CN1791296A - 短弧型放电灯点灯装置 - Google Patents

短弧型放电灯点灯装置 Download PDF

Info

Publication number
CN1791296A
CN1791296A CNA2005101192832A CN200510119283A CN1791296A CN 1791296 A CN1791296 A CN 1791296A CN A2005101192832 A CNA2005101192832 A CN A2005101192832A CN 200510119283 A CN200510119283 A CN 200510119283A CN 1791296 A CN1791296 A CN 1791296A
Authority
CN
China
Prior art keywords
discharge lamp
lamp
current
lighting
mentioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005101192832A
Other languages
English (en)
Other versions
CN1791296B (zh
Inventor
铃木义一
有本智良
菅谷胜美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Publication of CN1791296A publication Critical patent/CN1791296A/zh
Application granted granted Critical
Publication of CN1791296B publication Critical patent/CN1791296B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2885Static converters especially adapted therefor; Control thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2885Static converters especially adapted therefor; Control thereof
    • H05B41/2887Static converters especially adapted therefor; Control thereof characterised by a controllable bridge in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2928Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提供一种短弧型放电灯点灯装置,判别放电灯为热态起动还是冷态起动,并进行适合的点灯。一种包括短弧型放电灯(10)和点灯起动时供给直流电流、之后供给交流电流的供电装置(20)的短弧型放电灯点灯装置,其特征在于,供电装置(20)供给放电灯(10)的直流电流最初为比额定电流小的电流(I1),之后为比额定电流大的电流(I2),供电装置(20)检测放电灯(10)的点灯状态为热态起动还是冷态起动,并且根据检测结果与各点灯状态相对应地调整电流(I2)的电流值和/或供给时间。

