05 2005-07-05 Medgenics Inc Metodo y aparato para la produccion de in injerto de piel y el injerto producido por los mismos.
US20040014209A1 (en) 2002-01-23 2004-01-22 Lassar Andrew B. Compositions and methods for modulating cell differentiation
GB0202149D0 (en) 2002-01-30 2002-03-20 Univ Edinburgh Pluripotency determining factors and uses thereof
TWI288779B (en) * 2002-03-28 2007-10-21 Blasticon Biotech Forschung Dedifferentiated, programmable stem cells of monocytic origin, and their production and use
US6866117B2 (en) 2002-04-05 2005-03-15 Wing Enterprises, Inc. Light weight ladder systems and methods
US7840261B2 (en) 2002-06-05 2010-11-23 Biocardia, Inc. Catheter systems and methods for placing bi-ventricular pacing leads
EP1539799B1 (en) * 2002-06-21 2013-12-11 The University of Utah Research Foundation Crosslinked compounds and methods of making and using thereof
US20040018174A1 (en) * 2002-07-23 2004-01-29 Boston Scientific Corporation Cell therapy for regeneration
US20040110287A1 (en) * 2002-07-29 2004-06-10 Es Cell International Pte Ltd. Multi-step method for the differentiation of insulin positive, glucose responsive cells
US7124330B2 (en) * 2002-09-27 2006-10-17 Broadcom Corporation Physical layer loop back method and apparatus
US20040258669A1 (en) 2002-11-05 2004-12-23 Dzau Victor J. Mesenchymal stem cells and methods of use thereof
US7794702B2 (en) * 2003-01-15 2010-09-14 The Trustees Of Columbia University In The City Of New York Mesenchymal stem cells as a vehicle for ion channel transfer in syncytial structures
WO2004070013A2 (en) 2003-01-31 2004-08-19 The Regents Of The University Of California Use of islet 1 as a marker for isolating or generating stem cells
DE10331439B3 (de) 2003-07-10 2005-02-03 Micromod Partikeltechnologie Gmbh Magnetische Nanopartikel mit verbesserten Magneteigenschaften
DK1601770T3 (da) 2003-03-04 2009-11-02 Intercell Ag Streptococcus pyogenes antigener
US7837631B2 (en) * 2003-03-14 2010-11-23 Boston Scientific Scimed Inc. Biopsy forceps with removable jaw segments
US20060041182A1 (en) 2003-04-16 2006-02-23 Forbes Zachary G Magnetically-controllable delivery system for therapeutic agents
US7329638B2 (en) 2003-04-30 2008-02-12 The Regents Of The University Of Michigan Drug delivery compositions
US20060025713A1 (en) * 2003-05-12 2006-02-02 Alex Rosengart Magnetic particle-based therapy
GB0313259D0 (en) 2003-06-09 2003-07-16 Consejo Superior Investigacion Magnetic nanoparticles
ES2265199B1 (es) * 2003-06-12 2008-02-01 Cellerix, S.L. Celulas madre adultas multipotentes procedentes de condrocitos desdiferenciados y sus aplicaciones.
