CN1822888B - 在使用一个静态微混合器的条件下的萃取方法 - Google Patents
在使用一个静态微混合器的条件下的萃取方法 Download PDFInfo
- Publication number
- CN1822888B CN1822888B CN2004800203176A CN200480020317A CN1822888B CN 1822888 B CN1822888 B CN 1822888B CN 2004800203176 A CN2004800203176 A CN 2004800203176A CN 200480020317 A CN200480020317 A CN 200480020317A CN 1822888 B CN1822888 B CN 1822888B
- Authority
- CN
- China
- Prior art keywords
- plate
- mixed zone
- hole
- subchannel
- interface channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D11/00—Solvent extraction
- B01D11/04—Solvent extraction of solutions which are liquid
- B01D11/0446—Juxtaposition of mixers-settlers
- B01D11/0453—Juxtaposition of mixers-settlers with narrow passages limited by plates, walls, e.g. helically coiled tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/301—Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
- B01F33/3012—Interdigital streams, e.g. lamellae
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D11/00—Solvent extraction
- B01D11/04—Solvent extraction of solutions which are liquid
- B01D11/0496—Solvent extraction of solutions which are liquid by extraction in microfluidic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/314—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
- B01F25/3142—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/301—Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
- B01F33/3017—Mixing chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/304—Micromixers the mixing being performed in a mixing chamber where the products are brought into contact
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/56—General build-up of the mixers
- B01F35/561—General build-up of the mixers the mixer being built-up from a plurality of modules or stacked plates comprising complete or partial elements of the mixer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0431—Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Extraction Or Liquid Replacement (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明涉及一种用于进行萃取的方法,用于通过一种适合的萃取剂在使用一个静态微混合器用于使原始材料与萃取剂混合的条件下从一种流体的原始材料中萃取一种或多种物质。所述静态微混合器具有板式结构件,其中所述板(1)具有至少一个进入孔(2)用于使至少一种流体流进入到一个位于板平面中的连接通道(3)并具有至少一个排出孔(4)用于使流体流排出到一个位于板平面中的混合区(5),其中所述进入孔(2)与排出孔(4)通过位于板平面中的连接通道(3)连通地连接并且其中所述连接通道(3)在通入到混合区(5)之前通过微结构单元(6)分成两个或多个分通道(7),其中这些分通道的宽度位于毫米至亚毫米范围并且小于混合区的宽度。
Description
技术领域
本发明涉及一种萃取方法,用于通过一种适合的萃取剂在使用一个静态微混合器用于使原始材料与萃取剂混合的条件下从一种流体的原始材料中萃取一种或多种物质。
背景技术
在萃取时利用一种溶剂(萃取剂),用于使一种或多种成分从一种混合物中分离出来。流体的混合物可以是液态或气态的。关于萃取一般理解为借助于起到选择作用的不可混合的溶剂从液体混合物中浓缩或获取物质。但是也可以通过适合的溶剂从气态混合物中提取物质。
当热的方法如蒸馏方法不适合的时候,则萃取方法尤其具有重要的意义。萃取方法例如可以用于具有近似沸点系统的分离,例如从碳氢化合物中萃取芳香物质,例如石油分馏;从稀薄系统(例如酚)中分离高沸点的物质;分离温度敏感的物质,如生物或生物技术地获取物质(如从发酵溶液中提取抗生素);分离共沸混合物;从盐溶液中萃取有机物质;从聚合物溶液中萃取盐;从矿石中为了获取金属或者从废水中为了清洁废水萃取金属盐,例如从稀薄的盐溶液中通过溶解在煤油中的氢氧化合物(Hydroxyoximen)萃取铜、镍和钴;核燃料的加工,例如通过磷酸酶萃取铀盐、钚盐和钍盐;或者在化学工艺中通常作为提纯处理。
流体萃取的原理基于待萃取的物质在两个不可混合的流体相态之间的分布平衡。一种待萃取的成分(萃取物质)溶解或弥散在一个流体的载体介质中。一种与该载体介质不可混合的溶剂(萃取剂)具有一个对于萃取物质通常尽可能高的选择性。载体介质和萃取剂相互接触并且以理想的方式对于萃取物质在载体介质与萃取剂之间的分布建立一个分布平衡。在相态分离后所形成的精制品富集萃取物质并且所形成的萃取富集萃取物质。一个唯一的平衡步骤对于所期望的富集通常是不够的,因为平衡建立是不完全的或者选择性不够充分。可以通过多个先后接通的分离级进行处理。为了在不可混合的流体相态之间起到一个尽可能有效的物质交换的作用,必需实现一个尽可能大的相态界面。为此在萃取设备中两种相态中的一种通常以液滴的形式分布,即产生一个弥散相态和一个连续相态的混合物。两种相态的哪一个相态被弥散取决于许多因素,例如物质特性、相态量或萃取设备的结构形式。通常具有较大表面的相态被弥散,通常是具有较大流量的相态。当相态具有高的界面应力时,则相态的分布是特别困难的。另一方面期望高的界面应力,以防止形成难以分解的乳浊液。
发明内容