Description

短弧型放电灯点灯装置
技术领域
本发明涉及短弧型放电灯点灯装置。特别涉及液晶显示装置及使用了DMD(数码微镜装置)的DLP(数字光源处理器)等背面投影装置中所使用的短弧型放电灯点灯装置。
背景技术
投射型放映装置对矩形投影屏的要求是具有均一且充分的彩色再现性并照明图像。因此,光源通常使用具有较高水银蒸汽压、如150个大气压的放电灯。因为通过提高水银蒸汽压,可以抑制(收缩)电弧扩散并进一步提高光的输出。
例如在日本特开平2-148561号、特开平6-52830号、特许第2980882号中公开了这种放电灯。
上述放电灯在例如由石英玻璃构成的发光管中以小于等于2mm的间隔相对配置一对电极,发光管中密封有大于等于0.15mg/mm3的水银、惰性气体、及1×10-6~1×10-2μmol/mm3范围内的卤素。封入卤素的主要目的是防止发光管的失透,也就是产生所谓的卤素循环。
但是,短弧型放电灯(以下只称其为“放电灯”)在点灯过程中随着时间的推移构成电极的钨容易被传送并附着在放电容器的内面上(即所谓的管壁黑化)。这种管壁黑化会导致光输出下降,或在严重的情况下还会成为放电容器破损这一影响灯使用寿命的原因。
而投射型放映装置目前主要是在商业活动等中作为数字投影器来使用,从投影装置使用结束到下次使用开始的时间间隔在1分钟以上。即,从熄灭放电灯到下次点灯的时间至少要在1分钟以上,因为如果有这个时间间隔,可以使放电灯的电极温度得到充分冷却,所以再次点灯(下次点灯)对电极的损坏小。
但是,最近随着投影器技术的提高,出现了不是数据投影器而是使用如电视机的所谓的背面投影电视机,人们期待与等离子电视、直视型大型液晶电视一起在一般家庭中使用。
该背面投影电视机要求从使用投影装置结束到下次使用的时间间隔比数字投影器短,具体来说要求在30秒以内极短的时间。
[专利文献1]日本特开平02-148561号
[专利文献2]日本特开平06-052830号
[专利文献3]日本特许第2980882号
发明内容
本发明所要解决的问题是提供一种抑制管壁黑化、使用寿命较长的短弧型放电灯。特别是提供一种能够用于再次点灯的时间间隔较短的背面投影电视机的短弧型放电灯点灯装置。
为了解决上述问题,第1方案的短弧型放电灯点灯装置包括短弧型放电灯和供电装置,上述短弧型放电灯在由石英玻璃构成的发光管中以小于等于2mm的间隔相对配置一对电极,在该发光管中封入有大于等于0.15mg/mm3的水银、惰性气体、及1×10-6~1×10-2μmol/mm3范围内的卤素;上述供电装置在点灯起动时向该放电灯供给直流电流,之后供给交流电流。
其特征在于:放电灯的一对电极中至少一个电极由通过熔融卷绕在轴上的线圈的前端而形成的熔融粗径部、和在该熔融粗径部的后方形成的线圈构成。
并且,供电装置对放电灯供给的直流电流最初为比额定电流小的电流(I1),之后为比额定电流大的电流(I2)。并且,供电装置检测放电灯的点灯状态为热态起动还是冷态起动,根据该检测结果与各点灯状态相对应地调整电流(I2)的电流值和/或供给时间。
并且,其特征在于:由上述供电装置进行的有关放电灯的点灯状态的检测、即放电灯为热态起动或冷态起动的检测在供电装置供给电流(I2)的期间进行。
并且,其特征在于:在上述放电灯为冷态起动的情况下,上述电流(I1)为额定电流的0.3~0.6倍,上述电流(I2)为额定电流的1.0~2.0倍。
并且,其特征在于:在上述电极的前端形成有突起部。
发明的效果
本发明在具有熔融粗径部和线圈的电极结构的交流点灯型短弧型放电灯中,通过在点灯初期流入比额定电流小的直流电流(I1),之后流入比额定电流大的直流电流(I2),就能够抑制放电容器的黑化。
并且,通过在点灯初期检测放电灯为热态起动或冷态起动并根据检测结果调整电流(I2)的电流值和/或供给时间,就能够提供适用于再次点灯时间间隔较短的背面投影电视机的放电灯。
附图说明
图1表示本发明的放电灯点灯装置。
图2表示本发明的放电灯。
图3表示本发明的放电灯的电极的结构。
图4表示本发明的放电灯的电极的结构。
图5表示本发明的放电灯的电流波形。
图6表示本发明的放电灯的电流波形。
图7表示本发明的实验结果。
图8表示本发明的实验结果。
图9表示使用了本发明的放电灯的光源装置。
具体实施方式
图1表示本发明的短弧型放电灯点灯装置的简略结构。
点灯装置100包括放电灯10和供电装置20,供电装置20由开关部101、全桥部102、控制部103构成。
放电灯10与点火用变压器TR1串联,并且,在放电灯10和变压器TR1的串联电路中还并联有电容器C3。
供电装置20在点灯起动时对放电灯10提供直流电流,在稳定时提供交流电流。
开关部101通过端子T1、T2与直流电源E相连接,由电容器C1、开关元件S1、二极管D1、电感器L1、滑动电容器C2构成。开关元件S1由控制部103控制开关,调整供给放电灯10的电流及功率(放电功率)。
全桥部102由开关元件S2~S5、和图中没有示出的与开关元件S2~S5反向并联的二极管构成,上述开关元件S2~S5由呈桥状连接的晶体管或FET构成。另外,在S2~S5为FET的情况下,由FET的寄生二极管构成。
开关元件S2~S5分别由设在控制部103中的全桥驱动电路21驱动,并对放电灯10提供交流矩形波电流。
具体来说,开关元件S2和S5、开关元件S3和S4分别成对地交互接通,在开关元件S2和S5处于接通状态时,电流流经顺序为开关部101→开关元件S2→放电灯10→变压器TR1→开关元件S5→开关部101。并且,在开关元件S3和S4处于接通状态时,电流以经过开关部101→开关元件S4→变压器TR1→放电灯10→开关元件S3→开关部101的顺序在放电灯3中流动。
并且,电流检测用电阻R1设置在开关部101与全桥部102之间,其目的是为了检测流经放电灯10的电流。另外也可以将电阻R1放在开关部101或全桥部102中考虑。
控制部103由全桥驱动电路21、乘法器22、功率设定器23、比较器24a、比较器24b、信号选择器25、PWM部26、电流设定器27、计时器28、状态检测器29构成。
放电灯在稳定点灯时维持一定的点灯功率,也就是进行所谓的恒功率控制,但在点灯起动时维持一定的点灯电流,也就是进行所谓的恒电流控制。