KR100743341B1 (ko) 2003-06-30 2007-07-26 에자이 알앤드디 매니지먼트 가부시키가이샤 자성 세포 및 그의 사용 방법
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
JP2005110565A (ja) 2003-10-07 2005-04-28 Nobuya Yamanaka 分化多能性維持剤
US7280863B2 (en) 2003-10-20 2007-10-09 Magnetecs, Inc. System and method for radar-assisted catheter guidance and control
CN1537646A (zh) 2003-10-22 2004-10-20 高春平 肿瘤局部综合治疗方法和装置
US20050090732A1 (en) 2003-10-28 2005-04-28 Triton Biosystems, Inc. Therapy via targeted delivery of nanoscale particles
WO2005047524A2 (en) 2003-11-10 2005-05-26 The Scripps Research Institute Compositions and methods for inducing cell dedifferentiation
GB0329310D0 (en) 2003-12-18 2004-01-21 Univ Keele Method
US7625581B2 (en) 2003-12-19 2009-12-01 Ethicon, Inc. Tissue scaffolds for use in muscoloskeletal repairs
WO2005065282A2 (en) 2003-12-31 2005-07-21 The Regents Of The University Of California Remote magnetically induced treatment of cancer
WO2005076743A2 (en) * 2004-02-17 2005-08-25 Yeda Research And Development Co. Ltd. Disaccharide molecules and derivatives thereof and methods of using same
WO2005085422A1 (en) 2004-02-27 2005-09-15 Michigan State University Adult stem cells and uses thereof
US20090074669A1 (en) 2004-03-31 2009-03-19 Ebert Steven N PNMT as a novel marker for progenitor cells
WO2005110395A1 (en) 2004-05-19 2005-11-24 University Of South Carolina System and device for magnetic drug targeting with magnetic drug carrier particles
US7259011B2 (en) * 2004-05-20 2007-08-21 Paul Lucas Pluripotent adult stem cells
US20060018897A1 (en) 2004-06-28 2006-01-26 Transtarget Inc. Bispecific antibodies
US20070196918A1 (en) 2004-07-15 2007-08-23 Sayre Chauncey B Reprogramming of adult human testicular stem cells to pluripotent germ-line stem cells
CA2575446C (en) 2004-08-03 2014-03-25 Becton, Dickinson And Company Use of magnetic material to direct isolation of compounds and fractionation of multipart samples
ES2313805B1 (es) * 2004-10-04 2009-12-23 Cellerix, S.L. Identificacion y aislamiento de celulas multipotentes de tejido mesenquimal no osteocondral.
US8431397B2 (en) * 2004-09-14 2013-04-30 The Trustees Of Columbia University In The City Of New York Differentiation of human mesenchymal stem cells to cardiac progenitor cells that promote cardiac repair
US20060234375A1 (en) * 2004-09-30 2006-10-19 Doronin Sergey V Use of human stem cells and/or factors they produce to promote adult mammalian cardiac repair through cardiomyocyte cell division
EP1812556A4 (en) 2004-10-05 2011-02-02 Univ Georgia NEURONAL PRECURSORS OF FEEDER-FREE HUMAN EMBRYONIC STEM CELL CULTURE
FR2877571B1 (fr) 2004-11-05 2007-04-13 Nanobiotix Sarl Nanoparticules pourvues d'un element de ciblage intracellulaire, preparation et utilisations
WO2006052925A2 (en) * 2004-11-08 2006-05-18 The Johns Hopkins University Cardiac stem cells
US7402151B2 (en) 2004-12-17 2008-07-22 Biocardia, Inc. Steerable guide catheters and methods for their use
EP1674128A1 (en) 2004-12-22 2006-06-28 Steinbeis-Transferzentrum für Herz-Kreislaufforschung Magnetic pole matrices useful for tissue engineering and treatment of disease
DE602006017071D1 (de) 2005-01-25 2010-11-04 Five Prime Therapeutics Inc Zusammensetzungen und verfahren zur behandlung von herzkrankheiten
DK1869165T3 (en) * 2005-04-12 2016-02-01 Mesoblast Inc Isolation of Adult Multipotent Cells by Tissue-Specific Alkaline Phosphate
DE102005016873A1 (de) 2005-04-12 2006-10-19 Magforce Nanotechnologies Ag Nanopartikel-Wirstoff-Konjugate