因此本发明的目的是,进一步改善萃取方法,尤其是在有效地混合载体介质与萃取剂方面。
已经发现,在萃取工艺中使用静态微混合器能够特别好地适合于使载体介质与萃取剂混合。因此本发明的内容是一种用于进行萃取的方法,其中
-使至少两种相互间不可混溶的流体相态相互混合,
-其中至少一个相态包含至少一个通过另一相态可萃取的物质,
其中所述混合在使用至少一个静态微混合器的条件下实现,该微混合器具有至少一个板式的结构件并且其中该板
-具有至少一个进入孔用于使至少一种流体流进入到一个位于板平面中的连接通道并具有至少一个排出孔用于使流体流排出到一个位于板平面中的混合区,
-其中进入孔与排出孔通过位于板平面中的连接通道连通地连接并且
-其中所述连接通道在通入到混合区之前通过微结构单元分成两个或多个分通道,其中这些分通道的宽度位于毫米至亚毫米范围并且小于混合区的宽度,连接通道的最大宽度与分通道在其进入到混合区的出口处的宽度的比例大于2,所述板具有附加的穿孔和组合到微结构单元内的、与分通道分开的附加分通道。
使用静态微混合器的优点是使萃取器尺寸细化并因此可以集成到其它的系统中。在小的结构空间和简单加工必需的结构件的条件下以相对微小的压力损失实现快速且强烈的充分混合。所述微混合器可以与一个分离器组合在一个混合器/分离器单元内,但是也可以独立地后置一个分离器。通过两个或多个组合的或独立的混合器/分离器单元在一个混合器/分离器组中在狭小空间上的共同作用或前后连接得到过程优化的其它可能性,尤其是关于达到所期望的富集度或贫化度方面。尤其是在混合具有高的界面应力的流体时,通过使用按照本发明的静态微混合器也可以实现有效地形成大界面,这支持分布平衡的建立。混合时间可以在1s至几毫秒之间。
一类公知的微混合器以控制扩散的混合过程为基础。为此交替相邻的流体层产生一个微米范围的厚度。通过选择几何形状能够建立流体层的宽度和相关的扩散路径。例如在DE 199 27 556A1、DE 202 06 371U1、WO 02/089962中描述了这种静态微混合器。以微观流体层之间扩散为基础的微混合器的缺陷是,要求一个相对微小的流速用于产生和保持层式流动特性。通过这种混合原理只能实现相对微小的产量。
此外已知微混合器,它们由配有连续通道的导引结构件或者配有槽的薄膜组成,它们在上下叠层时产生许多用于不同的、待混合的流体的通道,其中通道的几何尺寸位于微米范围。离析流作为相邻的流体层从通道排出到一个混合室内,其中混合通过扩散和/或紊流实现(尤其参见WO 97/17130和在那里引用的文献以及WO 97/17133、WO 95/30475、WO 97/16239、WO 00/78438)。这种结构件的加工是相对昂贵和费事的并且在待混合的流体通过许多长的且非常窄的通道导引时可能产生相对较高的压力损失。如果要实现高的产量,可能需要使用强劲的泵系统。
关于“流体”的概念可以理解为一种气态或液态的物质或者这些物质的混合物,它可以溶解或弥散地含有一种或多种固态的、液态的或气态的物质。
关于“分通道”的概念也包括通过微结构嵌入物直接在排出到混合区之前使流体流分裂成分流。这种嵌入物的尺寸尤其是长度和宽度可以位于毫米范围或者最好小于1mm。所述分通道最好缩短到为了控制流动所绝对必需的长度并因此对于一个确定的产量需要相对微小的压力。所述分通道的长度与宽度的比例最好为1∶1至20∶1,尤其是8∶1至12∶1,特别优选约为10∶1。最好这样构成所述的微结构嵌入物,使得流体流的在流出到混合区内时的流速不仅高于在进入连接通道时的流速而且最好也高于混合物通过混合区的流速。
安置在板上的连接通道和分通道可以通过任意形状构成。不仅板而且每个包含在其上的单个通道都可以在高度、宽度和厚度上变化,以便也可以输送不同的介质和流量。所述板的基本形状是任意的并且可以是圆的如圆形或椭圆形或者多角形如矩形或方形。所述板形状也可以在一个尽可能简单的加工方面或者在尽可能轻微的重量和尽可能微少的非利用表面方面优化。所述分通道的出口可以通过各种任意的方式设置,从直线形直到任意的几何形状。所述排出孔例如可以设置在一个圆形线上,尤其是当混合区完全被板平面包围的时候。也可以使两种或多于两种组分(A、B、C等)在一个圆盘中导引并且使它们以相同或不同的比例量混合。所述分通道相互间或者相对于进入到混合区内的出口所在的直线以任意的角度延伸。可以并排地设置许多分通道,它们分别导引例如组分A并且可以在同一圆盘的相邻段中并排设置许多分通道,它们分别导引例如组分B。所述结构件也可以通过在板中的附加穿孔和附加分通道这样构成,使得组分A、B等在同一板中从分通道到分通相互交替。
所述分通道在通入到混合区处优选具有一个1μm至2mm的宽度和一个10μm至10mm的深度并且特别优选一个5μm至250μm的宽度和一个250μm至5mm的深度。
所述连接通道可以具有一个变化的宽度。该连接通道的最大宽度和/或进入孔的宽度与分通道在其进入到混合区内的出口上的宽度的比例大于2,特别优选大于5。所述混合区宽度与分通道宽度的比例最好大于2,特别优选大于5。
所述板状结构件可以具有一个10至1000μm的厚度。所述通道的高度最好小于1000μm,特别优选小于250μm。所述微结构嵌入物和通道底部的壁厚最好小于100μm,特别优选小于70μm。
在一个特别的实施例中,至少一个进入孔或排出孔或者混合区被板平面完全包围。所述孔例如可以是圆形或多角形、如矩形的空隙。在一个封闭的混合区的情况下,形状优选是椭圆或圆形的。所述分通道可以以喷嘴的形式在混合区的方向上收缩。这些分通道可以直线地或螺旋形地弯曲。这些分通道可以与混合区的圆周线成直角地或者以一个不同于90°的角度进入混合区。对于非直角的取向的情况下,在形成一个由多个混合板构成的叠摞时最好分别使具有相互错开直角的板相邻。同样对于螺旋形的分通道取向的情况下,在形成一个由多个混合板构成的叠摞时分别使具有相反的螺旋旋向的板相邻。
也有利的是,所述分通道具有一个这种形式的弯曲的取向,即以相同的旋向给出进入混合区的入流并且在混合流内部构成一个强烈的漩流,其结果是产生一个离心分离效应。优选使较重的液体组分保持在通流混合区的混合流的外边缘上而使较轻的组分位于混合流的中心。当待萃取的物质处于较重的相态时,通过这种方法导致一个与较轻相态的特别的内部混合,较轻的相态从构成主通道壁体的微通道流入。通过这种方法可以提高理论上的萃取基数。这样的静态离心分离萃取器具有一个旋转萃取器的优点,而无需其费事的且易受干扰的机构。
在各孔之间的连接通道最好通过一个凹下构成。但是所述进入孔和/或排出孔或者混合区也可以设置在板边缘上或者通过缺口设置在板边缘上。
在另一特殊的实施例中,存在至少两个用于至少两种不同的流体流的进入孔,其中每个进入孔分别通过一个连接通道与混合区连接。在此用于两种不同流体的两个排出孔最好位于混合区的对置侧上,其中该混合区最好完全包围地定位在板平面以内。
适合作为结构件的材料例如是金属,尤其是耐腐蚀的金属如特种钢,也可以是玻璃、陶瓷或塑料。所述结构件可以通过公知的用于在表面上产生微结构的工艺制成,例如通过腐蚀或铣削金属或者通过冲压或压铸塑料。
一个按照本发明使用的静态微混合器具有一个具有至少两个流体输入装置和至少一个流体输出装置的外壳。在外壳内具有一个或至少两个设置成一个叠摞的板状微混合器结构件。可以由任意数量的板产生叠摞,它们能够实现一个对应于叠摞高度的通流。为了保证在混合器的每个位置上具有相同的压力,对于较长的长度可以在多个位置上实现流体输入。在板内或板上的槽或连接段可以用于可叠摞性和可校准性。使这些板这样上下相叠地叠摞,使得进入孔构成用于输送相应载体流体或萃取流体的副通道而排出孔或混合区共同构成一个用于排出混合流体的主通道并且使主通道和副通道穿过叠摞延伸。当进入孔作为缺口设置在板边缘上时,所述外壳壁构成一个对外封闭相应副通道的副通道壁部分。当所述混合区作为缺口设置在板边缘上时,所述外壳壁构成一个对外封闭主通道的主通道壁部分。所述微混合器总共可以具有例如至少5、10、100或者多于1000个分通道并且由一个分别具有许多分通道的板的叠摞组成。