恒功率控制是将电流检测用电阻R1的电流信号和滑动电容器C2的电压信号输入乘法器22中并计算功率信号。功率信号输入到比较器24a的一个输入端子。比较器24a的另一个输入端子中输入功率设定器23发出的功率基准信号,比较器24a通过比较两个输入信号向PWM部26输出要将功率维持在基准值的指令信号。PWM部26负载控制开关元件S1以使来自比较器24a的输入信号为零。
恒电流控制是将电流检测用电阻R1的电流信号和电流设定器27的电流基准信号输入到比较器24b中。比较器24b通过比较两个输入信号向PWM部26输出指令信号以使电流信号与基准信号保持一致。PWM部26,与恒功率控制一样,负载控制开关元件S1以使来自比较器24b的输入信号为零。
其中,信号选择器25选择比较器24a和比较器24b中某一个比较器并使其动作。具体来说,信号选择器25在点灯起动时选择比较器24b,并且在稳定点灯时选择比较器24a,由此可以分开使用恒电流控制和恒功率控制。这种分别使用可以考虑通过使用计时器来自动进行切换。
从恒电流控制向恒功率控制的切换,并不只局限于由上述信号选择器25进行的切换。例如,还可设定电流上限值而进行恒功率控制。在这种情况下,开始时为恒功率控制,但由于设定了电流的上限值,所以在点灯初期灯电压低时进行维持上限值的控制,也就是进行实质的恒电流控制,随着灯电压的上升进行恒功率控制。
图2表示本发明的放电灯的整体结构。
放电灯10具有通过由石英玻璃构成的放电容器形成的近似球形的发光部11,在该发光部11中相互相对配置有一对电极1。发光部11的两端部形成有伸展的密封部12,在这些密封部12的内部,通过收缩密封而气密封地设置有由钼制成导电用金属箔13。一对电极1的轴部与该金属箔13熔接而进行电连接,并且,金属箔13的另一端与外部引线14相连接。
发光部11内部封入有水银、惰性气体和卤素气体。
为了得到需要的可视光波长如波长为360~780nm的放射光,要封入0.15mg/mm3以上的水银。该封入量根据温度条件而有所不同,在点灯时为150个大气压以上成为极高的蒸汽压。并且,通过封入更多的水银,就能够制作出点灯时水银蒸汽压200个大气压以上、300个大气压以上这样的高水银蒸汽压放电灯,从而实现能够适合于水银蒸汽压越来越高的投影装置的光源。
惰性气体例如封入约13kPa的氩气是为了改善点灯开始性能。
卤素一般以碘、溴、氯等与水银以外的金属的化合物的形态被封入,卤素的封入量从10-6~10-2μmol/mm3的范围内进行选择。其功能是利用卤素循环的长寿命化,像本发明的放电灯这样极小型且高内压的放电灯封入卤素的主要目的是为了防止出现放电容器的失透现象。
这种放电灯是内置于小型化的投影装置中的放电灯,在要求装置整体小型化的同时还要求有高的光量。因此,发光部内的热影响非常严重,灯的管壁负荷值为0.8~2.0W/mm2,具体为1.3W/mm2
在显示用投影装置及电视用投影装置中具有这种高水银蒸汽压及管壁负荷值的情况下,能够提供彩色再现性优良的放射光。
图3是电极1的放大图。
电极1由突起部2、熔融粗径部3、线圈部4和轴部5构成。
突起部2形成于熔融粗径部3的顶端。该突起部2有时会随着放电灯的点灯而开始自然成长,有时会利用轴部5的前端而预先形成。在前者的情况下,因为是根据封入的卤素量及电极的温度形成的,所以具有自动控制调整电极间距离的功能。
熔融粗径部3通过将例如线状的钨卷绕在轴部成线圈状的状态下熔融形成。线圈通过熔融而凝成块状能够增大热容量。特别是对于本发明的放电灯,因为发光部11内部的热条件非常严峻,所以熔融粗径部3的存在非常重要。
线圈4在将上述钨卷绕成线圈状的状态下,前方部分熔融而形成粗径部3,剩下的后端部形成线圈形状。线圈4在点灯起动时通过表面的凹凸效果发挥起动种类(起动开始位置)的作用,点灯后通过表面的凹凸效果和热容量承担放热功能。
图4为电极根部附近的扩大结构。(a)(b)虽然表示同一结构,但(a)是为了说明结构部件而附加了标记,但(b)是为了说明发光部内的物理现象而附加了元素符号。
其中,由于放电灯是在上述高温条件下点灯的,所以使电极具备热容量的放热对策十分必要,电极在某种程度上不得不需要某种程度的大小(体积)。即,存在放电灯要小型化,而电极的体积要大型化的情况。
因此如图所示,电极1的线圈4与放电容器(发光部11)的壁(内表面)的距离L变得非常短。举数值例来看,在2.0mm以下,具体也存在1.5mm以下或1.0mm以下的灯。这里定义的距离是指线圈与放电容器的壁的最短距离。
这样电极与放电容器内面的距离变短,但在起动初期,以线圈后端部为起点形成放电弧时,会导致该放电弧接触到放电容器内面的情况。
这样的数值在理论上会由于放电灯的设计方法不同而有所不同,以绝对值进行定义本来不是很理想,但业界在某种程度上对投影装置的大小及光源所要求的性能做出了一定的规定,可以说考虑到这一点才会出现上述数值。
这里,图4所示的物理现象可以作如下考虑。
即,从线圈4的后端部形成电弧e时,如图所示与放电容器的内面接触,或是产生碰撞,由于这个原因,放电容器的内面局部凹陷,并且作为放电容器的结构材料的石英玻璃(SiO2)也蒸发。蒸发的SiO2会通过放电等离子体而分离成Si和O,并引起电极前端的钨的氧化物WO的蒸发。该钨的氧化物通过对流会向温度相对较底的放电容器内面附近移动,一部分会以WO2Br2等卤化物的形式停留在气体中,一部分则会以钨及WO2等钨的氧化物的形式析出至放电容器内面,从而导致管壁黑化。
这种现象在线圈与放电容器内面的距离非常近的结构中非常显著,但如果在起动初期减小供给放电灯的直流电流,则即使线圈后端部产生的放电弧接触到放电容器内面,其产生的影响也小,并且能够将放电弧的起点引导至前端。
本发明就是以这种原理为基础,采用使点灯起动时的直流电流比额定电流要小的构成,从而防止出现放电容器的管壁黑化的问题。
这里,本发明的放电灯虽然是交流点灯型放电灯,但在点灯起动时进行的是直流点灯。这是为了在点灯起动时使放电保持稳定。具体来说,在点灯起动初期的辉光放电状态及电极温度没有充分上升的电弧放电的初期阶段,如果流经放电灯的电流的极性反转,则会产生所谓的再点弧电压,其结果会导致放电灯熄灭,或者虽不至熄灭但变成非常不稳定的闪光状态。