US7846393B2 (en) 2005-04-21 2010-12-07 California Institute Of Technology Membrane filter for capturing circulating tumor cells
GB0508110D0 (en) 2005-04-22 2005-06-01 Univ Keele Gene delivery
US20060281791A1 (en) * 2005-04-29 2006-12-14 Children's Medical Center Corporation Methods of increasing proliferation of adult mammalian cardiomyocytes through p38 map kinase inhibition
US20070003528A1 (en) 2005-06-29 2007-01-04 Paul Consigny Intracoronary device and method of use thereof
US20070014869A1 (en) * 2005-07-15 2007-01-18 Cormatrix Cardiovascular, Inc. Compositions for reconstruction, replacement or repair of intracardiac tissue
CA2659945C (en) 2005-08-03 2014-12-16 Advanced Cell Technology, Inc. Improved methods of reprogramming animal somatic cells
US20070048383A1 (en) 2005-08-25 2007-03-01 Helmus Michael N Self-assembled endovascular structures
US20070054397A1 (en) * 2005-08-26 2007-03-08 Harald Ott Adult cardiac uncommitted progenitor cells
US7736346B2 (en) 2005-10-18 2010-06-15 Biocardia, Inc. Bio-interventional therapeutic treatments for cardiovascular diseases
WO2007048202A1 (en) 2005-10-25 2007-05-03 Women's & Children's Health Research Institute Methods and compositions for modulating wound repair
CN100509059C (zh) 2005-10-25 2009-07-08 南京工业大学 磁热疗用纳米磁粉-抗cea抗体靶向药物
CN100355454C (zh) 2005-10-25 2007-12-19 南京工业大学 磁热疗用纳米磁粉-抗人肝癌单抗HAb18靶向药物
BRPI0619794B8 (pt) 2005-12-13 2022-06-14 Univ Kyoto Uso de um fator de reprogramação, agente para a preparação de uma célula-tronco pluripotente induzida a partir de uma célula somática e métodos para preparar uma célula- tronco pluripotente induzida método e para preparar uma célula somática e uso de células-tronco pluripotentes induzidas
US7875451B2 (en) * 2006-01-19 2011-01-25 The University Of Washington Formulation to improve survival of transplanted cells
US8119123B2 (en) * 2006-02-16 2012-02-21 New York Medical College Compositions comprising vascular and myocyte progenitor cells and methods of their use
US7869854B2 (en) 2006-02-23 2011-01-11 Magnetecs, Inc. Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation
US20090123366A1 (en) 2006-04-03 2009-05-14 Keele University Targeted Therapy
WO2007147014A2 (en) * 2006-06-13 2007-12-21 Fmc Biopolymer As Method and systems for using biopolymer-based beads and hydrogels
US8568286B2 (en) 2006-06-14 2013-10-29 Cardiac Pacemakers, Inc. Methods to position therapeutic agents using a magnetic field
US9149564B2 (en) 2006-06-23 2015-10-06 The Regents Of The University Of California Articles comprising large-surface-area bio-compatible materials and methods for making and using them
EP2038308A2 (en) * 2006-07-11 2009-03-25 University of Utah Research Foundation Thiolated macromolecules and methods of making and using thereof
JP2010502992A (ja) 2006-09-05 2010-01-28 コロンバス ナノワークス,インコーポレーテッド 磁性粒子、並びにその作製及び使用方法
CA2663962A1 (en) 2006-09-19 2008-03-27 Asuragen, Inc. Mir-15, mir-26, mir-31,mir-145, mir-147, mir-188, mir-215, mir-216, mir-331, mmu-mir-292-3p regulated genes and pathways as targets for therapeutic intervention
US20080089874A1 (en) * 2006-09-28 2008-04-17 The Regents Of The University Of California Directed differentiation and maturation of stem cell-derived cardiomyocytes
WO2008043521A2 (de) 2006-10-09 2008-04-17 Julius-Maximilians-Universität Würzburg Microrna (mirna) zur diagnose und therapie von herzerkrankungen
CN104099290A (zh) 2006-10-23 2014-10-15 人类起源公司 用胎盘细胞群治疗骨缺损的方法和组合物
WO2008058216A2 (en) * 2006-11-07 2008-05-15 Keck Graduate Institute Enriched stem cell and progenitor cell populations, and methods of producing and using such populations