每个从一个板的排出孔排出到混合区内的一个第一流体A的分流紧邻一个从一个相邻板的排出孔排出到混合区内的一个第二流体B的分流并在混合区通过扩散和/或紊流导致一个混合,其中优选一个混合,它至少局部或完全通过紊流实现。
在微混合器的一个实施例中所述板的连接通道通过凹下构成并且使连接通道在通入到混合区之前通过安置在板上的微结构单元分成分通道。在一个可选择的实施例中所述板的连接通道通过板中的空隙构成,其中作为中间板的各板设置在一个盖板与一个底板之间并且使连接通道在通入到混合区之前通过安置在盖板和/或底板上的微结构单元分成分通道。在按照本发明的微混合器中可以组合用于输入或排出热量的换热器。由此可以根据分布系数的温度相关性进一步优化分离特性并且能够在冷却条件下实现温度敏感物质的低温萃取。
在按照本发明的萃取方法中,所述流体流或进入到混合区内的各流体流的流速最好高于混合物在混合区内部的流速。特别优选这样的微混合器结构以及流速,其中在混合区中产生紊流并且使混合在混合区中完全或至少局部地通过紊流实现。
两种流体相态或者可以通过不同的副通道输送或者一种相态(最好是连续相态)通过主通道输送而第二相态(最好是待弥散的相态)通过一个副通道输送。
为了提高按照本发明的方法生产能力可以提高在板中的通道数量或者可以提高在一个微混合器中的上下叠层的板的数量,或者可以使许多微混合器模块式地并联接通在一起运行。也可以使两个或多个微混合器先后串联地运行,尤其是用于改善分离效率。同时可以使用于使不可混合的相态分离和分选的分离器或者组合在微混合器中和/或设置在微混合器之后作为独立的单元。
附图说明
下面借助于附图描述按照本发明的适合的结构件和微混合器的示例性实施例。附图中:
图1a-b具有两个用于两种流体流的进入孔的混合板,其中进入孔和排出孔被包围,
图1c 具有一个唯一的进入孔的混合板,其中进入孔和排出孔被包围,
图1d 具有分别被包围的进入孔、通流孔和排出孔的混合板,
图2a-c具有三个用于直至三种相同或不同流体流的进入孔的混合板,其中进入孔和排出孔被包围,
图3a-b具有两个位于板边缘上的用于两种流体流的进入孔和包围的排出孔的混合板,
图3c-d具有四个位于板边缘上的用于直至四种相同或不同流体流的进入孔和包围的排出孔的混合板,
图4a-f具有用于两种流体流的包围的进入孔和包围的通流孔和位于板边缘上的包围的排出孔的混合板,
图5a-b具有用于直至三种不同流体流的包围的进入孔和两个包围的通流孔和位于板边缘上的排出孔,
图6a 一个静态微混合器的示意结构的纵向截面图,
图6b 在一个敞开的外壳中的混合盘,
图7a-b具有包围的进入孔和通流孔和附加的分通道的混合板,其中相邻的分通道可以通流不同的流体,
图8a、c具有包围的进入孔和通流孔和附加的分通道的混合板,其中相邻的分通道可以通流不同的流体,
图8b 具有包围的进入孔和三个包围的通流孔和附加的分通道的混合板,其中相邻的分通道可以通流不同的流体,
图9具有外壳和一个由许多混合板构成的叠摞的微混合器。
具体实施方式
在图1a和1b中示出一个实施例。所述板1分别具有两个包围的进入孔2。每个进入孔2分别通过一个在板平面中通过一个凹下构成的连接通道3连接。每个连接通道3通过许多微结构单元6分成许多分通道7。这些分通道7通过排出孔4通入到一个包围的混合区5。所述排出孔4在一个圆形线上围绕混合区5设置。混合区5和进入孔2由板中的穿孔构成。所述微结构单元例如螺旋形弯曲地构成,其中螺旋在图1a和图1b中具有相反的旋向。但是所述微结构单元也可以直线地非弯曲地构成。如果所述板是圆形的,它们最好在边缘上具有缺口8,它们可以与在一个外壳11中的固定元件14共同起作用,用于防止板旋转或滑移。但是所述板也可以是多角形的,最好是四角形的,例如正方形地构成。由此可以省去缺口和固定元件。通过所述两个进入孔2可以使两种不同的流体流输入到混合区5的一个平面内,其中附属于两种不同的流体流的排出孔最好相互对置。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中按照图1a的板与按照图1b的板交替地叠摞并得到一个具有交替层结构ABAB等的结构。由此使两种不同的流体流可以紧邻地上下相叠地输入到混合区5。所述板这样上下相叠地叠摞,使得进入孔构成用于输入那些流体流的副通道而混合区构成一个用于排出混合物的主通道。但是主通道也可以输送一种形成混合物的以后连续相态的流体。
在图1c中示出另一实施例。所述板1具有一个唯一的包围的进入孔2,它与一个在板平面中通过一个凹下构成的连接通道3连接。所述凹下通道3通过许多微结构单元6分成许多分通道7。这些分通道7通过排出孔4通入到混合区5。所述排出孔4在一个圆形线上围绕混合区5设置。混合区5和进入孔2由板中的穿孔构成。微结构单元例如螺旋形弯曲地构成。但是所述微结构单元也可以直线形、非弯曲或以任意其它的几何形状构成。一个微混合器最好具有由许多上下相叠地放置的结构件构成的叠摞。在叠摞中使板这样上下相叠地放置,使得进入孔构成一个用于输入一种流体流的副通道而混合区构成一个用于排出混合物的主通道。通过主通道可以输入一种待混合的组分、最好是一种形成混合物的以后连续相态的流体。这个实施例例如特别适合于气体/液体的萃取。在此液体相态通过中心的主通道输入而气体通过副通道输入。以有利的方式可以使板叠摞具有一个交替层结构的结构,其中交替的板上下相叠地叠摞,它们具有相反旋向的螺旋形微结构单元6。但是也可以只使用一个唯一的板型。所述微结构单元最好直线形地构成并且这样成形,使得分通道构成喷嘴。
在图1d中示出另一实施例。所述板1具有一个包围的进入孔2、一个包围的混合区5和一个包围的通流孔9。该进入孔2与一个在板平面中通过一个凹下构成的连接通道3连接,所述连接通道通过许多微结构单元6分成许多分通道7。所述分通道7通过排出孔4通入到混合区5。所述排出孔4在一个圆形线上围绕混合区5设置。混合区5、进入孔2和通流孔9由板中的穿孔构成。所述微结构单元例如螺旋形弯曲地构成。但是微结构单元也可以直线地非弯曲地或者以任意其它的几何形状构成。通过在连接通道中的附加嵌入体10可以优化连接通道3中的通流特性。如果板是圆形的,则它们最好在边缘上具有缺口8,它们可以与在一个外壳11中的固定元件14共同起作用,用于防止板旋转和滑移。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中使按照图1d的板交替旋转180°地上下相叠地放置。由此可以使两种不同的流体流紧邻地上下相叠地输入到混合区5。在叠摞中使板这样上下相叠地放置,使得进入孔2和通流孔9交替地叠摞并且构成两个用于输入两种流体流的副通道并且使混合区构成一个用于排出混合物的主通道。但是通过主通道也可以输入一个形成混合物的以后连续相态的流体。以有利的方式可以使板叠摞具有一个交替层结构的结构,其中使板交替地上下相叠地放置,它们具有相反旋向的螺旋形微结构单元6。但是也可以只使用一个唯一的板型。所述微结构单元最好直线地构成并且这样成形,使分通道构成喷嘴。
在图2a至2c中示出另一实施例。所述板1分别具有三个包围的进入孔2。每个进入孔2分别与一个在板平面中通过一个凹下构成的连接通道3连接。每个凹下通道3通过至少一个微结构单元6分成至少两个分通道7。通过更多的微结构单元可以分成相应更多的分通道。所述分通道7通过排出孔4通入到混合区5。这些排出孔4在一个圆形线上围绕混合区5设置。混合区5和进入孔2由板中的穿孔构成。所述微结构单元可以通过不同旋向的螺旋形或者直线形地构成。通过所述三个进入孔2可以在混合区5的一个平面中输入相同的或者直至三种不同的流体流。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中使按照图2a、2b和2c的不同板型交替叠摞并且得到一个具有交替层结构、例如ABCABC的结构。由此可以分别使两种不同的流体流紧邻地上下相叠地地输入到混合区5。在叠摞中使所述板这样上下相叠地放置,使得进入孔构成用于输入那些流体流的副通道而混合区构成一个用于排出混合物的主通道。但是也可以通过主通道输入一个形成混合物的以后连续相态的流体。