图5表示从供电装置20供给放电灯10的电流波形。纵轴表示电流值,横轴表示时间。
在时间t1,放电灯打破绝缘状态开始点灯时,直流电流I1流入。该直流电流I1流经的期间用T1表示。
在时间t2,电流值从I1增加到I2。该直流电流I2流经的期间用T2表示。
在时间t3直流电流变化为交流电流。之后供给交流电流,交流电流供给的期间用T3表示。交流电流的电流值通过恒功率控制而随时间的推移而变化。放电灯稳定状态为稳定点灯状态,该状态期间用T4表示。额定电流就是期间T4中的电流值。
图5表示放电灯为冷态起动情况下的电流波形。
这里重新整理一下,本发明的点灯装置的特征在于,稳定点灯时进行交流点灯,并且点灯起动时进行直流点灯,直流点灯从电流值较小的状态(电流值I1)变化到电流值较大的状态(电流值I2)。
在点灯初期供给电流值较小的直流电流(I1)的理由是,即使线圈后端部产生的放电弧与放电容器内面接触,也能够降低其影响,并且不是将放电弧的起点位置维持在线圈后端部,而是使其顺利地移动到前端。
之后增大直流电流的理由是,由于切换至交流点灯状态后,另一个电极成为电子放射用电极(阴极),所以在温度没有达到充分高的状态下该电极很难放射电子。即,直流点灯状态时增加电流量是为了加速两个电极的升温。
因此,在直流点灯时,在电弧起点位于线圈后端部、放电弧很有可能接触到放电容器内面的状态下,为了将接触容器内面的影响降低到足够小,而缩小电流值;而在电弧起点移至电极前端之后,考虑转移到交流点灯操作,为了快速使电极温度上升,所以增加电流值。
举数值例说明,电流值I1为额定电流值的0.3~0.6倍。比这个数值小就不能充分维持点灯,并且,比这个数值大就会受到放电弧接触容器内面所造成的影响。其中最理想的数值为额定电流值的0.4~0.5倍,供给期间T1为1~15秒。
电流值I2为额定电流值的1.0~2.0倍。比这个数值小时,电极就不能得到充分加热,并且,比这个数值大时,电极很有可能过热而导致变形。其中最理想的数值为额定电流值的1.0~1.5倍,供电期间T2为2~10秒。而且,额定电流值的1.0倍,意味着电流I2等于额定电流的情况,所以最好是比1.0倍大,也就是比额定电流大。
其中,额定电流是该放电灯稳定点灯时设计的中心值,举个实效值的例子,在200W灯中,为2.8A。
电流值从I1到I2的变化,如图所示并不仅限于跳跃式变化的情况,也可以是多个阶段性变化,或者渐次变化。并且,交流点灯可以在例如50~400Hz条件下点灯。
返回图1,说明供电装置从放电灯的点灯起动(直流点灯)移至稳定点灯(交流点灯)时的动作。
放电灯10通过变压器TR产生高压脉冲从而破坏绝缘状态。随之,放电电流开始流动,并且计时器28动作并开始计数。
计时器28的输出被输送到全桥驱动电路21及信号选择器25中,到计时器28计算预定时间(如10秒)为止,全桥驱动电路21将全桥部102的极性固定至任意一方。并且,信号选择器25选择比较器24b的输出。即,在放电开始的预定时间(如10秒钟)内,向放电灯10内供给直流电流,并进行恒电流控制操作。
并且,计时器28的输出也被输出到电流设定器27中。电流设定器27根据计时器28的输出而在图5的时刻t1~t3中输出呈台阶状变化的基准电流信号。
当达到预定时间(10秒)后,全桥驱动电路21开始全桥部102的交流动作。
信号选择器25的切换是在放电灯的点灯稳定时进行的。该定时可以与上述预定时间分别被存储在计时器28中,可以设定为点灯开始之后的例如30秒的时间。通过信号选择器25的切换,从恒电流控制变化为恒功率控制。
状态检测器29是在点灯起动时检测放电灯状态的电路,具体来说是判断放电灯10为热态起动还是冷态起动。热态起动是指从最近的熄灯起到点灯开始时间几乎没有经过的状态,放电灯在水银蒸汽化的状态下仍保持温暖的状态。而冷态起动是指从最近的熄灯起经过了很长时间,放电灯中水银呈液体等非蒸汽状态,且放电灯自身也充分保持冷却的状态。通过冷态起动和热态起动的对比能够相对容易对其做出定义,可以说这两种状态都是放电灯的通常状态。举数值说明,热态起动应是从最近熄灯的45秒以内的状态,而冷态起动则应是从最近熄灯的经过45秒以上的状态。
状态检测器29通过检测放电灯的电压而判断放电灯的状态为热态起动还是冷态起动。状态检测器29的输出经由计时器28被传送到电流检测器27中。电流检测器27根据放电灯的状态调整供给直流电流的时间或电流值。
状态检测器29的电压检测是在放电灯绝缘状态破坏之后,流入灯的电流降到I2以下后,即在期间T2进行。因为绝缘状态破坏时及之后,由于滑动电容器C2等放出电荷会瞬间过渡性地流入过大电流,所以很难正确判断出热态起动还是冷态起动。
如图所示,状态检测器29虽然检测放电灯的电压,但判断放电灯是热态起动还是冷态起动的方法并不只局限于检测电压,也可以考虑例如计算从最近熄灯后所经过的时间而进行判断的方法,或检测点灯起动时放电灯发光部的温度的方法。
图6表示放电起动时放电灯在热态起动情况下的电流波形,可与表示冷态起动的电流波形的图5进行对比。
图6所示的电流波形与图5所示的电流波形进行比较,除电流I2流经期间T2较短外,其他波形基本相同。
即,当状态检测器29检测放电灯为热态起动时,计时器28的时间设定变短,全桥驱动电路21的动作开始时期提前。
在热态起动的情况下缩短期间T2的理由是,由于在点灯起动时放电灯已经是温暖的,如果与冷态起动进行同样设定的话,会出现过度输入,特别是对电极的输入过量,会对灯造成损害。
另外,也可以是不将放电灯分成热态起动或冷态起动2个值对期间T2进行控制,而是将热态起动的状态进一步详细分类、根据其程度更细致地调整期间T2的方法。
并且,在热态起动和冷态起动的情况下,除调整期间T2的时间长度之外,也可以调整在期间T2供给的电流量。
具体来说,使在冷态起动情况下期间T2的电流值I2,比热态起动情况下的电流值I2电流量小。
而且,在热态起动和冷态起动的情况下,也可以同时调整期间T2的时间长度和电流值I2的电流量。
其中,在冷态起动的情况下,电流值I2为额定电流的1.0~2.0倍,期间T2为2~10秒。在热态起动下,无论是在控制期间T2的时间长度的情况还是控制电流值I2的电流量的情况下,都要比冷态起动状态的设定要小。特别注意的是,期间T2还有可能为0。
