CN1756961A - 冷却光探测的集成电路的装置和方法 - Google Patents

冷却光探测的集成电路的装置和方法 Download PDF

Info

Publication number
CN1756961A
CN1756961A CNA2003801101103A CN200380110110A CN1756961A CN 1756961 A CN1756961 A CN 1756961A CN A2003801101103 A CNA2003801101103 A CN A2003801101103A CN 200380110110 A CN200380110110 A CN 200380110110A CN 1756961 A CN1756961 A CN 1756961A
Authority
CN
China
Prior art keywords
integrated circuit
thermal management
fluid
semi
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2003801101103A
Other languages
English (en)
Inventor
凯德·塔赫
史塔德·南森
提尔特·当劳德
帕达门·纳德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isothermal Systems Research Inc
Optonics Inc
Original Assignee
Isothermal Systems Research Inc
Optonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isothermal Systems Research Inc, Optonics Inc filed Critical Isothermal Systems Research Inc
Publication of CN1756961A publication Critical patent/CN1756961A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/316Testing of analog circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2875Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0458Details related to environmental aspects, e.g. temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明揭露一种有利于用于电激发的集成电路芯片测试器中的混合冷却盘与微型喷洒冷却系统,该系统包含透明的热散布体和置于热散布体附近的微型喷洒头。喷洒头喷洒冷却液体在该热散布体周围处,以便可以从芯片除去热量。或者,微型喷洒头位于冷却盘支持座里面,以便喷洒冷却液体到支持座的内部,从而可让支持座冷却。该支持座实际与热散布体接触,所以在支持座由喷洒冷却时,热量可以从热散布体除去,进而可从芯片除去。

Description

冷却光探测的集成电路的装置和方法
技术领域
本发明涉及一种用于电激发的半导体集成电路在接受探测、诊断、故障分析时的热量管理方法与系统。
背景技术
集成电路(IC)用于消费性装置的数量逐渐增加,除了熟知的个人计算机本身以外,其它例子包括有汽车、通讯装置以及智能型家电(洗碗机、火炉、冰箱等等)。这样广泛的采用使得每年需要制造更多数量的集成电路。由于集成电路产量的增加也使得集成电路故障的可能性增加,以及需要迅速与准确的芯片探测、故障排除和故障分析技术。当前的探测、故障排除和故障分析系统的主要目的在于经由评估来说明芯片的门级性能以及确认任何操作故障的原因和位置。
过去,机械探测被使用于定量电开关活动,然而由于今日芯片具有非常高的密度、速度和复杂度,加上浮点芯片技术的使用,因此现在如果不破坏地分解芯片,则不可能以机械方式探测芯片。所以现在有必要使用非侵入性的探测技术诊断芯片。此种技术的例子包括,如以基于激光的方法去测量硅中的电场,或者以基于光学的技术在开关过程中检测从开关装置,例如从场效应管(FETs)发射的弱光脉冲。用于这种研究的代表性显微镜的例子在例如美国专利第4,680,635号、第4,811,090号、第5,475,316号、第5,940,545号和论文「Analysis ofProduct Hot Electron Problems by Gated Emission Microscope,Khurana etal.,IEEE/IRPS(1986)」中有描述,这些文件在此处通过引用并入。
在测试芯片的过程中,芯片典型地是由测试器或其它激发电路以相对的高速运作,此种活动造成产生可观的热量。而当该器件在正常环境被封装和运作时,各种机械构造被提供以帮助热量散发。例如通常将金属散热片附到集成电路,和提供冷却风扇以加强空气流动通过集成电路。然而当器件在受测试时,该器件未被封装,而且为了测试目的,它的衬底会变薄。结果没有装置可以用于分散热量,使得受测试器件(Device Under Test:DUT)会在过热量的情况下工作,因而造成测试失真并且过早地最终损坏。因此受测试器件需要有效的热量管理系统。
一种用于冷却受测试器件的现有技术描述在图1a中。冷却装置100包含有冷却盘110,其具有一窗口135以便能够光探测受测试器件。窗口135可以是简单的断开(cut out),或以热传导的透明材料制成,例如人造钻石。利用人造钻石加强冷却效果已叙述在,例如美国专利第5,070,040号中,此处可参考并入。这种固体的透明窗口经常被当作透明的热散布体。导管120附加到冷却盘110,用于冷却液体的循环,或者,导管可以和盘体形成为一整体,例子请参见美国专利6,140,141号。
图1a中所描述的破折线显微镜接物镜105用于光学检验,其对准窗口135放置。在测试过程中,冷却盘是放置在受测试器件160的露出表面上,且窗口135放置在所关心位置的上方。当冷却盘110和透明热散布体135一起使用时,则有时可以在透明热散布体135与受测试器件160之间提供油层或其它高折射率的流体,以便能够改善从受测试器件160到透明热散布体135的光耦合。来自器件的热量将被冷却盘传导至导管和冷却液体,冷却液体则随后被送至例如冷冻器的液体温度调节系统循环,因而使得热量可以从器件消除。一般情况下受测试器件具有辅助装置165,其限制冷却盘的移动,因而限制可供探测的区域。为了克服此问题,为特定器件制造定制的盘体,因而造成增加费用与测试器操作的复杂度。
传统的冷却盘的另一个问题是无法从受测试器件充分和均匀地除去热量,图1b与图1c是显示传统的冷却盘,其具有按照图1a的设计修改的透明热散布体。图1b是顶视图,而图1c是沿着图1b的A-A线的部分剖面视图。一透明的热散布体110’被焊接到框体130,其在交界面115使用,例如铟焊接剂焊接。一受测试器件(未显示)可以经由透明的热散布体110’观测,并且油或其它的流体可以置于该受测试器件与该热散布体之间。框体130可以附着在或是内金属散热器140的整体的一部分,内金属散热器140再附着于外金属散热器150。传统的方式是内金属散热器140使用螺丝附着于外金属散热器150,并且在两者之间没有热传导材料。冷冻空气经由入口170抽入,通过外金属散热器150循环,然后由出口175排出。
因此我们可以了解,热量是由受测试器件依序传递至透明的热散布体110’,再至框体130,而后至内金属散热器140,再至外金属散热器150,再至冷冻流体。然而,在各种元件间的交界面会阻止热传导,因此降低了从受测试器件除去热量的效率。另外,贯穿各种元件的温度梯度促进了从周边获得热量。事实上,研究显示从周边获得的热量大于从受测试器件除去的热量。由于热阻抗存在于热传导途径中,并且有相当可观的热量从周边获得,因而使降低透明热散布体的温度,从而降低受测试器件的温度的困难显著地增加。