在图3a和3b中示出另一实施例。所述板1分别具有两个定位在板边缘上的进入孔2。每个进入孔2分别与一个在板平面中通过一个凹下构成的连接通道3连接。每个凹下通道3通过许多微结构单元6分成许多分通道7。所述分通道7通过排出孔4通入到一个包围的混合区5。这些排出孔4设置在一个直线上。所述混合区5例如由板中的矩形穿孔构成。所述微结构单元例如倾斜于流动方向构成,其中倾斜在图1a和1b中具有相反的方向。但是所述微结构单元也可以分别通过相同的倾斜或没有倾斜地构成。所述板具有基本上正方形的基本形状,但是也可以具有任意其它的几何基本形状(多角形、圆形、椭圆形等)。通过所述两个进入孔2可以在混合区5的一个平面中输入两种不同的流体流,其中附属于两种不同的流体流的排出孔优选相互对置。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中使按照图3a的板与按照图3b的板交替地叠摞并且得到一个具有交替层结构、例如ABAB的结构。由此可以分别使两种不同的流体流紧邻地上下相叠地输入到混合区5。在叠摞中使所述板这样上下相叠地放置,使得进入孔与混合器外壳一起在混合器的边缘上构成用于输入那些流体流的副通道而混合区构成一个在混合器内部用于排出混合物的主通道。但是也可以通过主通道输入一个形成混合物的以后连续相态的流体。
在图3c和图3d中示出另一实施例。所述板1分别具有四个定位在板边缘上的进入孔2。每个进入孔2分别与一个在板平面中通过一个凹下构成的连接通道3连接。每个凹下通道3通过许多微结构单元6分成许多分通道7。所述分通道7通过排出孔4通入到一个包围的混合区5。这些排出孔4设置在一个圆形线上。所述连接通道螺旋形地弯曲,其中图3c与图3d中的螺旋旋向相反。所述混合区5由板中的矩形穿孔构成。所述微结构单元例如直线地构成,但是也可以倾斜或螺旋形弯曲地构成。所述板具有基本上正方形的基本形状,但是也可以具有任意其它的几何基本形状(多角形、圆形、椭圆形等)。通过所述四个进入孔2可以在混合区5的一个平面中输入相同或者直至四种不同的流体流,其中附属于不同的流体流的排出孔优选相互对置。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中使按照图3c的板与按照图3d的具有相反螺旋旋向的螺旋形弯曲的连接通道的板交替地叠摞并且得到一个具有交替层结构ABAB的结构。由此可以使两种不同的流体流紧邻地上下相叠地输入到混合区5。在叠摞中使所述板这样上下相叠地放置,使得进入孔与混合器外壳一起在混合器的边缘上构成用于输入那些流体流的副通道而混合区构成一个在混合器内部用于排出混合物的主通道。但是也可以通过主通道输入一个形成混合物的以后连续相态的流体。
在图4a至4f中示出其它实施例。所述板1分别具有一个包围的进入孔2和一个包围的通流孔9。每个进入孔2分别与一个在板平面中通过一个凹下构成的连接通道3连接。每个连接通道3通过许多微结构单元6分成许多分通道7。所述分通道7通过设置在板边缘上的排出孔4通入到一个位于板表面外部的混合区5。这些排出孔4可以设置在直线上(图4e、4f)或者设置在弯曲弧段上,其中所述弯曲弧段可以是凸起的(图4a、4b)或者是凹下的(图4c、4d)。所述进入孔2和通流孔9由板中的穿孔构成。所述微结构单元可以相对于由连接通道给定的流动方向平行或者以不同的角度构成。如果板是圆形的,则它们最好在边缘上具有缺口8,它们可以与一个外壳11中的固定元件14共同起作用,用于防止板旋转或滑移。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中使按照图4a的板与按照图4b的板、或者使按照图4c的板与按照图4d的板、或者使按照图4e的板与按照图4f的板分别交替地叠摞并且得到一个具有交替层结构ABAB的结构。由此可以分别使两种不同的流体流紧邻地上下相叠地输入到混合区5。所述分通道在通入到混合区时相对于混合区圆周线的角度在相邻板中最好是不同的,它们特别优选具有90°的相互错位。在叠摞中使所述板这样上下相叠地放置,使得进入孔2与通流孔9交替错开并且构成两个位于混合器内部的用于输入两种流体流的副通道。所述混合区可以与一个外壳构成一个用于排出混合物的主通道。
在图5a和图5b中示出其它实施例。所述板1分别具有一个包围的进入孔2和两个包围的通流孔9。每个进入孔2分别与一个在板平面中通过一个凹下构成的连接通道3连接。每个连接通道3通过许多微结构单元6分成许多分通道7。所述分通道7通过设置在板边缘上的排出孔4通入到一个位于板表面外部的混合区5。这些排出孔4可以设置在直线上(图5a)或者设置在弯曲弧段上(图5b),其中该弯曲弧段可以是凸起或凹下的。所述进入孔2和通流孔9由板中的穿孔构成。所述微结构单元可以相对于由连接通道给定的流动方向平行或者以不同的角度构成。如果板是圆形的,则它们最好在边缘上具有缺口8,它们可以与一个外壳11中的固定元件14共同起作用,用于防止板旋转或滑移。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中使按照图5a或5b的三个不同板型的板分别交替地叠摞并且得到一个具有交替层结构ABCABC的结构。由此可以分别使不同的流体流紧邻地上下相叠地输入到混合区5。所述分通道在通入到混合区时相对于混合区圆周线的角度在相邻板中最好是不同的,它们特别优选具有90°的相互错位。在叠摞中,使所述板1这样上下相叠地放置,使得进入孔2与通流孔9交替错开并且构成三个位于混合器内部的用于输入直至三种不同流体流的副通道。所述混合区5可以与一个外壳构成一个用于排出混合物的主通道。
在图6a中以一个纵向截面图的形式示出一个静态微混合器的实施例的示意结构。一个外壳11具有流体输入装置12a。在外壳11中包括一个由许多按照本发明的混合板1构成的叠摞。所述板的进入孔和/或通流孔可以通过一个最好垂直于板平面活动的封闭装置13a封闭和打开。通过该封闭装置也可以调节流速。所述混合物可以从位于外壳内部的混合区通过一个适合的流体输出装置排出。
在图6b中示出一个静态混合器的横截面图。在外壳11中装入一个混合板1,它通过缺口8和固定元件14定位。作为混合板例如是一个按照图5a的混合板。
在图7a-b和图8a-c中示出其它优选的实施例。在这些实施例中所述板1具有相邻的分通道7和13,它们可以交替地通流不同的流体流并因此可以使不同的流体流在一个平面内紧邻地输入到混合区5内。