作为热态起动控制,并没有调整期间T1的时间长度和电流值I1的电流量。期间T1的电流值I1如上所述是基于抑制点灯初期放电弧接触放电容器内面而导致管壁黑化的理由进行设定的,所以虽说是热态起动最好也不要改变设定值。
下面使用数值说明以热态起动和冷态起动的判别为基础的控制。放电灯为额定功率135W,额定电流(稳定点灯时)为1.9A。直流电流I1设定为1A,直流电流I2设定为2.6A。
放电灯绝缘状态破坏之后,检测从直流电流达到2.6A时起经过0.5秒时的放电灯电压。
在状态检测器29中设定的判定基准电压为例如18V,检测电压在18V以上时判断为热态起动,不到18V时则判断为冷态起动。
状态检测器29在判定放电灯为热态起动的情况下,向计时器28传送信号,将电流值I2(2.6A)流经的期间T2设定为1秒,1秒钟过后由全桥驱动电路21开始全桥部102的极性切换。由此开始交流点灯,并且经过预定时间(如20秒左右)后,由信号选择器25切换成恒功率控制。
而在状态检测器29判定为冷态起动的情况下,向计时器28传送信号,将电流值I2(2.6A)流经的期间T2设定为5秒,5秒钟过后由全桥驱动电路21开始全桥部102的极性切换。由此开始交流点灯,并且经过预定时间(如20秒左右)后由信号选择器25切换成恒功率控制。
这里列举数值例对放电灯进行以下说明。
发光部外径在Φ8~Φ12mm的范围内,例如9.4mm,发光部内容积在50~120mm3的范围内,例如85mm3,电极间距离在0.7~2mm的范围内,例如1.0mm。并且,放电灯在额定的135W、矩形波150Hz的条件下点灯。
电极的数值例子为,熔融粗径部3的外径为φ1.0~2.0mm,例如1.4mm;轴方向的长度为0.7~2.0mm,例如1.0mm。线圈4的外径为φ1.0~2.0mm,例如1.3mm;长度在1.0~2.0mm的范围内,例如1.5mm。轴部5的外径在φ0.2~0.6mm的范围内,例如0.4mm;轴部5的长度在5.0~10.0mm范围内,例如7.0mm。
并且,线圈的线径在φ0.1~0.3的范围内,例如0.25mm。突起部2的外径为φ0.15~0.6mm,例如0.3mm;轴方向的长度为0.1~0.4mm,例如0.25mm。
熔融粗径部可以通过使用溶接机等电弧放电或激光照射等方法使线圈熔融而形成。激光的光束直径为φ0.2~0.7mm,例如φ0.6mm;并且,照射时间为0.2~1.0秒,例如0.35秒。为了防止电极氧化,激光照射最好是在氩气等环境中进行。
并且,用于制造熔融粗径部的激光照射能够连续进行照射,但也能进行脉冲式照射。这时的脉冲照射是不断重复短时间(毫秒级)的照射和停止,比一般的连续照射更有效。
除激光照射外,也可以进行电子光束照射。因为电子光束与激光一样能够将光束直径缩小,所以适合于控制并熔融本发明这样的小线圈。
下面对状态检测器需要判断放电灯的状态的时期进行了实验。该实验的结论是,导出状态检测器应在期间T2而不是起动时的期间T1判断是热态起动还是冷态起动。
该实验使用的灯的规格为,发光部的最大外径为9.4mm,电极间距离为1.0mm,发光管内容积为85mm3,额定功率为135W,额定电压为70V,额定电流为1.9A;供电装置则是额定功率为135W,额定电压为70V,额定电流为1.9A。
首先,在本实验一开始,测定上述规格的放电灯熄灯后经过的时间与发光部下部温度的关系。
确认结果为,熄灯后经过30秒时发光部下部温度为500℃,熄灯后经过45秒时发光部下部温度为400℃,熄灯后经过70秒时发光部下部温度为300℃,熄灯后经过115秒时下部温度为200℃,熄灯后经过220秒时下部温度为100℃。
接下来,作为本实验,从上述供电装置对上述放电灯提供在期间T1的5秒内向其流入1A直流电流I1,在期间T2的5秒内流入2.6A直流电流I2,之后,通过150Hz交流矩形波使其点灯。对5个上述规格的放电灯(灯1、灯2、灯3、灯4、灯5)进行了该点灯实验。
图7表示在期间T1中状态检测器测定到的放电灯的点灯电压的结果。纵轴表示检测出的灯电压(V),横轴表示再起动之前的发光部的下部温度(℃)。
实验用5个灯进行。点灯使其上升至饱和温度之后将其熄灭。在经过各灯的发光部下部温度到达50℃、100℃、200℃、300℃、400℃、500℃的熄灯时间后分别再次点灯,并测定期间T1内到达最初的0.5秒时灯的电压。具体来说,对于灯1,在点灯后使其熄灭,在发光部下部温度为50℃时再次点灯并测定灯的电压。接着,再点灯1,同样在熄灯后发光管温度为100℃时再次点灯并测量其电压。之后,对于灯2、灯3、灯4、灯5都进行同样的测定。
另外,发光管下部温度也可换成上述事先实验测得的从最近的熄灯到再次点灯的熄灯经过时间。即,可以用熄灯后经过时间20秒代替发光部下部温度100℃,用熄灯后经过时间115秒代替发光部下部温度200℃,熄灯后经过时间70秒代替发光部下部温度300℃,熄灯后经过时间45秒代替发光部下部温度400℃,熄灯后经过时间30秒代替发光部下部温度500℃,测定随着熄灯后经过时间的推移灯的电压。
从图7所示的实验结果可以得出,熄灯后经过的时间越短、发光管下部温度越高、灯的电压越高这样的关系,但没有得到对于判别发光管下部温度和灯的状态、即热态起动或冷态起动的有效结果。
即,状态检测器29在期间T1内无法检测放电灯的状态。
另外,在本实验一开始确定熄灯后经过时间与发光部下部温度的关系的理由是,在实验中测定熄灯后发光管下部温度实际上非常困难。困难的原因是因为要测定发光管下部温度需要安装温差电偶等传感器,而一旦产生点火高电压,则在传感器电路中高电压不仅会产生泄露,还会损坏测定器,并给灯的起动性带来影响。
图8表示在期间T2中状态检测器29测定的放电灯的点灯电压的结果。纵轴表示检测出的灯电压(V),横轴表示再起动之前的发光部的下部温度(℃)。
实验同图7所示的情况相同,使用5个灯进行。点灯使其上升至饱和温度之后,熄灯并在该灯的发光部下部温度到达50℃、100℃、200℃、300℃、400℃、500℃的熄灯后经过时间再重新点灯,并测定期间T2的到达最初0.5秒时的灯的电压。