本发明人特别的兴趣是位于透明热散布体周边(位于图1b的1-8地方)的温度。发明人推测具有有效的热传输的系统,将会降低透明热散布体周边的温度,因此降低热散布体和受测试器件的温度。为了研究此问题,将利用有限元素模型(Finite Element model)仿真在图1b中示例的由透明热散布体冷却的工业用标准的半导体热测试芯片的温度分布。该模型仿真在透明的热散布体上的温度分布,以及从透明热散布体越过铟焊接剂到达内金属散热器的周边的热传导。利用一维热传导分析来计算从透明热散布体的表面到芯片的温度上升、决定芯片的温度分布和其最高温度。有限元素模型预测的准确度将直接关联所施加的边界条件的准确度。本例子的关键边界条件为位于内金属散热器的内周边的温度,此即为铟焊接剂接触区域。因此我们可以知道位于此周边的温度是取决于整个部件的热移除效率。
边界条件对受测试器件的最高温度的影响可以从图2决定(用有限元素模型决定)。图2的图为透明窗口的最高温度作为各种热量负载的边界条件的函数图,其中这个最高温度驱动最高的受测试器件温度。如从图2的所示证明,散热器周边的温度越低,透明窗口的最高温度越低,因而将导致越低的受测试器件最高温度。也就是本发明人预测能够有效降低在透明窗口边界的温度的系统,也将能够有效地从受测试器件移除热量。
为了证明该模型的准确度,将使用类似图1b的冷却盘组合件对测试芯片作更广泛的实验。受测试器件被提供能量至各种热通量,同时以传统的方式被冷却盘冷却。该冷却盘作为在图1b中的标号1-18位置的温度测量器具,而以20W/cm2被提供能量的芯片的结果显示在图3中(数据以摄氏温度提供)。在透明热散布体周边的结果被用作边界条件用于进一步的有限元素模型分析,该模型被运行,并且预测透明窗口的温度分布以及它的最高温度。最高的受测试器件温度则以油层厚度为函数计算并且绘于图4。针对80μm厚的油层测量,图4的结果与测试受测试器件的实验测量温度符合,因此证明了模型的正确。
从上述的说明可以了解,对于芯片测试器或探测器需要有一个创新、廉价、灵活和有效的热量管理解决方案。
发明内容
本发明提供从受测试器件除去热量的机构,因而允许检验处于电激发的器件。因此,所述系统特别适合于以光学显微镜对受测试器件作探测、诊断和故障分析时使用。另外,上述详细的研究结果强调了尽最大可能降低透明窗口周边的温度的重要性。本发明提供了将透明窗口周边的热量移除的有效解决方案,因此提供了从受测试器件移除热量的机构,并且允许检验受电激发的器件。因此,所述系统特别适合于以光学显微镜对受测试器件作探测、诊断和故障分析时使用。
本发明的一个方面是,提供一种利用雾状液体喷洒器从受测试器件移除热量的热量管理系统。喷洒头在接物镜容室附近,而且这个装置是被安置在喷洒室内部。喷洒室是被一个盘体密封,受测试器件放置于该盘体上。喷洒室内部的压力可以受控制,以获得喷洒液体的正常蒸汽。压力传感器与温度感应器安装在压力室内,以监测热量管理系统的运作。
本发明的另一方面是,喷洒冷却是使用数排喷雾器实现的。按照其中的一个实施方式,所有的喷雾器共同连接到一个液体供应器。另一种情形,按照其它实施方式,能分开控制到每个喷雾器或喷雾器组的液体输送,以便改变输送至不同喷雾器的压力、时间和(或者)液体种类。
本发明的另外的方面是提供一控制仪器,以使得热量管理系统的运作准确。受测试器件的温度能够经由冷却剂温度、冷却剂流动速率(与冷却剂的输送压力直接相关联)和冷却剂沸点(是喷洒室的压力和蒸汽温度的函数。请注意在其饱和温度时,饱和液体的温度和其汽态(非过热状态)相同)控制。温度感应器靠近冷却剂输出点,能监测冷却剂输出温度,该温度将被回馈给热量管理系统的控制器。该控制器控制液体温度调节系统,该系统可能是冷冻器或是控制冷却剂的温度至预定值的其它装置。这些系统为本领域技术人士所熟知。
喷洒室压力是由与喷洒室相通的压力传感器测量的。蒸汽温度(经由与喷洒室相通的温度感应器测量)和喷洒室压力决定了冷却剂的沸点,其接着影响了控制受测试器件温度的方式。喷洒室压力可以被操纵,以影响冷却剂的沸点。举例而言,利用与喷洒室相通的电磁阀、通过调整回流泵的速率、或者操控液体温度调节系统的储存器(reservoir)内部的压力,均能够影响喷洒室压力。当电磁阀发生故障时,一机械压力释放阀提供安全释放机制。
本发明的一个方面是,提供一种热量管理系统,其利用热散布体从受测试器件移除热量,以及利用喷雾的液体喷洒系统从热散布体移除热量。
本发明的另一方面是,将接物透镜容室与透明冷却盘放置于喷洒室内部。提供一喷洒冷却装置,其喷洒冷却剂到冷却盘上。喷洒室被一盘体密封,受测试器件置于该盘体上,该室内部的压力可受控制,以得到喷洒的冷却剂的适当蒸汽。压力传感器与温度感应器可安装于压力室内,监测热量管理系统的运作。
本发明的另一方面是,喷洒冷却是使用数排的喷雾器冷却透明热散布体的外围实现的。按照其中的一种实施方式,所有的喷雾器被共同连接到一个液体供应器。另一种情形,按照其它的实施方式,能分开控制到每个喷雾器或喷雾器组的液体输送,以便改变输送至不同喷雾器的压力、时间和(或者)液体种类。
本发明的又一方面为冷却盘是焊接至一支持座上。该支持座可用于压紧冷却盘靠着受测试器件。可提供数个喷雾器,用于喷洒冷却流体到冷却盘的外围上。该支持座可另外防止喷洒的流体到达冷却盘的中央部份,从而避免遮蔽光路径。
本发明的还一方面为冷却盘是焊接至一支持座上。该支持座可用于按压冷却盘靠着受测试器件。该支持座具有一中空孔穴,喷雾器安装在其内部。喷雾器喷洒冷却液体至支持座内部的上方,随后喷洒的液体经由支持座内部的中空孔穴排出。以这种方式,没有液体会到达冷却盘,更确切的是,经由冷却的支持座从冷却盘消除热量。
根据本发明的还一方面,受测试器件附加在印刷电路板上以及冷却盘是在受测试器件之上。一金属夹将冷却盘与受测试器件夹持到印刷电路板上。一铟衬垫(indium gasket)可提供在金属夹与冷却盘之间。随后一个中空的支持座被按压靠着金属夹。另一铟衬垫可放置在金属衬垫与支持座之间。支持座具有中空的喷射室,喷雾器附在其内部,以及具有中空返回室,供收集喷洒的液体。喷雾器喷洒冷却液体至支持座内部的上方,随后喷洒的液体经由支持座内部的中空返回室排出。以这种方式,没有液体会到达冷却盘,更确切的是,经由冷却的支持座从冷却盘消除热量。
又根据本发明的另一方面,透明热散布体是经由支持座,以可拆卸的方式贴附到接物镜组合件。该支持座可以自由滑动、弹性地支持或挠性地安装到接物镜组合件。提供这种装置,使得只要热散布体靠着受测试器件放置,则接物镜组合件可以进一步移动,以便能够到达适当的对焦点。冷却剂被输送至喷洒头,其输送冷却剂喷雾至热散布体上,或者亦可选择至受测试器件本身上。
又根据本发明的又一方面,透明热散布体是既有冷却通道又有冷却喷雾。
本发明的还一方面为,提供一控制仪器,使得热量管理系统的运作准确。受测试器件的温度控制能够经由冷却剂温度、冷却剂流动速率(与冷却剂的输送压力直接相关联)和冷却剂的沸点(是喷洒室的压力和蒸汽温度的函数,请注意在饱和温度时,饱和液体的温度是相同于其汽态(非过热状态)的温度)。一温度感应器靠近冷却剂输送点,能监测冷却剂的输送温度,该温度被回馈至热量管理系统的控制器。该控制器控制液体温度调节系统,该系统可能是冷冻器或是控制冷却剂温度至预定值的其它装置,这些系统为本领域技术人员所熟知。
喷洒室压力是经由与喷洒室相通的压力传感器测量的。蒸汽温度(经由与喷洒室相通的温度感应器测量)和喷洒室压力决定了冷却剂的沸点,其接着影响了受测试器件温度受控制的方式(经由透明冷却盘)。喷洒室压力可以被操纵影响冷却剂沸点。举例而言,利用与喷洒室相通的电磁阀、通过调整回流泵速率、或者操控液体温度调节系统的储存库内部的压力,均能够影响喷洒室压力。当电磁阀发生故障时,一机械压力释放阀提供了安全释放机制。
上述提到的一种或多种方式皆可个别地或组合地被用于控制冷却剂流动速率或(和)冷却剂的沸点。最终的目的是使用仪器控制受测试器件到预设温度。受测试器件的温度可以经由与热电偶或其它感应器的机械接触测量,或通过非接触装置,比如热影像照相机、或预计的温度稳定性适当准确的任何其它装置测量。任何可以测量受测试器件温度的装置皆能够被用于控制受测试器件的温度,此处所举的特定例子仅是作为举例说明的目的,并不意味着限制本发明的任一方面。