在图7a中示出的板1分别具有一个包围的进入孔2、一个包围的混合区5和一个包围的通流孔9。所述进入孔2与一个在板平面中通过一个凹下构成的连接通道3连接,所述连接通道通过许多微结构单元6分成许多分通道7。所述分通道7通过排出孔4通入到混合区5。这些排出孔4可以设置在一个围绕混合区5的圆形线上。所述混合区5、进入孔2和通流孔9由板中的穿孔构成。在微结构单元6中组合一些凹下地构成的其它分通道13,所述其它分通道相对于连接通道3屏蔽并且通入到混合区5。所述分通道7和所述其它分通道13交替地相邻设置。这些板具有附加的穿孔12,其中所述穿孔12的数量与附加的分通道13的数量相同。这些穿孔12这样设置,使得当一个板1旋转180°到一个第二板1上时,这些穿孔分别位于在其下面的板的附加分通道13的上方。一个通过进入孔2流进连接通道3的流体流可以通过穿孔12流进一个位于其下面的板的一个附加分通道13内。相邻分通道7和13相互间和相对于混合区圆周线的角度可以是不同的。在图7a中所述分通道7的相对于混合区5圆周线的角度相对于附加分通道13的相对于混合区5圆周线的角度相互错开90°。由此使每两个分通道的排出孔成对地相互对准。由此可以使两种不同的流体流相互输入。但是所述分通道也可以平行地以垂直角或倾斜于混合区延伸。图7a并列地示出两个全等的相互旋转180°的板1。图7b示意地示出两个旋转180°上下相叠地放置的板。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中按照图7a的板交替地旋转180°地上下相叠地设置。由此使两种不同的流体流不仅可以紧邻地上下相叠地而且可以紧邻地并排输入到混合区5。在叠摞中使所述板这样上下相叠地放置,使得进入孔2与通流孔9交替地叠摞并构成两个用于输入两种流体流的副通道而混合区构成一个用于排出混合物的主通道。但是也可以通过主通道输入一个形成混合物的以后连续相态的流体。此外所述板这样上下相叠地放置,使得一个板的每个附加穿孔12分别与一个相邻板的一个附属的附加分通道13连通地连接。
在图8a中示出一个与图7a类似的实施例,其区别是,所述分通道7与附加的分通道13平行地以相同的角度倾斜地输入到混合区5。在此图8a左边的板与右边的板的不同之处是,所述分通道7和13相对于混合区5的圆周线的角度具有一个90°的相互错位。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中按照图8a的左边与右边的板交替地叠摞并且得到一个具有交替层结构ABAB的结构。由此使两种不同的流体流紧邻地上下相叠地以相反的角度输入到混合区5。
在图8c中示出一个与图8a类似的实施例,其区别是,所述分通道7与附加的分通道13平行且垂直地输入到混合区5。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中按照图8c的左边与右边的板交替地叠摞并且得到一个具有交替层结构ABAB的结构。在叠摞中所述板这样上下相叠地放置,使得所述进入孔2与通流孔9交替地叠摞并且构成两个用于输入两种流体流的副通道而混合区构成一个用于排出混合物的主通道。此外所述板这样上下相叠地放置,使得一个板的每个附加穿孔12分别与一个相邻板的一个附属的附加分通道13连通地连接。由此使两种不同的流体流不仅可以紧邻地上下相叠地而且可以紧邻地并排输入到混合区5。
在图8b中示出另一实施例。一个板1具有一个包围的进入孔2、三个包围的通流孔9和一个包围的混合区5。所述进入孔2与一个在板平面中通过一个凹下构成的连接通道3连接,所述连接通道通过许多微结构单元6分成许多分通道7。所述分通道7通过排出孔4通入到混合区5。这些排出孔4设置在一个围绕混合区5的圆形线上。所述混合区5、进入孔2和通流孔9由板中的穿孔构成。在微结构单元6中组合一些凹下地构成的其它分通道13,所述其它分通道相对于连接通道3屏蔽并且通入到混合区5。所述分通道7和所述其它分通道13交替地相邻设置。这些板具有附加的穿孔12,其中所述穿孔12的数量与附加的分通道13的数量相同。这些穿孔12这样设置,使得当一个板1旋转90°到一个第二板1上时,这些穿孔分别位于在其下面的板的附加分通道13的上方。一个通过进入孔2流进连接通道3的流体流可以通过穿孔12流进一个位于其下面的板的一个附加分通道13内。相邻分通道7和13相互间和相对于混合区圆周线的角度可以是不同的。在图8b中所述分通道7的相对于混合区5圆周线的角度相对于附加分通道13的相对于混合区5圆周线的角度相互错开90°。由此使每两个分通道的排出孔成对地相互对准。由此可以使两种不同的流体流相互输入。但是所述分通道也可以平行地以垂直角或倾斜于混合区延伸。一个微混合器最好具有一个由许多上下相叠地放置的结构件构成的叠摞,其中按照图8b的板以任意的顺序旋转90°、180°或270°地上下相叠地设置。由此使不同的流体流不仅可以紧邻地上下相叠地而且可以紧邻地并排输入到混合区5。总共可以使直至四种不同的流体通过微混合器混合。在叠摞中使所述板这样上下相叠地放置,使得进入孔2与通流孔9交替地叠摞并构成总共四个用于输入直至四种流体流的副通道而混合区构成一个用于排出混合物的主通道。但是也可以通过主通道输入一个形成混合物的以后连续相态的流体。此外所述板这样上下相叠地放置,使得一个板的每个附加穿孔12分别与一个相邻板的一个附属的附加分通道13连通地连接。
在图9中以一个分解图例如示出一个按照本发明可使用的静态微混合器的一个可能的实施例。一个外壳11包括一个按照本发明的板1形式的结构件的叠摞。例如是一个由许多按照图8a的板构成的叠摞,但是也可以使用其它按照本发明的板,其中必要时使外壳形状、数量和位置适配于流体输入装置和流体输出装置。所述板1这样装入,使得所述缺口8与固定元件14共同起作用,用于防止板旋转。所述外壳具有两个用于输入流体的流体输入装置12a。该外壳可以通过一个盖板15封闭,它具有一个流体输出装置16。
在一个实施例中,按照本发明的萃取方法可以按照逆流原理实现,其中具有较低密度的流体相态的输入在具有较高密度的流体相态的输入下方进行。
附图标记清单
1板 10嵌入体
2进入孔 25 11外壳
3连接通道 12穿孔
4排出孔 12a 流体输入装置
5混合区 13附加的分通道
6微结构单元 13a 封闭装置
7分通道 30 14固定元件
8缺口 15盖板
9通流孔 16流体输出装置
Claims (18)
1.一种用于进行萃取的方法,其中
-使至少两种相互间不可混溶的流体相态相互混合,
-其中至少一个相态包含至少一个通过另一相态可萃取的物质,
其中所述混合在使用至少一个静态微混合器的条件下实现,该微混合器具有至少一个板(1)式的结构件并且其中该板(1)
-具有至少一个进入孔(2)用于使至少一种流体流进入到一个位于板平面中的连接通道(3)并具有至少一个排出孔(4)用于使流体流排出到一个位于板平面中的混合区(5),
-其中所述进入孔(2)与排出孔(4)通过位于板平面中的连接通道(3)连通地连接并且
-其中所述连接通道(3)在通入到混合区(5)之前通过微结构单元(6)分成两个或多个分通道(7),其中这些分通道的宽度位于毫米至亚毫米范围并且小于混合区(5)的宽度,
其特征在于,连接通道(3)的最大宽度与分通道(7)在其进入到混合区(5)的出口处的宽度的比例大于2,所述板(1)具有附加的穿孔(12)和组合到微结构单元(6)内的、与分通道(7)分开的附加分通道(13)。
2.如权利要求1所述的方法,其特征在于,所述微混合器具有一个外壳(11),它具有至少两个流体输入装置(12a)和至少一个流体排出装置(16),并且该外壳(11)包括至少一个或多个设置成一个叠摞的板式结构件(1)。
3.如权利要求2所述的方法,其特征在于,使用多个板(1),它们这样上下相叠地放置,使得所述进入孔(2)构成用于输入那些待混合的液体相态的副通道而所述混合区(5)共同构成一个用于排出已混合相态的主通道并且使主通道和副通道穿过叠摞延伸。
4.如权利要求3所述的方法,其特征在于,使萃取剂通过主通道导引并且使含有待萃取物质的相态通过微混合器的至少一个副通道导引。
5.如上述权利要求中任一项所述的方法,其特征在于,所述板(1)的分通道(7)在通入到混合区(5)处的宽度为1μm至2mm。
6.如权利要求1-4中任一项所述的方法,其特征在于,所述板(1)的连接通道(3)的最大宽度与分通道(7)的宽度的比例大于5。
7.如权利要求1-4中任一项所述的方法,其特征在于,所述板(1)的分通道(7)的长度与宽度的比例为1∶1至20∶1。
8.如权利要求1-4中任一项所述的方法,其特征在于,所述板(1)的混合区(5)的宽度与分通道(7)的宽度的比例大于2。