US20100093089A1 (en) 2006-11-09 2010-04-15 Eduardo Marban Dedifferentiation of adult mammalian cardiomyocytes into cardiac stem cells
KR100830889B1 (ko) 2006-12-18 2008-05-21 주식회사 케이티 세툭시맵이 결합된 나노 입자 및 이의 제조 방법
DE102007008650B4 (de) 2007-02-20 2012-06-06 Charité - Universitätsmedizin Berlin Zellen zur Therapie des Herzens
SG193653A1 (en) 2007-03-23 2013-10-30 Wisconsin Alumni Res Found Somatic cell reprogramming
WO2008124133A1 (en) 2007-04-07 2008-10-16 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
US8496926B2 (en) 2007-04-16 2013-07-30 Biocardia, Inc. Treatment for chronic myocardial infarction
US20080297287A1 (en) 2007-05-30 2008-12-04 Magnetecs, Inc. Magnetic linear actuator for deployable catheter tools
FI20075417A0 (fi) 2007-06-05 2007-06-05 Marjo-Riitta Suuronen Koostumuksia ja menetelmiä alkion kantasolujen kasvatukseen
US20120282229A1 (en) 2007-08-01 2012-11-08 Christian Kannemeier Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
US20090136582A1 (en) 2007-08-03 2009-05-28 Albrecht Ralph M Colloidal magnetic nanobioparticles for cytotoxicity and drug delivery
US8292873B2 (en) 2007-08-09 2012-10-23 Boston Scientific Scimed, Inc. Catheter devices for myocardial injections or other uses
US20090081276A1 (en) * 2007-08-13 2009-03-26 Eben Alsberg Bioresorbable implant composition
US20090081170A1 (en) * 2007-09-13 2009-03-26 Paul Riley Cardiac progenitor cells
US8541185B2 (en) 2007-09-24 2013-09-24 Technion Research & Development Foundation Limited Method of predicting responsiveness to autologous adoptive cell transfer therapy
EP2210622B1 (en) 2007-10-10 2015-07-08 Kyoto University Therapeutic agent for heart disease, which is intended to be used in cell transplantation therapy
WO2009058818A2 (en) 2007-10-29 2009-05-07 The Board Of Regents Of The University Of Texas System Compositions comprising a micro-rna and methods of their use in regulating cardiac remodeling
DE102007052114B4 (de) 2007-10-30 2011-01-05 T2Cure Gmbh Verfahren zur Modulation der Funktion, des Wachstums oder der Differenzierung einer Zelle
US8617877B2 (en) 2007-11-02 2013-12-31 The Johns Hopkins University Cardiac stem cell and myocyte secreted paracrine factors
NZ585209A (en) 2007-11-09 2012-08-31 Univ Texas Micro-rnas of the mir-15 family modulate cardiomyocyte survival and cardiac repair
US8247374B2 (en) * 2007-11-09 2012-08-21 New York Medical College Methods and compositions for the repair and/or regeneration of damaged myocardium using cytokines and variants thereof
WO2009064964A2 (en) 2007-11-15 2009-05-22 The University Of California Switchable nano-vehicle delivery systems, and methods for making and using them
WO2009067644A1 (en) 2007-11-21 2009-05-28 University Of Miami Compositions, systems and methods for obtaining and expanding insulin-producing cells
US9186317B2 (en) 2007-11-26 2015-11-17 Stc.Unm Active nanoparticles and method of using
AU2008331501B2 (en) 2007-11-30 2014-09-04 New York Medical College Methods of isolating non-senescent cardiac stem cells and uses thereof
CA2743701A1 (en) 2007-11-30 2009-06-11 New York Medical College Compositions comprising hdac inhibitors and methods of their use in restoring stem cell function and preventing heart failure
US8512696B2 (en) * 2007-11-30 2013-08-20 Autologous, Llc Methods of isolating non-senescent cardiac stem cells and uses thereof
AU2008334036B2 (en) * 2007-11-30 2014-05-29 New York Medical College Methods of reducing transplant rejection and cardiac allograft vasculopathy by implanting autologous stem cells