计算机或其它电子或机械控制系统可以用于监测受测试器件的温度以及提供喷洒的必要调整。举例而言,如果受测试器件温度升高,则计算机可以增加流动速率、降低流体温度或者两者皆实施。
此处使用的专门术语「透明窗口」和「透明热散布体」是可以互换的。要知道的是对于光学系统而言,该元件的机能为窗口,而对于热量管理系统而言则为热散布体。同时,此处使用的专门术语「透明」亦是不受拘束的,也就是要知道的是一窗口对在某一波长下运作的系统可能是透明的,然而对在另一波长运作的系统则为不透明的。例如窗口对于在红外线范围运作的系统为「透明」,其在可见光区域可能是不透明的。因此,此处当使用专门术语「透明」时,其含义是针对感兴趣的波长是透明的。
本发明进一步包含控制进行诊断的集成电路(IC)的温度的方法,该方法包括:将集成电路附着于插座;提供一透明热散布体在集成电路上;以及从至少一个喷洒头喷射冷却剂到透明热散布体上。
附图说明
在此本发明的描述参考其特定实施例,附图例示了特定实施例。但是,必须了解的是附图中描述的各种实施例仅是范例,并不能如所附的权利要求那样限制本发明。
图1a-1c是说明依据现有技术的冷却盘系统。
图2是说明从有限元素模型获得的、透明热散布体的最高温度与边界条件的函数图。
图3是说明以20W/cm2作用于受测试器件,横跨传统的透明热散布体测量的实验测量温度。
图4是以20W/cm2作用于受测试器件,最高小芯片温度与油薄膜厚度的函数图。
图5’是本发明的创新冷却系统的一实施例的分解图,而图5是使用冷却盘的本发明创新冷却系统的一实施例的分解图。
图6’是本发明的创新冷却系统的一实施例剖面图,而图6是使用冷却盘的本发明创新冷却系统的一实施例剖面图。
图7是说明创新冷却系统的一实施例的剖面图。
图8是说明创新冷却系统的另一实施例的示意图。
图9a和9b是根据本发明的两种可选择实施例,具有冷却盘支持座装置的受测试器件剖面图。
图10是根据本发明的实施例,具有冷却盘支持座装置的受测试器件剖面图。
图11是根据本发明的实施例,具有冷却盘支持座装置的受测试器件剖面图。
图12是本创新冷却系统的另一实施例图。
图13是本创新冷却系统的另一实施例图。
图14是本创新冷却系统的另一实施例图。
图15是本创新冷却系统的又一实施例图。
具体实施方式
本发明的各种实施例或实施方式皆能够与各种集成电路测试器和探测器结合使用,从而冷却电激发的集成电路。举例而言,该发明的各种实施例皆能够很容易的实施在NPTest(位于San Jose,California)公司的IDS-PICA系统或IMS(位于Beaverton,Oregon)公司的GeminiMS系统上。通常,一雾化液体喷洒器或雾化液体喷洒器连同透明热散布体被提供在探测头周围,以便在探测头搜集数据时冷却受测试器件。任何种类的探测头皆可供使用,例如,探测头的形式可以为光学光子计算时间分解接收器(optical photon-counting time-resolved receiver)、光学发射显微镜(optical emission microscope)或基于激光的探测工具。为了对本发明的各方面特点与特征提供更详尽的说明,本发明将参考特定的探测器作说明,也就是光学光子计算时间分解发射探测器(optical photon-counting time-resolved emission probers)。但是,这种详细说明仅视为当作例子,而非用来限制。
图5’描述本创新的冷却系统一实施例的分解图。在图5’中描述的冷却系统能够利用任何类型的显微镜用于检查和(或)测试集成电路(ICs)。为了清楚,图5’仅显示一光学检查/探测系统的接物透镜部分,以及和其冷却系统关联的部分。如图5’所示,一保持框体570’将受测试器件560’夹持在封闭盘580’上。封闭盘是安装在承载接口板(loadboard)上,其接着连接至一传统自动测试设备(automated testingequipment:ATE)的传统测试头(未显示),该自动测试设备发出激发讯号至受测试器件560’,以仿真受测试器件560’的工作条件。这可以利用承载接口板配合受测试器件的合适插座以传统方式来完成。
一接物镜容室505’容纳测试系统的接物透镜,该容室505’与接物透镜一般而言是形成系统的光学接收器,即探测头。容室505’沿着具有喷雾器515’在其内的喷洒头510’安装,整个组合件放置于喷洒室525’内部,有一封闭件530’附加于它的上表面。封闭件530’可以为滑动的或其它方式,喷洒室525’附加到平移台,例如x-y-z平台(未显示)。为了在使用滑动封闭件的实施例中实施测试,喷洒室525’被移至与封闭盘580’接触,因此,滑动的封闭件530’可以和封闭盘580’产生封闭,该封闭可能是密封地,但是密封封闭是不必要的。以这种方式,喷洒室525’可以四处移动,以便让接物透镜定位于受测试器件上寻求成像的特定区域,而不会破坏与封闭盘580’的封闭。
在另外一实施例子中,容室525’是通过柔性伸缩囊(未显示)相接于封闭盘580’,伸缩囊材料应该兼容于冷却剂的温度与化学性质。某些可能的材料包括折叠的薄壁钢材与橡胶。
在测试时,流体是经由冷却剂供给歧管555’供给至喷雾器515’,冷却剂的沸点可被控制,其是经由利用电磁阀520’或其它方式控制喷洒室525’内部的压力而实现的。在本发明的一实施例子中,喷洒室525’内部的压力是使用压力传感器550’测量的,以及供给的冷却剂的压力是使用压力传感器540’测量的,而冷却流体的温度是用温度感应器541’测量的以及其喷洒温度是使用温度感应器545’测量的。作为安全的测量,可以选择提供一机械压力释放阀535’。
冷却剂的输送压力可以经由靠近冷却剂输送点540’的压力传感器来测量。喷洒室压力亦由另一压力传感器550’来测量。为了固定或改变冷却剂的温度以及喷洒室的压力,测量的冷却剂输送压力会被回馈至控制器,以确保足够的冷却剂输送压力,用于受测试器件所要求的温度。流动速率以及因此冷却速率可以由冷却剂输送压力来控制。
图6’是根据本发明一实施例的喷洒冷却系统的剖面图,特别的是受测试器件660’是贴附于封闭盘670’,封闭盘670’随后被安装到DUT承载接口板(未显示)。所描述的组合件附加于承载接口板,以传统方式连接至测试转接器(adapter)。在此实施例中,喷洒室625’压着封闭盘670’,以便利用滑动封闭件630’形成封闭。接物镜容室605’配置有喷洒头610’,并且以封闭方式嵌入于喷洒室625’内。泵680’被用于让流体返回至液体温度调节系统,比如冷冻器650’,以及亦可被用于控制室内635’内部的压力,通常大约在1大气压(1atm)。我们应该了解所希望的喷洒室压力是能够根据所使用的冷却流体特性与所希望的沸点(按所给的实施例)来计算。
泵665’被用于泵送冷却剂通过供给管695’,经由喷雾器列(atomizer banks)615’将其注入在受测试器件上。本发明的一实施例中,冷却剂是被喷洒至激发的受测试器件660’上,在该处其被加热至其沸点,然后汽化和在室内635’形成蒸汽。该蒸汽随后凝结在室625’的内壁上,并且经由通道655’排出回到泵680’。该蒸汽亦可被直接注入冷冻器650’,虽然将会使冷冻器上的负载增加。在另一实施例中,冷却剂仅单纯从受测试器件吸收热量而不会汽化,在该处未汽化的液体返回至液体温度调节系统。尽管目前具有两种热量管理情形,但本领域技术人员可理解的是,流体热量吸收和汽化的相对冷却强度可被调整,例如,如上述所描述的,通过选择不同的流体、喷嘴设计与数目、流体的流动速率、流体温度和室压力。