9.如权利要求1-4中任一项所述的方法,其特征在于,所述板(1)附加地具有至少一个通流孔(9)。
10.如权利要求9所述的方法,其特征在于,所述板(1)的至少一个进入孔(2)或通流孔(9)或所述混合区(5)被板平面包围并且使连接通道(3)通过一个凹下构成。
11.如权利要求9所述的方法,其特征在于,所述板(1)的至少一个进入孔(2)或通流孔(9)或所述混合区(5)设置在板边缘上或者通过缺口设置在板边缘上。
12.如权利要求1-4中任一项所述的方法,其特征在于,所述板(1)具有至少两个用于至少两种不同的流体流的进入孔(2),其中每个进入孔(2)分别通过一个连接通道(3)与混合区(5)连接。
13.如权利要求1-4中任一项所述的方法,其特征在于,所述板(1)具有两个用于两种不同的流体流的进入孔(2),其中每个进入孔(2)分别通过一个连接通道(3)与混合区(5)连接并且使两个连接通道(3)的排出孔(4)相互对置。
14.如权利要求1-4中任一项所述的方法,其特征在于,所述板(1)的排出孔(4)设置在一个圆形线上。
15.如权利要求1-4中任一项所述的方法,其特征在于,所述板(1)的连接通道(3)通过凹下构成并且该连接通道(3)在通入到混合区(5)之前通过安置在板(1)上的微结构单元(6)分成分通道(7)。
16.如权利要求1-4中任一项所述的方法,其特征在于,所述板(1)的连接通道(3)通过板(1)中的空隙构成,其中作为中间板的各板分别设置在一个盖板与一个底板之间并且所述连接通道(3)在通入到混合区(5)之前通过安置在盖板和/或底板上的微结构单元(6)分成分通道(7)。
17.如权利要求1-4中任一项所述的方法,其特征在于,所述流体流进入混合区(5)的流速高于流体混合物在混合区内部的流速。
18.如权利要求1-4中任一项所述的方法,其特征在于,在混合区中至少局部地通过紊流实现混合。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10333921.3 | 2003-07-25 | ||
DE10333921A DE10333921B4 (de) | 2003-07-25 | 2003-07-25 | Extraktionsverfahren unter Verwendung eines statischen Mikromischers |
PCT/EP2004/006043 WO2005018772A1 (de) | 2003-07-25 | 2004-06-04 | Extraktionsverfahren unter verwendung eines statischen mikromischers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1822888A CN1822888A (zh) | 2006-08-23 |
CN1822888B true CN1822888B (zh) | 2010-05-26 |
Family
ID=34071901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2004800203176A Expired - Fee Related CN1822888B (zh) | 2003-07-25 | 2004-06-04 | 在使用一个静态微混合器的条件下的萃取方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US8057677B2 (zh) |
EP (1) | EP1648581B1 (zh) |
JP (1) | JP4958216B2 (zh) |
CN (1) | CN1822888B (zh) |
AT (1) | ATE479483T1 (zh) |
DE (2) | DE10333921B4 (zh) |
ES (1) | ES2351600T3 (zh) |
MX (1) | MXPA06000729A (zh) |
WO (1) | WO2005018772A1 (zh) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2378144T3 (es) * | 2001-05-17 | 2012-04-09 | Amalgamated Research, Inc. | Dispositivo fractal para aplicaciones de mezcla y de reactores |
DE10333922B4 (de) * | 2003-07-25 | 2005-11-17 | Wella Ag | Bauteile für statische Mikromischer, daraus aufgebaute Mikromischer und deren Verwendung zum Mischen, zum Dispergieren oder zur Durchführung chemischer Reaktionen |
DE102004007708A1 (de) * | 2004-02-16 | 2005-08-25 | Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik | Verfahren zur Aufarbeitung von flüssigen Stoffen |
US20070140042A1 (en) * | 2004-06-04 | 2007-06-21 | Gerhard Schanz | Multicomponent packaging with static micromixer |
DE602006003419D1 (de) * | 2005-04-08 | 2008-12-11 | Huntsman Int Llc | Spiralmischerdüse und verfahren zum mischen von zwei oder mehr fluiden und verfahren zur herstellung von isocyanaten |
JP5030520B2 (ja) * | 2006-09-29 | 2012-09-19 | 富士フイルム株式会社 | 流体混合方法及びマイクロデバイス |
US7520661B1 (en) * | 2006-11-20 | 2009-04-21 | Aeromed Technologies Llc | Static mixer |
EP2314370B1 (en) * | 2007-05-15 | 2013-09-04 | Corning Incorporated | Microfluidic device for immiscible liquid - liquid reactions |
WO2009039283A1 (en) | 2007-09-18 | 2009-03-26 | Indiana University Research And Technology Corporation | Compact microfluidic structures for manipulating fluids |
JP4980465B2 (ja) * | 2008-03-28 | 2012-07-18 | アークレイ株式会社 | 液体攪拌方法、液体攪拌システム、およびカートリッジ |
US20100093098A1 (en) * | 2008-10-14 | 2010-04-15 | Siemens Medical Solutions | Nonflow-through appratus and mehod using enhanced flow mechanisms |