US20110110897A1 (en) 2008-01-11 2011-05-12 Schwarz Richard P Adult Human Cardiac-Derived Progenitor Cells
US7999025B2 (en) 2008-01-28 2011-08-16 University Of Utah Research Foundation Asymmetrically-functionalized nanoparticles organized on one-dimensional chains
US9078932B2 (en) 2008-02-04 2015-07-14 Emmetrope, Inc. Magnetic cells for localizing delivery and tissue repair
WO2009120702A2 (en) 2008-03-25 2009-10-01 Emory University Elemental iron nanoparticles
WO2009136283A2 (en) 2008-05-08 2009-11-12 Coretherapix Slu Multipotent adult stem cell population
AU2009257663B2 (en) 2008-06-09 2014-06-26 New York Medical College Compositions comprising cardiac stem cells overexpressing specific microRNA and methods of their use in repairing damaged myocardium
CN102056591B (zh) 2008-06-11 2013-12-11 刘彦仿 脂质体药剂及其制备方法和用途
EP2304035A2 (en) 2008-06-13 2011-04-06 Life & Brain GmbH Fusion protein and use thereof
US20130309304A1 (en) 2008-08-05 2013-11-21 Bernardo Nadal-Ginard Compounds and methods
US20120034155A1 (en) 2010-08-03 2012-02-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Artificial cells
US8172831B2 (en) 2008-09-02 2012-05-08 Abbott Cardiovascular Systems Inc. Catheter configured for incremental rotation
US20110300111A1 (en) 2008-11-20 2011-12-08 Cedars-Sinai Medical Center Generation of induced pluripotent stem cells without the use of viral vectors
US20110280834A1 (en) 2009-01-16 2011-11-17 Cedars-Sinai Medical Center Methods and compositions for cardiac tissue regeneration
EP2228444A1 (en) 2009-03-09 2010-09-15 Julius-Maximilians-Universität Würzburg microRNA for diagnostic and therapeutic purposes in cardiovascular diseases
WO2010118059A1 (en) 2009-04-06 2010-10-14 Capricor, Inc. Systems and methods for cardiac tissue repair
BRPI1016193A2 (pt) 2009-04-29 2017-03-21 Nutrition Physiology Company Llc inibição do desenvolvimento de patógeno sobre materiais de planta usando microrganismos que produzem ácido láctico.
KR20120047214A (ko) 2009-05-20 2012-05-11 보드 오브 리전츠 더 유니버시티 오브 텍사스 시스템 심근경색 후 리모델링 및 심부전에 관련된 마이크로―rna의 확인
WO2011002239A2 (ko) 2009-07-01 2011-01-06 주식회사이언메딕스 포유류의 유핵세포에서 유래된 마이크로베시클 및 이의 용도
WO2011029092A1 (en) 2009-09-04 2011-03-10 University Of Miami Klf family members regulate intrinsic axon regeneration ability
EP2475372B2 (en) 2009-09-10 2020-10-21 Velin-Pharma A/S Method for the preparation of micro-rna and its therapeutic application
WO2011056685A1 (en) 2009-10-27 2011-05-12 Cedars-Sinai Medical Center External magnetic force for targeted cell delivery with enhanced cell retention
US9095629B2 (en) 2009-10-30 2015-08-04 Northwestern University Magnetic nanostructures as theranostic agents
EP2498796B1 (en) 2009-11-09 2017-12-27 AAL Scientifics, Inc. Treatment of heart disease
US20120288481A1 (en) 2009-11-09 2012-11-15 The Brigham And Women's Hospital, Inc. Treatment of heart disease
WO2011062244A1 (ja) 2009-11-18 2011-05-26 Kuroda Masahiko キャリア、その製造方法およびその用途
EP2327781A1 (en) 2009-11-27 2011-06-01 RWTH Aachen Micro-RNA and tissue repair
US20110135577A1 (en) 2009-12-03 2011-06-09 National Taiwan University Superparamagnetic nanoparticles IN MEDICAL THERAPEUTICS and manufacturing method THEREOF
AU2010340062A1 (en) 2009-12-15 2012-07-12 Board Of Regents, The University Of Texas System Micro-RNA regulation in ischemia and ischemia-reperfusion injury
EP2371370A1 (en) 2010-04-01 2011-10-05 Johann Wolfgang Goethe-Universität Frankfurt am Main Antagonists of miRNA-29 expression and their use in the prevention and treatment of aortic aneurysms and atherosclerotic plaque destabilization