在被再次喷洒至受测试器件上之前,流体可在液体温度调节系统650’中循环。本实施例所使用的冷却剂为高蒸汽压力,例如氢氟醚(hydrofluoroethers)或全氟化碳(perfluocarbons)。结果这些流体暴露于大气状态中将直接汽化,所以如本实施例所示,整个冷却系统形成封闭的回路系统,该封闭系统可以经由电磁阀685’泄出,其也可以与例如回流冷凝器的蒸汽回收系统结合工作,以减少额外的蒸汽流失。为了此目的,液体温度调节系统650’包括有一封闭的冷冻储存库690’,其能够在高压与低压两种状态下工作,即在高于大气压10psi或全真空-1atm状态下工作。冷冻储存库690’亦可包括有一流体搅拌系统(未显示),以加强从冷却剂至冷冻器螺管(未显示)的热交换。在本例子中,冷冻器650’和储存库690’是可以在低至,例如-80℃的低温度下工作。
使用本系统,受测试器件的温度能被改变,从而能在各种工作条件下被测试。例如,操作者可以输入某一操作温度用于测试受测试器件。在一实施例中,受测试器件的实际温度可以以本领域技术人员所熟知方式经由自动测试设备(未显示)来检测。例如,可以将一温度二极管嵌入受测试器件中,并且它的讯号传送给自动测试设备,这是为了安全原因的传统上使用方式,举例来说,在受测试器件太热时可将系统关闭。而根据本发明的这个实施例,受测试器件的温度是从自动测试设备送到控制器600’。利用受测试器件的实际温度,控制器600’可以调整冷却速率,以便让受测试器件在操作者所选择的温度下工作。为了控制冷却速率,控制器600’可以调整,例如:冷却剂的流动速率、冷却剂的温度、或者改变室内压力以便改变冷却液体的沸点。
如图5’和6’所示以及上述所提到的,可使用各种感应器与仪器来控制该创新的冷却系统的操作。一压力传感器620’测量冷却剂的输送压力,以便能控制泵665’的速率。另外,一压力传感器622’测量喷洒室内部的压力,以便能控制电磁阀685’以获得在喷洒室内部适当的冷却剂沸点。温度感应器640’被用于测量靠近输送端的冷却剂温度,而喷洒室内的蒸汽温度的测量则是用温度感应器645’。显然地,从喷洒室的压力与蒸汽温度(或者冷却剂在它的饱和温度),将能够确定输送到受激发的受测试器件的冷却剂的热力学状态。当电磁阀685’发生故障时,一机械压力释放阀626’提供安全释放。
在图5’和6’的实施例中,雾化的冷却剂对于成像的影响需要降至最低,其中一种方式是使用供选用的遮挡板602’,以防止雾气进入成像系统的光学轴内。以此种方式,在接物镜容室移动至受测试器件的特定区域成像时,该遮挡板可能会接触或者非常接近受测试器件,以便遮蔽受测试器件的该区域免于雾化。另一方面,如果有人希望避免使用遮挡板,那么需要调整喷雾,以在使用光线的波长下能够得到最佳的成像,也就是说雾滴的大小需要按照显微镜的操作来控制。例如可以使用白光来完成成像,或例如使用红外线光检测光发射。经由适当选择的雾滴大小,这些不同的波长可以导致较佳的影像。这可以事先或在测试中经由操作者来选择。另一方面,在本发明的又一方面,可以利用固体浸没镜(solid immersion lens:SIL)配合接物镜透镜来改善成像,固体浸没镜(SIL)使得能够在受测试器件和接物镜之间传送光学能量,而实际不管所使用的冷却剂种类和方式。因此,喷雾器和流体压力能被选择,以达成最佳的热量移除效率。
图5描述本创新冷却系统的一替代实施例的分解图,在图5中描述的冷却系统能够利用任何型式的显微镜用于检查和(或)测试集成电路(ICs)。为了清楚,图5仅显示光学检查/探测系统的接物透镜部分,以及和其冷却系统相关的部份。一接物镜容室505容纳测试系统的接物透镜,容室505与接物透镜一般而言形成系统的光学接收器,即探测头。一透明热散布体510被安装在支持座550上,其通常为金属支持座。热散布体是由能让放射波长穿透的材料制造的,所使用的特定测试器监测放射波长。对于红外线、可见光和紫外线放射而言,热散布体可以由陶瓷材料制造,例如氧化铝、二氧化硅或其混合物。热散布体亦可以由如蓝宝石的单晶(monocrystalline)材料制造。在一实施例中,透明热散布体510是使用比如铟焊接剂焊接于支持座550。
喷雾器515被排列,以喷洒冷却流体到热散布体510周边上。此处图仅显示关于喷雾器的大小、数目和排列。例如,虽然只显示两排喷雾器在热散布体510的两相对侧,但是可提供四排喷雾器以冷却该热散布体510的整个外围。再者,在本说明书中的公开中,术语「流体」明显是指由冷却介质所形成的液体和气体两者。
整个组合件放置于喷洒室525内部,且有一封闭垫530附加于它的上表面。喷洒室525附加于平移台上,例如x-y-z平台(未显示)。在使用滑动封闭件的例子中实施测试时,该喷洒室525被移至与封闭盘580接触,因此,滑动封闭件530可以和封闭盘580产生封闭,该封闭可能是密封地,但是密封封闭是不必要的。以这种方式,该喷洒室525可以四处移动,以便让接物透镜定位于受测试器件上寻求成像的特定区域,而不破坏与封闭盘580的封闭。或者另一方式,该接物镜容室505可以相对于热散布体510移动,因此,在测试受测器件上的不同地方时,一旦热散布体510靠着受测试器件,就不需要再移动。
在另外一实施例子中,容室525是通过挠性伸缩囊(未显示)相接于封闭盘580。伸缩囊材料必须兼容于冷却剂的温度与化学性质。某些可能的材料包括折叠的薄壁钢材与橡胶。
在测试时,流体是经由冷却剂供给歧管555供给喷雾器515。冷却剂的沸点可被控制,其是通过利用电磁阀520或其它方式控制喷洒室525内部的压力而达成的。本发明的一实施例中,喷洒室525内部的压力是使用压力传感器552来测量,以及供给的冷却剂的压力是使用压力传感器540来测量,而冷却剂的温度是用温度感应器541测量以及在其喷洒室内的蒸汽温度是使用温度感应器545测量。作为安全的测量,可以选择提供一机械压力释放阀535。为了固定或改变冷却剂的温度以及喷洒室的压力,测量的冷却剂输送压力会被回馈至控制器,以便确保足够的冷却剂输送压力,用于受测试器件所要求的温度。流动速率,以及因此冷却速率可以经由冷却剂输送压力来控制。
图6是根据本发明一实施例的喷洒冷却系统的剖面图。特别的是受测试器件660是由受测试器件保持框体672保持在合适位置上,保持框体672是贴附在受测试器件插座上(未显示)。封闭盘670被贴附到DUT承载接口板(未显示),其以传统方式被连接至测试转接器。在此实施例中,喷洒室625压着封闭盘670,以便利用滑动封闭件630形成封闭。接物镜容室605被安置在透明热散散布体617下方,其配置有喷洒头615。泵680被用于让流体返回至流体温度调节系统,比如冷冻器650,以及亦可被用于控制室内635内部的压力,通常大约在1大气压(1atm)。我们应该了解所希望的喷洒室压力能够根据所使用的冷却流体的特性与所希望的沸点(按所给的实施例)来计算。
泵665被用于泵送冷却剂通过供给管695,经由喷洒头或喷雾器列(atomizer banks)615将其注于透明热散布体上。在本发明的一实施例中,冷却剂是以液体状态喷洒至热散布体617上,在该处其被加热至沸点然后汽化,并且在室内635形成蒸汽。该蒸汽随后凝结在室625的内壁上,以及经由通道655排出回到泵680。该蒸汽亦可直接注入冷冻器650,虽然将会使冷冻器上的负载增加。在另一实施例中,冷却剂仅单纯从热散布体617吸收热量而不汽化,在该处未汽化的液体返回至流体温度调节系统。尽管目前具有两种热量管理情形,但本领域技术人员可理解的是,流体热量吸收和汽化的相对冷却能力可被调整,例如,如上述所描述的,通过选择不同的流体、喷嘴设计与数目、流体的流动速率、流体温度和室内压力。
在被再次喷洒至热散布体617上之前,流体可在流体温度调节系统650中循环。这个特定实施例所使用的冷却剂为高蒸汽压力,例如氢氟醚(hydrofluoroethers)或全氟化碳(perfluocarbons)。结果这些流体在暴露于大气状态中时将直接汽化,所以如本实施例所示,整个冷却系统形成封闭的回路系统。该封闭系统可以经由电磁阀685泄出,其也可以与例如回流冷凝器的蒸汽回收系统结合工作,以减少额外的蒸汽流失。为了此目的,流体温度调节系统650包括一封闭的冷冻储存库690,其能够在高压与低压两种状态下工作,即在高于大气压10psi或全真空-1atm状态下工作。冷冻储存库690’亦可包括有一流体搅拌系统(未显示),以加强从冷却剂至冷冻器螺管(未显示)的热交换。在这个例子中,冷冻器650和储存库690是可以在低至,例如-80℃的低温度下工作。