JP5143082B2 (ja) | 2009-05-22 | 2013-02-13 | 株式会社日立製作所 | 液液抽出システム |
US9079140B2 (en) | 2011-04-13 | 2015-07-14 | Microfluidics International Corporation | Compact interaction chamber with multiple cross micro impinging jets |
JP6016706B2 (ja) * | 2013-04-22 | 2016-10-26 | 株式会社神戸製鋼所 | 処理装置及び処理方法 |
JP2015201646A (ja) | 2014-04-07 | 2015-11-12 | ラム リサーチ コーポレーションLam Research Corporation | 構成独立型のガス供給システム |
US10557197B2 (en) | 2014-10-17 | 2020-02-11 | Lam Research Corporation | Monolithic gas distribution manifold and various construction techniques and use cases therefor |
US9937472B2 (en) | 2015-05-07 | 2018-04-10 | Techmetals, Inc. | Assembly operable to mix or sparge a liquid |
US10022689B2 (en) * | 2015-07-24 | 2018-07-17 | Lam Research Corporation | Fluid mixing hub for semiconductor processing tool |
US10215317B2 (en) | 2016-01-15 | 2019-02-26 | Lam Research Corporation | Additively manufactured gas distribution manifold |
CN107325202B (zh) * | 2017-07-06 | 2019-09-17 | 淄博千汇生物科技有限公司 | 舒更葡萄糖钠的精制方法 |
CN109589643A (zh) * | 2018-12-21 | 2019-04-09 | 四川大学 | 一种刮膜式旋转微通道强化萃取设备及其应用 |
CN110407318A (zh) * | 2019-07-17 | 2019-11-05 | 上海世浦泰膜科技有限公司 | 一种多孔同时曝气装置 |
CN112206695B (zh) * | 2020-09-16 | 2021-11-19 | 复旦大学 | 一种多层次结构微通道混合器及其流体混合方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1200682A (zh) * | 1995-10-28 | 1998-12-02 | 卡尔斯鲁厄研究中心股份有限公司 | 微型静力混合机 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4560284A (en) * | 1983-11-21 | 1985-12-24 | Chen Hwang C | Continuous type of fluid mixing and feeding device |
DE4416343C2 (de) * | 1994-05-09 | 1996-10-17 | Karlsruhe Forschzent | Statischer Mikro-Vermischer |
DE19541266A1 (de) * | 1995-11-06 | 1997-05-07 | Bayer Ag | Verfahren und Vorrichtung zur Durchführung chemischer Reaktionen mittels eines Mikrostruktur-Lamellenmischers |
DE19541265A1 (de) * | 1995-11-06 | 1997-05-07 | Bayer Ag | Verfahren zur Herstellung von Dispersionen und zur Durchführung chemischer Reaktionen mit disperser Phase |
DE19927556C2 (de) * | 1999-06-16 | 2003-05-08 | Inst Mikrotechnik Mainz Gmbh | Statischer Mikromischer und Verfahren zum statischen Mischen zweier oder mehrerer Edukte |
DE19928123A1 (de) * | 1999-06-19 | 2000-12-28 | Karlsruhe Forschzent | Statischer Mikrovermischer |
DE19961257C2 (de) * | 1999-12-18 | 2002-12-19 | Inst Mikrotechnik Mainz Gmbh | Mikrovermischer |
DE19961275C2 (de) * | 1999-12-18 | 2002-07-18 | Zahnradfabrik Friedrichshafen | Automatgetriebe für ein Kraftfahrzeug |
DE10041823C2 (de) | 2000-08-25 | 2002-12-19 | Inst Mikrotechnik Mainz Gmbh | Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide |
US6863867B2 (en) * | 2001-05-07 | 2005-03-08 | Uop Llc | Apparatus for mixing and reacting at least two fluids |
DE10123093A1 (de) | 2001-05-07 | 2002-11-21 | Inst Mikrotechnik Mainz Gmbh | Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide |
JP4792664B2 (ja) | 2001-06-15 | 2011-10-12 | コニカミノルタホールディングス株式会社 | 混合方法、混合機構、該混合機構を備えたマイクロミキサーおよびマイクロチップ |
DE20206371U1 (de) * | 2002-04-23 | 2002-06-27 | Ehrfeld Mikrotechnik GmbH, 55234 Wendelsheim | Modular aufgebauter statischer Mikrovermischer |
DE10248541A1 (de) * | 2002-10-17 | 2004-04-29 | Hilti Ag | Mischelement |
-
2003
- 2003-07-25 DE DE10333921A patent/DE10333921B4/de not_active Expired - Fee Related
-
2004
- 2004-06-04 DE DE502004011614T patent/DE502004011614D1/de not_active Expired - Lifetime