而且,也可将发光管下部温度换成上述实验测得的从最近的熄灯到再次点灯的熄灯后经过时间。
根据图8所示的实验结果,在熄灯后经过时间为45秒以内(发光管下部温度为400℃、500℃)时的灯电压与经过时间为70秒以上(发光管下部温度为50℃、100℃、200℃、300℃)时的明显不同。即前者灯电压大约为20~23V,而后者的灯电压则大约13~17V。即,可以根据电压状态来检测前者为热态起动,后者为冷态起动。
即状态检测器在期间T2能够检测放电灯的状态。
根据上述实验结果我们可以理解,放电灯的状态为热态起动还是冷态起动的区别最好是在供给比额定电流高的直流电流的期间T2进行测定。
上述实验是在特定的条件(灯的规格、供电装置规格)下进行的,给人的感觉是只凭这个实验结果不能代表普遍性。但是,作为投影装置及作为光源使用的放电灯,其大小和要求的规格大都限定在特定的范围内,如果是在以上介绍的灯的规格的范围内,可以说就能发挥同样的作用。
本发明的放电灯点灯装置,有几个前提条件,只有满足了该前提条件,才能充分本发明的作用效果。
第一,以稳定点灯时为交流点灯、点灯起动时为直流点灯的放电灯为前提。
因为只有这种点灯方式的放电灯,在直流点灯向交流点灯切换过程中才会产生电极温度低导致熄灭的问题。
因此,稳定点灯时进行直流点灯的放电灯,在点灯起动时使电流值变化的控制方法,即使这种技术众所周知,但这样的内容在技术问题中,和本发明也是完全不同的内容。
第二个前提是,本发明的放电灯是电极间距离在2mm以下,在发光部封入有0.15mg/mm3以上的水银、惰性气体、及1×10-6~1×10-2μmol/mm3范围内的卤素的短弧型放电灯。
因为只有采用这种结构的放电灯,从放电容器内面放出的SiO才能在放电等离子体的作用下分离成Si和O,在该放电空间内的氧(O)和电极的钨发生反应生成氧化钨,所以从电极向放电容器内面输送的钨会产生过剩现象。其中,如果氧(O)适量的话,便能够实施卤循环,从而抑制钨(W)向放电容器内壁的输送;在像本发明的放电灯这种氧量过多的情况下,放电空间内氧化钨(WOx)过多,就会导致过剩的氧化钨被输送到放电容器内壁上。
第三个前提是,放电灯具有在电极轴部熔融线圈而制成的电极结构(图2所示结构)。只有这种放电灯,才会出现在点灯起动时在线圈后端产生放电起点,电弧与放电容器内面产生碰撞、接触的问题。而且,该问题在线圈与放电容器内面的最短距离(图3所示距离L)很小的情况下才会明显发生。因为只有最短距离L很小,放电起点才会产生在线圈部后端部,并且电弧与放电容器内面发生碰撞、接触。具体来说,最短距离L在2.0mm以下,1.5mm以下,1.0mm以下较为明显。
因此,在距离L较大的放电灯的情况下,以线圈部后端部为起点的放电弧很难和放电容器内面发生碰撞、接触的现象,所以不存在本发明研究对象的进行使点灯起动时的直流电流从电流值较小的状态(电流值I1)向较大的状态(电流值I2)变化的控制的技术问题。
因此,也许早就知道不具备这种构成的放电灯,即在使用用途完全不同的放电灯中,线圈卷绕在电极上的结构。但是,那种放电灯由于根本就不会发生过电弧与放电容器内面产生碰撞、接触的现象,即不存在上述技术问题,所以这种现有技术与本发明完全不同。
并且,本发明的放电灯在电极的前端具有突起部。通过该突起部能够使从点灯初期的直流点灯向交流点灯切换时电极前端迅速升温,能够快速进行电弧放电。并且,在发光部中封入有0.15mg/mm3以上的水银、惰性气体、及1×10-6~1×10-2μmol/mm3范围内的卤素的短弧型放电灯的情况下,该突起部可自动控制伸缩来调整最合适的电极间距离。
通过利用轴部事先形成突起部而能够事先规定自动控制伸缩的方向。但是,也可以不在放电灯的制作时形成突起部,而从所谓的零状态开始伴随着点灯而形成突起部。
并且,如果在电极的前端形成突起部,则在热态起动时该突起部很有可能被消耗。但是,由于本发明考虑到这种现象,在期间T2中限制了直流电流I2,所以能够抑制突起的消耗及变形。
电极最好是由纯度在99.9999%以上的钨构成。这是因为如果电极中所含不纯物质被释放到放电空间中,就会造成放电容器出现失透、黑化现象。
图9表示放电灯10和包围该放电灯10的凹面反射镜20、以及将这种组合(以下将放电灯10和凹面反射镜20的组合称为光源装置)安装在投影装置30中的状态。投影装置30中实际都密集安装有复杂的光学元件及电气元件中,但为了便于说明,图中所示元件只是一个简略图。
放电灯10通过凹面反射镜20的顶部开口而被保持。放电灯10的一个端子T1和另一个端子T2与图中未显示的供电装置相连接。凹面反射镜20采用椭圆形反射镜或抛物面镜,在反射面上覆有反射预定波长的光的真空镀膜。
凹面反射镜20的焦点位置被设计在放电灯10的电弧位置上,能够通过反射镜有效地提取弧起点的光。
在凹镜反射镜20上能够安装堵塞前面开口的光透性玻璃。
如以上说明,本发明的放电灯点灯装置的特征在于:包括短弧型放电灯和供电装置,上述短弧型放电灯在由石英玻璃构成的发光管中以小于等于2mm的间隔相对配置一对电极,在该发光管中封入有大于等于0.15mg/mm3的水银、惰性气体、及1×10-6~1×10-2μmol/mm3范围内的卤素;上述供电装置在点灯起动时供给该放电灯直流电流、之后供给交流电流;上述放电灯的一对电极中至少一个电极由通过熔融卷绕在轴上的线圈的前端形成的熔融粗径部、和在该熔融粗径部后方形成的线圈部构成;上述供电装置供给上述放电灯的直流电流最初为比额定电流小的电流(I1),之后为比额定电流大的电流(I2);该供电装置检测上述放电灯的点灯状态为热态起动或冷态起动,并且根据检测结果与各点灯状态相对应地调整上述电流(I2)的电流值和/或供给时间。
通过在点灯初期进行直流点灯,能够有效地防止点灯时的不稳定放电状态及随之而来的灯熄灭现象。
并且,通过在直流起动时供给比额定电流低的电流,之后增加电流值并供给比额定电流高的电流,就可以防止线圈后端部产生的放电弧所造成的放电容器内面黑化现象,即使接触也可以降低其造成的影响,并且能够将电极升温,因此能够顺利完成向交流点灯的切换。
并且,通过在点灯起动时判别放电灯为热态起动或冷态起动,控制直流电流,就能够抑制热态起动时对电极的过度输入,防止电极熔解及变形。