使用这个系统,则受测试器件的温度能被改变,以在各种工作条件下被测试。例如,操作者可以输入某一操作温度用于测试受测试器件。在一实施例中,受测试器件的实际温度可以以本领域技术人员所熟知方式经由自动测试设备(未显示)来检测。例如,可以将一温度二极管置入受测试器件中,并让它的讯号发送回自动测试设备。这是为了安全原因而传统上使用的方式,举例来说,在受测试器件太热时可将系统关闭。但是,根据本发明的这个实施例,受测试器件的温度是从自动测试设备送到控制器600。利用受测试器件的实际温度,控制器600可以调整冷却速率以便让受测试器件在操作者所选择的温度下工作。为了控制冷却速率,控制器600可以调整,例如冷却剂的流动速率、冷却剂的温度、或者改变室内压力从而改变冷却液体的沸点。
如图5和6所示以及上述所提到,可使用各种的感应器与仪器来控制该创新的冷却系统的操作。一压力传感器620测量冷却剂的输送压力以便能控制泵665的速率。另外,一压力传感器622测量喷洒室内部的压力,以便能控制一电磁阀685以获得在喷洒室内部的适当的冷却剂沸点。可选地,提供另一传感器694以监测返回的冷却剂的压力。温度感应器640用于测量靠近输送端的冷却剂温度,而喷洒室内的蒸汽温度则利用温度感应器645测量。显然地,从喷洒室的压力与蒸汽温度(或者冷却剂在它的饱和温度),将能够确定输送到受激发的受测试器件的冷却剂的热力学状态。当电磁阀685发生故障时,一机械压力释放阀626提供安全释放。
在图5和6中的实施例中,雾化的冷却剂对于成像的影响需要降至最低,其中一种方式是使用热散布体承载体550、618当作遮挡板,以便防止雾气进入成像系统的光学轴。以此种方式,喷洒液仅侵入热散布体的外围,因此接物镜的观察区域不会被流体遮蔽。但是如上所提到的,有效的控制在热散布体外围的温度可导致有效的控制受测试器件的温度。所以,此处所描述的实例在控制受测试器件的温度方面非常有效。
如上述提到的,可以在热散布体与受测试器件之间提供油或其它高折射率液体。另外,在本发明的各种实施例中,油或其它高折射率液体被放置在热散布体与接物透镜之间。在本发明另一实施例中,一选择使用的固体浸没镜(SIL)619被提供与热散布体接触,以便从受测试器件有效收集光线,并将其导引至接物透镜。固体浸没镜(SIL)使得光能量能够热散布体与接物透镜之间传送,并且可以单独或配合高折射率液体使用。
固体浸没镜(SIL)在本领域众所周知,其例子描述有美国专利第5,004,307号、第5,208,648号和第5,282,088号,这些专利在此处通过参考并入。图6所描述的破折线为配合可选的固体浸没镜(SIL)使用的本发明冷却系统的实施例。在此实施例中,固体浸没镜(SIL)619附加于接物镜容室605顶部。在操作中,固体浸没镜(SIL)是被“连接”到热散布体617,以便让易散失的波能量传播。另一说法为固体浸没镜(SIL)是被“连接”到热散布体617,所以它以高于临界角(临界角是发生内部全反射的角度)的角度捕捉在热散布体617中传播光线。如本领域所公知的,该连接的实现可通过,例如实体接触影像的目标物、离目标非常靠近的配置(大约近到20-200微米)、或使用折射率匹配的材料或流体。
在图5与图6的实施例中显示有两排喷雾器。但是,应该知道的是,所提供的喷雾器数目与喷雾器列数仅是作为例子,亦可使用其它的数目和配置。例如,喷雾器亦能以环形排列于接物镜容室四周,而不是以直线排列。而且,各种喷射器能以不同的喷洒速率工作,或被供给不同的冷却剂,或相同的冷却剂、但是在不同温度下。另可供选择地,不同喷洒头能够被调整以在不同角度提供喷洒。
图7描述安装受测试器件至传统的测试头转接器的典型方式。受测试器件760经由插座(未显示)安装在受测试器件接口板790上,并且由保持框体770支持在适当的位置上。一O形环封闭件710可以被提供在受测试器件保持框体770和受测试器件承载体765之间,另外,一O形环封闭件720可以被提供在封闭盘780与负载接口板790之间。
图8描述本创新的喷洒冷却系统的还一实施例。在这个实施例中,透明热散布体864是压靠着受测试器件860,受测试器件860再附到受测试器件承载体866和插座862。热散布体864是由保持框体861固定在适当的位置上,而不是由光学承载体固定。喷雾器列815被设置在热散布体864外围附近。在这个特定例子中,一可选的封闭件867被设置于封闭盘870、插座862和受测试器件接口板863之间。这是为了确保不会有蒸汽从这些构件之间的空间散失。
喷洒室825是对着封闭盘870固定的,使得封闭件830可以和封闭盘870形成封闭。在室内835内部的状态是使用压力传感器822和温度感应器845监测的,室内835内部的压力是使用电磁阀885来控制。另外,为了安全,则设置一机械压力释放阀826。
冷却流体利用供应泵865被供给至喷雾器列815。输送流体的压力是由压力传感器820测量的,而温度是由温度感应器840测量。在喷洒以后,流体被搜集并用回流泵880泵回至冷冻储存库880。冷冻器内部的流体高度由水平感应器896监测,其也能够被当作热量管理控制的一个增加变量,而冷冻器内部的压力是经由压力传感器891来监测。为了安全,则提供一机械压力释放阀892。冷冻器内部的温度是利用冷冻器螺管893和加热器894控制的。如图所示,所有的感应器、致动器和泵皆连接到计算机/控制器800。
如众所周知的,为了检查受测试器件,通常将受测器件变薄。结果,当器件产生热量时,该热量不能完善的扩散于整个受测试器件,并且会产生局部热点。在本实施例中,有一透明热散布体864与受测试器件860接触,以便加强从局部热点的热量扩散。如同上述的实施例,油或其它折射率匹配的流体均能用于热散布体864与受测试器件860之间。随后喷洒实施在例如由硅晶、红宝石、钻石等所制成的热散布体864的周边上。
图9a与图9b是一具有热散布体保持框体的受测试器件支持座装置的剖面视图,其可以在图8的实施例中使用。受测试器件960是被透明热散布体974靠着插座965夹持的,而透明热散布体974被保持框体970夹持在适当的位置。一O型环920是设置于受测试器件承载体962与插座965之间。透明冷却盘974能够通过,例如铟或环氧粘合剂、硅密封剂等等被封接于保持框体970。为了加强热传导效果,可以使用铟焊接剂。保持框体970可以使用螺丝或其它方式固定到测试转接器(未显示)。流体入口915和出口917设置在保持框体970中。从图9a与图9b可以了解,保持框体970、热散布体974和插座965间形成一空腔990。如图9a所示,冷却剂藉由入口915和出口917在空腔990内循环。另一种情形,在图9b中是利用喷洒头将流体喷洒入空腔990中,然后藉由出口917排出。很明显,在任一例子中,冷却剂流体并不在接物镜的光学路径中循环,而是可以仅冷却热散布体974的外围与受测试器件960。如果搜集耗费的冷却剂不重要,例如,如果冷却剂是空气或液态氮,则出口917可以仅仅是在框体970和插座965之间的非封闭设置,在这种状况下,耗费的冷却剂将仅仅经由非封闭设置蒸发到空气中。
图10是靠着受测试器件固定的透明热散布体装置的剖面视图,此示例说明的例子可以使用在图5和6的实施例。即在这个实施例中,受测试器件贴附于插座,而透明热散布体压靠着受测试器件。如图所示,受测试器件1060是贴附于受测试器件承载体1065,其可能包括或不包括外围装置1020(如电容器)。在测试前,将一透明热散布体1074压持着受测试器件1060,在其之间具有或不具有折射率匹配的流体。热散布体1074是通过,例如铟焊接剂1012贴附至其支持座1070。喷雾器1015是贴附至支持座1070,以便它们能够喷洒在热散布体1074上。如图所示,支持座1070可以当作遮挡板,从而防止喷洒到达至热散布体1074的中央区域和遮蔽光路径。