- 2004-06-04 US US10/563,354 patent/US8057677B2/en not_active Expired - Fee Related
- 2004-06-04 JP JP2006520684A patent/JP4958216B2/ja not_active Expired - Fee Related
- 2004-06-04 CN CN2004800203176A patent/CN1822888B/zh not_active Expired - Fee Related
- 2004-06-04 AT AT04739597T patent/ATE479483T1/de active
- 2004-06-04 EP EP04739597A patent/EP1648581B1/de not_active Expired - Lifetime
- 2004-06-04 ES ES04739597T patent/ES2351600T3/es not_active Expired - Lifetime
- 2004-06-04 WO PCT/EP2004/006043 patent/WO2005018772A1/de active Application Filing
- 2004-06-04 MX MXPA06000729A patent/MXPA06000729A/es active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1200682A (zh) * | 1995-10-28 | 1998-12-02 | 卡尔斯鲁厄研究中心股份有限公司 | 微型静力混合机 |
Also Published As
Publication number | Publication date |
---|---|
US20070007204A1 (en) | 2007-01-11 |
WO2005018772A1 (de) | 2005-03-03 |
US8057677B2 (en) | 2011-11-15 |
DE10333921A1 (de) | 2005-02-17 |
ES2351600T3 (es) | 2011-02-08 |
DE502004011614D1 (de) | 2010-10-14 |
EP1648581A1 (de) | 2006-04-26 |
JP4958216B2 (ja) | 2012-06-20 |
DE10333921B4 (de) | 2005-10-20 |
JP2006528542A (ja) | 2006-12-21 |
EP1648581B1 (de) | 2010-09-01 |
MXPA06000729A (es) | 2006-04-19 |
CN1822888A (zh) | 2006-08-23 |
ATE479483T1 (de) | 2010-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1822888B (zh) | 在使用一个静态微混合器的条件下的萃取方法 | |
JP6145851B2 (ja) | 多流路型マイクロリアクタ・デザイン | |
DE10333922B4 (de) | Bauteile für statische Mikromischer, daraus aufgebaute Mikromischer und deren Verwendung zum Mischen, zum Dispergieren oder zur Durchführung chemischer Reaktionen | |
CN101873890B (zh) | 过程加强的微流体装置 | |
CN1280005C (zh) | 用于将至少两种流体混合和反应的设备 | |
CA2650499C (en) | Flow distribution channels to control flow in process channels | |
NZ198371A (en) | Apparatus for separating liquid from a liquid/gas mixture | |
WO2002016017A9 (de) | Verfahren und statischer mikrovermischer zum mischen mindestens zweier fluide | |
AU2014365713B2 (en) | Static internal, use of one or more static internal, agitated liquid-liquid contactor and use of an agitated liquid-liquid contactor | |
RU2674957C2 (ru) | Коллектор для перемешивания жидкости и способ его применения | |
US20120016140A1 (en) | Plate Fin Fluid Processing Device | |
WO2007032810A2 (en) | Multi-phase contacting process using microchannel process technology | |
JP2006102681A (ja) | 流体混合器及びマイクロリアクタシステム | |
Polyakova et al. | Overview of innovative technologies in liquid‐liquid extraction regarding flexibility | |
CN102302865B (zh) | 一种参数可调的三相萃取槽 | |
WO2013102005A1 (en) | Solvent extraction mixer settler coalescing media placement | |
EP2949389A1 (en) | Use of micro mixers for generating foam | |
WO2003089129A1 (de) | Integriertes misch- und schaltsystem für die mikroreaktionstechnik | |
JP2002346354A (ja) | マイクロ混合器 | |
KR20230150288A (ko) | 열, 침식, 및 분해에 대한 저항성을 가진 정적 믹서 | |
JPS5941761B2 (ja) | 抽出塔 | |
KR20040096452A (ko) | 마이크로 믹서 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee |
Owner name: WELLA LTD. Free format text: FORMER NAME: WELLA AKTIENGESELL SCHAFT |
|
CP01 | Change in the name or title of a patent holder |
Address after: Darmstadt Patentee after: Wella AG Address before: Darmstadt Patentee before: Wella AG. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100526 Termination date: 20180604 |