US9821009B2 (en) 2010-04-13 2017-11-21 Jiangsu Mingma Biotech Co., Ltd. Method for modulating microRNA content in living beings and the use thereof
EP2385120A1 (en) 2010-05-04 2011-11-09 Justus-Liebig- Universitat Giessen Use of anti-miRNA antisense oligonucleotides for the treatment of pulmonary hypertension
TWI840787B (zh) 2010-05-12 2024-05-01 開曼群島商普羅基德尼公司 生物活性腎細胞
CA2802031C (en) 2010-06-10 2015-05-12 Midatech Limited Peptide-carrying nanoparticles
AU2011288262A1 (en) 2010-08-13 2013-04-04 The University Court Of The University Of Glasgow Therapeutic uses of microvesicles and related microRNAs
US20120093885A1 (en) 2010-10-18 2012-04-19 Northwestern University Therapeutic vesicles
EP2446929A1 (en) 2010-10-27 2012-05-02 Johann Wolfgang Goethe-Universität Frankfurt am Main Microvesicles derived from atheroprotective endothelial cells for the treatment and prevention of atherosclerotic diseases
WO2012065027A2 (en) 2010-11-11 2012-05-18 University Of Miami Compositions, kits and methods for treatment of cardiovascular, immunological, and inflammatory diseases
US8871731B2 (en) 2011-03-16 2014-10-28 Migagen Therapeutics, Inc. Micro-RNA for the regulation of cardiac apoptosis and contractile function
AU2012236707B2 (en) 2011-03-29 2017-07-20 Asterias Biotherapeutics, Inc. Enriched populations of cardiomyocyte lineage cells from pluripotent stem cells
US8802144B2 (en) 2011-08-25 2014-08-12 Wisconsin Alumni Research Foundation 3-dimensional cardiac fibroblast derived extracellular matrix
KR101389850B1 (ko) 2012-05-04 2014-04-29 이화여자대학교 산학협력단 심장전구세포의 배양방법 및 그 용도

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215547B (zh) * 2008-01-15 2011-06-08 刘岱良 一种分离、纯化及提取脂肪间充质干细胞的方法
CN108179133A (zh) * 2018-02-06 2018-06-19 广州大学 c-kit+心脏干细胞聚集体及分泌合成培养液在制备药物中应用
CN108359635A (zh) * 2018-02-06 2018-08-03 广州大学 一种用于富集纯化c-kit+心脏干细胞的复合涂层及其制备方法
CN113207298A (zh) * 2019-12-02 2021-08-03 T&R碧欧法博有限公司 提高在冷冻保存及低氧条件下的存活率的心肌细胞聚集体制备技术
CN113207298B (zh) * 2019-12-02 2024-05-28 T&R碧欧法博有限公司 提高在冷冻保存及低氧条件下的存活率的心肌细胞聚集体制备技术

Also Published As

Publication number Publication date
CA2793046A1 (en) 2005-02-10
CA2793046C (en) 2016-02-16
US20120021019A1 (en) 2012-01-26
CA2534378A1 (en) 2005-02-10
US20120020935A1 (en) 2012-01-26
US8268619B2 (en) 2012-09-18
US20120045421A1 (en) 2012-02-23
ITRM20030376A1 (it) 2005-02-01
US20120093879A1 (en) 2012-04-19
EP1649012A1 (en) 2006-04-26
EP2465921A3 (en) 2013-06-05
US20070020758A1 (en) 2007-01-25
ITRM20030376A0 (it) 2003-07-31
CA2534378C (en) 2013-12-17
WO2005012510A1 (en) 2005-02-10
EP2465921A2 (en) 2012-06-20
EP1649012B1 (en) 2017-03-29
US8772030B2 (en) 2014-07-08
US8846396B2 (en) 2014-09-30
US20160244723A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
CN1852973A (zh) 从活检分离和扩充心脏干细胞的方法
US20190367883A1 (en) Regulating stem cells
US10526581B2 (en) Modulation of cardiac stem-progenitor cell differentiation, assays and uses thereof
JP2007143554A (ja) 細胞移植方法及び試薬
JP5570814B2 (ja) 胃食道病理学を処置するための筋由来細胞ならびにその作成法および使用法
US20120197189A1 (en) Method for producing autonomously contracting cardiac muscle cells from adult stem cells, in particular human adult stem cells
JP2004533234A (ja) カプセル化細胞インジケータシステム
US8992978B2 (en) Material compositions which comprise adult stem cells obtained from exocrine glandular tissue, in particular for use in regenerative medicine
KR20200078250A (ko) 지방줄기세포 시트를 함유하는 심장조직 모사 심장이식용 시트 및 이의 제조방법
Condorelli et al. Stem cells for cardiac repair: state of the art
JP4083024B6 (ja) 細胞移植方法及び試薬

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20061025