图11是夹持受测试器件的透明热散布体装置的剖面视图,这个说明的例子可以使用在图5和6的实施例。但是这个实施例亦可以使用在没有蒸发室的情况下,例如图5和6所示的蒸发室。明显地,在这个实施例中,喷洒的流体是容纳在热散布体支持座内以及循环于冷冻器中,用于温度控制。如图所示,受测试器件1160是贴附至受测试器件承载体1165,其可能包括或不包括外围装置1120(如电容器)。在测试前,将一透明热散布体1174压持着受测试器件1160,在其间具有或不具有折射率匹配的流体。热散布体1174是利用,例如铟焊接剂1112贴附至一支持座1170。支持座1170是由例如实心金属制成的实心部1180与空心部1175所构成。如图所示,喷雾器1115是安置在支持座1170的空心部内部。喷雾器喷洒支持座1170的实心部1180,随后流体沿着空心部1175往下流,以便被搜集和(或)循环至冷冻器。在此设置中,热从受测试器件被传导至热散布体1174,然后至实心部1180,以及从该处经由喷雾器1115喷洒移除。因为在此例子中流体路径为封闭循环,所以没有封闭盘或类似装置需要被提供,并且该设置可以很容易用于各种测试情况。
图12是本发明另一实施例的分解视图说明,在这个实施例中,受测试器件以及热散布体能被固定在印刷电路板上,并且被装配至自动测试设备或其它测试设备的测试工作台上。热散布体的冷却是分开提供的,并且可从受测试器件印刷电路板移开。本实施例有特别的优点,因为印刷电路板、受测试器件和热散布体构成与其它的测试和冷却系统分开和独立的装置,以及能够很便利地组装在工作台上和随后移至以及配置到测试系统上。
印刷电路板组合件包括一传统的印刷电路板1200,其上固定有一插座1265和受测试器件套组1285。受测试器件1260以传统的方式被安置在插座1265上,一透明热散布体1274随后被置于受测试器件1260上,有或没有伴随着折射率匹配的流体。热散布体1274是使用铜夹1230和铟衬垫1222压持着受测试器件1260。整个组合件随后经由螺栓1250被钢夹1240固定,螺栓1250利用导柱1255对准。
喷洒冷却组合件包括一支持座1270,其内具有两个空心室:喷射室1245和排出室1275。冷却喷洒组合件压持着DUT铜夹1230,其间具有一铟衬垫1212。铟衬垫是可以为分离或可更换的零件,或者它可以焊接到支持座1270上。冷却液体被泵进喷射室1245,并且经由喷射器1215被喷洒至支持座1270的顶部。喷洒的液体随后往下流至排出室,并且被泵进冷冻器用于温度控制。
在图6和8的实施例中显示冷却流体被搜集并返回冷冻器系统。但是这不一定是需要的,例如冷却流体统可能是冷冻的空气。在此种情况,空气能被冷冻并在压力下被输送至喷洒头,但它在喷洒后不需要被搜集。所以,例如泵680和880可被省掉。另一方面,液态氮在从事半导体芯片工作的机构中通常很轻易可得到,所以液态氮可用在本发明的实施例中。
图13是说明其中的液态氮被当作冷却剂流体使用的实施例。也就是在处理半导体的大部分研究和生产设备上很容易获得液态氮,也2就是设备1380是经由输出阀连接器1382提供增压的液态氮。因此,在使用此设备供给冷却剂时,将不需要在图6和8的实施例中描述的泵和热交换器,而是将液态氮直接输送至喷洒头1315。
液态氮一经喷洒至热散布体1317上,它可被搜集或不搜集。即人们可使用配合有封闭环1330和盘体1370的冷却室1325,以便形成密闭的环境而能够经由出口1355搜集所「耗费」的氮。另一种情形,所耗费的氮能被放出至大气中,在此种情况下,将不需要建造冷却室且喷洒头1315以及喷洒盘1317可以打开与周围相通。
如图5和6的实施例,各种感应器和仪器可被用于控制此创新冷却系统的操作。一压力传感器1320测量冷却剂输送压力,以便能够控制阀门1382。另外,一压力传感器1322测量喷洒室内部的压力,以便能控制电磁阀1385。温度感应器1340用于测量靠近输送端的冷却剂,而喷洒室中的蒸汽温度是用温度感应器1345测量的。在电磁阀1385发生故障时,一机械压力释放阀1326提供安全释放机能。如能够容易理解的,如果系统被设计成将耗费的氮排放到大气中,则可以被改变或省略其中有些或所有这些各种感应器和传感器。
图14是说明创新系统的另一实施例,其中,透明热散布体1474是经由支持座1470可移动地装配到接物镜组合件1405。在这个实施例中,支持座1470可在容室1475中自由地滑动,或者它能以弹性支撑或挠性地安装在容室1475内。提供这个装置,所以一旦热散布体1474靠着受测试器件1460(安装在插座1485上)放置,接物镜组合件1405就可以进一步移动,以便到达适当的对焦点。当支持座1470是弹性支撑时,则透明热散布体1474能实体地压靠着受测试器件1460,从而避免或减少在透明热散布体1474和受测试器件1460之间的任何机械移动和震动。冷却剂经由导管或管道1480输送至喷洒头1415,喷洒头1415输送冷却剂喷洒至热散布体1474上。一可选择的方式是,喷洒头1415亦可输送冷却剂喷洒至受测试器件1460本身上。可选地,支持座1470可以形成如同圆柱,可拆卸地装配到圆柱容室1475。此种装置具有优点,因为圆柱支持座1470能防止任何冷却剂进入接物镜的光路径。如图14的说明,本实施例的装置可以用于和另一透明热散布体1410相结合,例如,像图1a所示的传统的热散布体110。在此例子中热散布体1474压靠着热散布体1460。进一步可选择的方式是冷却剂通道可以被设置在热散布体1410的内部或上方,例如,像图1a所示的传统冷却通道120。
图15为创新的冷却系统的又实施例图,其中是使用传统的冷却盘1540。传统的冷却盘包括一透明热散布体1510’、冷却流体输入/输出连接线路1570和冷却流体通道1530。热散布体1510’可以经由铟焊接剂1525连接到冷却盘,然而根据这个实施例,为了加强从散布体外围的热量消除,安装喷洒头1515,以提供冷却喷洒到冷却盘上。
虽然本发明是参照特定的实施例作说明,但其并不局限于这些实施例。特别的是,本领域技术人员所能施行的各种变化和修改均不脱离本发明的精神和范畴,其应以权利要求所述为准。此外,上述所引用提及的现有技术在此通过参考并入。

Claims (64)

1.一种半导体芯片热量管理系统,包括:
一透明热散布体,其设置放于所述半导体芯片之上;
至少一喷洒头,是配置以提供冷却剂至少部分地喷洒到所述透明热散布体上;
一冷却剂输送系统,给所述喷洒头提供所述冷却剂。
2.如权利要求1所述的半导体芯片热量管理系统,其中所述冷却剂含有水、液态氮、冷冻空气、氢氟醚或全氟化碳中之一或者含有其混合。
3.如权利要求1所述的半导体芯片热量管理系统,进一步包括:
一冷却剂温度调节系统;
一冷却剂移动机构,从所述温度调节系统给所述喷洒头提供所述冷却剂。
4.如权利要求3所述的半导体芯片热量管理系统,进一步包括冷却剂回收系统,其输送搜集的冷却剂到所述冷却剂温度调节系统。
5.如权利要求1所述的半导体芯片热量管理系统,其中所述喷洒头被配置,使得冷却剂仅喷洒至所述透明热散布体的外围上。
6.如权利要求1所述的半导体芯片热量管理系统,进一步包括一支持座,所述透明热散布体附着于其上。
7.如权利要求6所述的半导体芯片热量管理系统,其中所述透明热散布体是经由铟焊接剂附着于所述支持座。
8.如权利要求6所述的半导体芯片热量管理系统,其中所述支持座遮挡住所述透明热散布体的内侧部分,使其避免所述冷却剂喷洒。
9.如权利要求1所述的半导体芯片热量管理系统,进一步包括:
一冷却室,其一侧面暴露给所述半导体芯片;
一封闭件,其在所述冷却室暴露给所述半导体芯片的侧面上。
10.如权利要求1所述的半导体芯片热量管理系统,进一步包括一透明盘,其位于所述半导体芯片与所述透明热散布体之间。
11.一种集成电路(IC)热量管理系统,用于和激发所述集成电路的集成电路测试器一起使用,包括:
一透明热散布体,位于所述集成电路之上;
一支持座,具有接合所述热透明体的上部;以及
至少一喷洒头,提供冷却剂流体喷洒,以从所述热散布体移除热量。
12.如权利要求11所述的集成电路热量管理系统,其中所述冷却剂流体含有水、液态氮、冷冻空气、氢氟醚或全氟化碳之一或者含有其混合。
13.如权利要求11所述的集成电路热量管理系统,进一步包括:
一冷却剂流体温度调节系统;
一流体移动机构;
流体管道,经由所述流体移动机构从所述温度调节系统提供所述冷却剂流体到所述喷洒头;以及,
返回管道,其输送所述冷却剂流体到所述温度调节系统。