Claims (4)

1.一种短弧型放电灯点灯装置,包括短弧型放电灯和供电装置,上述短弧型放电灯在由石英玻璃构成的发光管中以小于等于2mm的间隔相对配置一对电极,在该发光管中封入有大于等于0.15mg/mm3的水银、惰性气体、及1×10-6~1×10-2μmol/mm3范围内的卤素;上述供电装置在点灯起动时向该放电灯供给直流电流,之后供给交流电流,其特征在于,
上述放电灯的一对电极中至少一个电极由通过熔融卷绕在轴部上的线圈的前端而形成的熔融粗径部、和在该熔融粗径部的后方形成的线圈部构成;
上述供电装置对上述放电灯供给的直流电流最初为比额定电流小的电流(I1),之后为比额定电流大的电流(I2);
该供电装置检测上述放电灯的点灯状态为热态起动还是冷态起动,并且根据该检测结果与各点灯状态相对应地调整上述电流(I2)的电流值和/或供给时间。
2.如权利要求1所述的短弧型放电灯点灯装置,其特征在于,由上述供电装置进行的有关放电灯的点灯状态的检测在向放电灯供给电流(I2)的期间进行。
3.如权利要求1所述的短弧型放电灯点灯装置,其特征在于,在上述放电灯为冷态起动的情况下,上述电流(I1)为额定电流的0.3~0.6倍,上述电流(I2)为额定电流的1.0~2.0倍。
4.如权利要求1所述的短弧型放电灯点灯装置,其特征在于,在上述电极的前端形成有突起部。
CN2005101192832A 2004-11-19 2005-11-03 短弧型放电灯点灯装置 Expired - Fee Related CN1791296B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP336328/2004 2004-11-19
JP2004336328A JP4244914B2 (ja) 2004-11-19 2004-11-19 ショートアーク型放電ランプ点灯装置