14.如权利要求11所述的集成电路热量管理系统,其中所述支持座包括一中空输送管道,在其内部安置有所述喷洒头。
15.如权利要求14所述的集成电路热量管理系统,其中所述支持座进一步包括一返回导管,喷洒的冷却流体经由其而被搜集。
16.如权利要求15所述的集成电路热量管理系统,进一步包括一铟衬垫,位于所述支持座与所述热散布体之间。
17.如权利要求16所述的集成电路热量管理系统,进一步包括一金属夹,位于所述热散布体之上。
18.如权利要求17所述的集成电路热量管理系统,进一步包括一铟衬垫,位于所述金属夹与所述热散布体之间。
19.如权利要求13所述的半导体芯片热量管理系统,其中所述温度调节系统是一冷冻器。
20.如权利要求13所述的半导体芯片热量管理系统,其中所述流体移动机构是泵。
21.一种用于集成电路测试的诊断夹具,所述诊断夹具含有一热量管理系统,用于控制所述集成电路的温度,包括:
一接口板,用于夹持和提供到所述集成电路的电接触;
一第一冷却盘,位于所述集成电路之上,所述第一冷却盘包括一透明热散布体,以及
一盘支持座,与所述第一冷却盘实体接触;
至少一喷洒头,提供冷却剂流体喷洒。
22.如权利要求21所述的诊断夹具,其中所述冷却剂流体含有水、液态氮、冷冻空气、氢氟醚或全氟化碳中的一种。
23.如权利要求21所述的诊断夹具,进一步包括与所述热散布体实体接触的一支持座,并且其中所述喷洒头是附着到所述支持座。
24.如权利要求23所述的诊断夹具,其中所述支持座是空心,以及其中所述喷洒头是置于所述支持座的内侧。
25.如权利要求23所述的诊断夹具,其中所述支持座是焊接到所述第一冷却盘。
26.如权利要求21所述的诊断夹具,进一步包括一第二冷却盘,位于所述集成电路与所述第一冷却盘之间。
27.如权利要求26所述的诊断夹具,其中所述第二冷却盘包括有冷却流体在其内循环的冷却通道。
28.一种诊断夹具,用于和集成电路的诊断探测器一起使用,所述诊断夹具含有控制所述集成电路的热量管理系统,包括:
一插座,用于支持和提供到所述集成电路的电接触;
一透明冷却盘,位于所述集成电路之上;
一盘支持座,与所述冷却盘实体接触,所述盘支持座含有冷却剂入口;以及,
其中所述插座、集成电路、和盘支持座形成一空腔,用于循环从所述冷却剂入口提供的冷却剂,所述冷却剂仅接触所述透明冷却盘与集成电路的周边区域,并且被阻止到达所述探测器的光路径。
29.如权利要求28所述的诊断夹具,进一步包括至少一喷洒头,其被连接到所述冷却剂入口。
30.一种控制处于诊断中的集成电路的温度的方法,所述方法包括:
将所述集成电路附着于插座;
提供一透明热散布体,位于所述集成电路上;
从至少一喷洒头喷射冷却剂到所述透明热散布体上。
31.一种半导体芯片热量管理系统,包括:
一个容室;
至少一喷洒头,其置于所述容室内,以提供液体喷洒至所述半导体芯片上;
一液体温度调节系统;
一流体移动机构;
喷射管,其经由所述流体移动机构从所述温度调节系统提供冷却剂液体给所述喷洒头。
32.如权利要求31所述的半导体芯片热量管理系统,进一步包括一返回管,其输送从所述冷却室搜集的冷却液体至所述液体温度调节系统。
33.如权利要求31所述的半导体芯片热量管理系统,进一步包括一封闭件,位于所述冷却室上。
34.如权利要求31所述的半导体芯片热量管理系统,进一步包括一压力感应装置,其指示所述冷却室内部的压力。
35.如权利要求31所述的半导体芯片热量管理系统,进一步包括一温度感应器,其指示所述冷却室内部的温度。
36.如权利要求31所述的半导体芯片热量管理系统,进一步包括一冷却头,其安置于所述冷却室内部并且其中所述喷洒头是提供在所述冷却头上。
37.如权利要求36所述的半导体芯片热量管理系统,其中所述至少一喷洒头包括至少一排喷洒头,提供在所述冷却头上。
38.如权利要求31所述的半导体芯片热量管理系统,其中所述冷却室包括一装置,在其内容纳接物透镜室。
39.如权利要求31所述的半导体芯片热量管理系统,其中所述液体温度调整系统是一冷冻器。
40.如权利要求31所述的半导体芯片热量管理系统,其中所述流体移动机构是机械泵。
41.一种集成电路(IC)热量管理系统,用于和激发所述集成电路的集成电路测试器一起使用,包括:
一冷却室,具有一侧面暴露给所述集成电路;
一封闭件,在所述冷却室暴露给所述集成电路的所述侧面上;
至少一喷洒头,置于所述冷却室内,以提供冷却剂液体喷洒至所述集成电路上;
一液体温度调节系统;
一流体移动机构;
喷射管,经由所述流体移动机构从所述温度调节系统提供冷却液体至所述喷洒头;以及,
返回管,输送从所述冷却室搜集的冷却剂液体至所述液体温度调节系统。
42.如权利要求41所述的集成电路热量管理系统,进一步包括控制仪器,其接收压力和温度讯号,以及根据所述讯号的数值控制所述集成电路热量管理系统的操作。
43.如权利要求42所述的集成电路热量管理系统,进一步包括一压力传感器和温度感应器,产生所述压力和温度讯号。
44.如权利要求42所述的集成电路热量管理系统,进一步包括一电磁阀,以及其中所述压力讯号包含一冷却喷洒讯号和一容室压力讯号,以及其中所述控制仪器是根据所述冷却喷洒讯号控制所述泵的操作速率,以及根据所述容室压力讯号控制所述电磁阀的操作。
45.如权利要求41所述的半导体芯片热量管理系统,其中所述液体温度调节系统是一冷冻器。
46.如权利要求41所述的半导体芯片热量管理系统,其中所述流体移动机构是一机械泵。
47.如权利要求41所述的集成电路热量管理系统,进一步包括一封闭盘,其被配置以支撑所述集成电路以及配合所述封闭件形成一封闭。
48.如权利要求44所述的集成电路热量管理系统,其中所述封闭盘进一步包含冷却剂流体通道,提供冷却剂流体通到所述集成电路。
49.一种集成电路热量管理系统,供使用于具有一光学接收器的集成电路测试器,包括:
一冷却室,容纳所述光接收器和有一侧面暴露给所述集成电路;
一封闭件,在所述冷却室暴露给所述集成电路的侧面上;
至少一喷洒头,置于所述冷却室内,以提供冷却剂液体喷洒至所述集成电路上;
一液体温度调节系统;
一流体移动机构;
喷射管,经由所述流体移动机构从所述温度调节系统提供冷却液体给所述喷洒头。
50.如权利要求49所述的集成电路热量管理系统,进一步包括一返回管,输送从所述冷却室搜集的冷却剂液体至所述温度调节系统。
51.如权利要求49所述的集成电路热量管理系统,进一步包括一装置,用于防止所述液体喷洒妨碍所述光接收器的最佳操作。
52.如权利要求51所述的集成电路热量管理系统,其中所述装置包括一遮挡板。
53.如权利要求51所述的集成电路热量管理系统,其中所述装置包括一固体浸没镜。
54.如权利要求49所述的集成电路热量管理系统,其中所述光接收器包括一接物透镜容室,其被置于所述冷却室内。
55.如权利要求49所述的集成电路热量管理系统,其中所述液体温度调节是一冷冻器。
56.如权利要求55所述的半导体芯片热量管理系统,其中所述流体移动机构是一机械泵。
57.如权利要求54所述的集成电路热量管理系统,进一步包括一固体接物透镜,其安置在所述接物透镜容室的顶端。
58.一种控制处于测试中的集成电路的工作温度的方法,包括:
将具有至少一喷洒头的冷却室贴附到所述集成电路上;
循环冷却流体通过一液体温度调节系统;以及,
供应所述冷却流体到所述冷却室,以便所述液体喷洒到所述集成电路上。
59.如权利要求58所述的方法,进一步包括:
搜集喷洒到所述集成电路上的冷却流体,以及输送搜集的冷却流体到所述温度调节系统。
60.如权利要求58所述的方法,进一步包括:
测量所述冷却室内部的压力和根据测量的压力控制冷却流体的输送。
61.如权利要求58所述的方法,进一步包括:
测量所述冷却流体的温度和根据测量的温度控制冷却流体的输送。
62.如权利要求58所述的方法,进一步包括:
测量在冷冻储存库内流体的流体位准和根据测量的流体位准控制冷却流体的输送。
63.如权利要求39所述的半导体芯片热量管理系统,其中所述冷冻器包括一封闭的储存库。
64.如权利要求31所述的半导体芯片热量管理系统,进一步包括覆盖所述半导体芯片的透明冷却盘。