Publications (2)

Publication Number Publication Date
CN1791296A true CN1791296A (zh) 2006-06-21
CN1791296B CN1791296B (zh) 2010-09-22

Family

ID=35610135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005101192832A Expired - Fee Related CN1791296B (zh) 2004-11-19 2005-11-03 短弧型放电灯点灯装置

Country Status (5)

Country Link
US (1) US7382093B2 (zh)
EP (1) EP1659836B1 (zh)
JP (1) JP4244914B2 (zh)
CN (1) CN1791296B (zh)
DE (1) DE602005018003D1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111944A1 (en) * 2008-03-10 2009-09-17 The Hong Kong Polytechnic University Hid ballast with integrated voltage multiplier and lamp temperature compensation
CN101336033B (zh) * 2007-06-29 2013-05-01 精工爱普生株式会社 点亮控制装置、光源装置、投影机及点亮控制方法
CN105491767A (zh) * 2009-07-14 2016-04-13 精工爱普生株式会社 放电灯点亮装置、投影机和放电灯的驱动方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006026402A2 (en) 2004-08-26 2006-03-09 Availigent, Inc. Method and system for providing high availability to computer applications
JP2007265860A (ja) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd ランプ点灯装置及びそれを備えた投写型映像表示装置
JP5193445B2 (ja) * 2006-08-23 2013-05-08 パナソニック株式会社 高圧放電灯点灯装置及び照明器具
JP5027498B2 (ja) 2006-12-25 2012-09-19 パナソニック株式会社 放電灯点灯装置および画像表示装置
JP4788719B2 (ja) * 2008-02-01 2011-10-05 パナソニック株式会社 高圧放電ランプシステム、およびそれを用いたプロジェクタ
JP2009211867A (ja) * 2008-03-03 2009-09-17 Ushio Inc 超高圧水銀ランプ
JP5379544B2 (ja) * 2009-04-10 2013-12-25 パナソニック株式会社 高圧放電灯点灯装置及びそれを用いた照明器具
JP5573130B2 (ja) * 2009-12-01 2014-08-20 ウシオ電機株式会社 放電ランプ点灯装置
JP5924494B2 (ja) * 2012-08-01 2016-05-25 ウシオ電機株式会社 放電ランプ点灯装置およびプロジェクタ
JP6443037B2 (ja) * 2014-12-25 2018-12-26 ウシオ電機株式会社 放電ランプ点灯方法
WO2016103694A1 (ja) * 2014-12-25 2016-06-30 ウシオ電機株式会社 放電ランプ点灯方法及び放電ランプ点灯装置
JP5885879B1 (ja) * 2015-10-19 2016-03-16 フェニックス電機株式会社 高圧放電ランプの点灯方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813421A1 (de) * 1988-04-21 1989-11-02 Philips Patentverwaltung Hochdruck-quecksilberdampfentladungslampe
US5497049A (en) * 1992-06-23 1996-03-05 U.S. Philips Corporation High pressure mercury discharge lamp
JP2980882B2 (ja) * 1998-04-08 1999-11-22 ウシオ電機株式会社 高圧水銀ランプ
CN1171510C (zh) * 1999-03-19 2004-10-13 松下电工株式会社 用于放电灯的镇流器
US6359396B1 (en) * 2000-04-28 2002-03-19 Philips Electronics North America Corporation Multiple-parameter control of lamp ignition
JP4070420B2 (ja) * 2001-03-23 2008-04-02 フェニックス電機株式会社 超高圧放電灯の点灯方法と点灯装置
JP3893042B2 (ja) * 2001-10-26 2007-03-14 松下電器産業株式会社 高圧放電ランプの点灯方法、点灯装置及び高圧放電ランプ装置
JP4186578B2 (ja) * 2002-10-09 2008-11-26 ウシオ電機株式会社 高圧放電ランプ点灯装置
US7198534B2 (en) * 2003-01-24 2007-04-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing high-pressure discharge lamp, glass tube for high-pressure discharge lamp, and lamp element for high-pressure discharge lamp
JP3687655B2 (ja) * 2003-02-13 2005-08-24 ウシオ電機株式会社 超高圧放電ランプ
JP2005019262A (ja) * 2003-06-27 2005-01-20 Ushio Inc ショートアーク型放電ランプ点灯装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336033B (zh) * 2007-06-29 2013-05-01 精工爱普生株式会社 点亮控制装置、光源装置、投影机及点亮控制方法
WO2009111944A1 (en) * 2008-03-10 2009-09-17 The Hong Kong Polytechnic University Hid ballast with integrated voltage multiplier and lamp temperature compensation
CN105491767A (zh) * 2009-07-14 2016-04-13 精工爱普生株式会社 放电灯点亮装置、投影机和放电灯的驱动方法
CN105491767B (zh) * 2009-07-14 2018-04-13 精工爱普生株式会社 放电灯点亮装置、投影机和放电灯的驱动方法

Also Published As

Publication number Publication date
US7382093B2 (en) 2008-06-03
JP4244914B2 (ja) 2009-03-25
DE602005018003D1 (de) 2010-01-14
EP1659836B1 (en) 2009-12-02
JP2006147363A (ja) 2006-06-08
CN1791296B (zh) 2010-09-22
US20060108949A1 (en) 2006-05-25
EP1659836A1 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
CN1791296A (zh) 短弧型放电灯点灯装置
CN1266735C (zh) 高压放电灯的点火方法及点火装置
CN101057529A (zh) 高压放电灯发光装置
CN1501755A (zh) 高压放电灯照明装置
CN100338723C (zh) 放电管
CN1531002A (zh) 超高压水银灯发光装置
KR101373994B1 (ko) 고압 방전 램프 점등 장치 및 프로젝터
US8167438B2 (en) Light source device, projector, and driving method of discharge lamp
JP4752478B2 (ja) 光源装置
CN1577714A (zh) 短弧型放电灯点灯装置
CN1734707A (zh) 高压放电灯照明装置
US8648549B2 (en) Lighting method and lighting apparatus for a high pressure discharge lamp, a high pressure discharge lamp apparatus, and a projection-type image display apparatus
JP5463765B2 (ja) 放電灯の駆動装置および駆動方法、光源装置並びに画像表示装置
CN1575085A (zh) 高压放电灯的点灯方法及点灯装置、高压放电灯装置以及投射型图像显示装置
JP5994272B2 (ja) 光源装置、放電灯の駆動方法およびプロジェクター
JP5874846B2 (ja) 放電灯の駆動装置および駆動方法、光源装置並びに画像表示装置
WO2007049659A1 (ja) 複数の高圧放電ランプの点灯方法、その点灯装置、ランプシステム及び投射型画像表示装置
CN1299320C (zh) 高压放电灯、高压放电灯照明设备和汽车前灯装置
JP5092914B2 (ja) 光照射装置
CN1816894A (zh) 高压放电灯、高压放电灯的亮灯方法及亮灯装置、高压放电灯装置及其灯单元、图像显示装置、前照灯装置
CN1407592A (zh) 短弧型超高压放电灯
CN1622276A (zh) 超高压放电灯点亮装置
JP5347065B2 (ja) 高圧放電ランプ点灯装置、それを用いた高圧放電ランプ装置、その高圧放電ランプ装置を用いたプロジェクタ、および高圧放電ランプの点灯方法
JP4048376B2 (ja) 放電ランプ及びプロジェクター
US8143802B2 (en) Method of driving discharge lamp, driving device, and projector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100922

Termination date: 20141103

EXPY Termination of patent right or utility model