CNA2003801101103A 2003-03-04 2003-11-14 冷却光探测的集成电路的装置和方法 Pending CN1756961A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/379,925 2003-03-04
US10/379,925 US6836131B2 (en) 2002-08-16 2003-03-04 Spray cooling and transparent cooling plate thermal management system

Publications (1)

Publication Number Publication Date
CN1756961A true CN1756961A (zh) 2006-04-05

Family

ID=32961278

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2003801101103A Pending CN1756961A (zh) 2003-03-04 2003-11-14 冷却光探测的集成电路的装置和方法

Country Status (7)

Country Link
US (1) US6836131B2 (zh)
EP (1) EP1604217A1 (zh)
JP (1) JP2006519359A (zh)
KR (1) KR20050111751A (zh)
CN (1) CN1756961A (zh)
TW (1) TWI251067B (zh)
WO (1) WO2004079380A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105350951A (zh) * 2015-11-02 2016-02-24 中国船舶重工集团公司第七一八研究所 用于元素测井仪探头bgo晶体探测器的保温与预冷却装置
CN106409791A (zh) * 2016-11-29 2017-02-15 广东合新材料研究院有限公司 一种液体浸没式芯片散热器
CN107390739A (zh) * 2016-04-28 2017-11-24 通用电气能源能量变换技术有限公司 带有压力调节的冷却系统
CN113227805A (zh) * 2018-12-27 2021-08-06 浜松光子学株式会社 冷却单元、物镜模块、半导体检查装置、半导体检查方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076216B2 (en) 2008-11-11 2011-12-13 Advanced Inquiry Systems, Inc. Methods and apparatus for thinning, testing and singulating a semiconductor wafer
US8464781B2 (en) 2002-11-01 2013-06-18 Cooligy Inc. Cooling systems incorporating heat exchangers and thermoelectric layers
DE10393588T5 (de) 2002-11-01 2006-02-23 Cooligy, Inc., Mountain View Optimales Ausbreitungssystem, Vorrichtung und Verfahren für flüssigkeitsgekühlten, mikroskalierten Wärmetausch
US7836597B2 (en) 2002-11-01 2010-11-23 Cooligy Inc. Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system
US20050211418A1 (en) * 2002-11-01 2005-09-29 Cooligy, Inc. Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
US7201012B2 (en) * 2003-01-31 2007-04-10 Cooligy, Inc. Remedies to prevent cracking in a liquid system
TWM251443U (en) * 2003-05-12 2004-11-21 Hon Hai Prec Ind Co Ltd A cycle system for dissipating heat
US7591302B1 (en) 2003-07-23 2009-09-22 Cooligy Inc. Pump and fan control concepts in a cooling system
US6995980B2 (en) * 2003-08-21 2006-02-07 Unisys Corporation Temperature control system which sprays liquid coolant droplets against an IC-module and directs radiation against the IC-module
JP3756168B2 (ja) * 2004-03-19 2006-03-15 株式会社ソニー・コンピュータエンタテインメント 回路の発熱制御方法、装置およびシステム
US7616444B2 (en) * 2004-06-04 2009-11-10 Cooligy Inc. Gimballed attachment for multiple heat exchangers
US8029186B2 (en) 2004-11-05 2011-10-04 International Business Machines Corporation Method for thermal characterization under non-uniform heat load
US7259580B2 (en) * 2005-02-22 2007-08-21 International Business Machines Corporation Method and apparatus for temporary thermal coupling of an electronic device to a heat sink during test
US7616312B2 (en) * 2005-06-29 2009-11-10 Dcg Systems, Inc. Apparatus and method for probing integrated circuits using laser illumination
US7659981B2 (en) * 2005-08-26 2010-02-09 Dcg Systems, Inc. Apparatus and method for probing integrated circuits using polarization difference probing
US7450245B2 (en) 2005-06-29 2008-11-11 Dcg Systems, Inc. Method and apparatus for measuring high-bandwidth electrical signals using modulation in an optical probing system
US7733100B2 (en) 2005-08-26 2010-06-08 Dcg Systems, Inc. System and method for modulation mapping
KR100688583B1 (ko) * 2005-12-31 2007-03-02 삼성전자주식회사 포토 에미션 분석 장치 및 포토 에미션 분석 방법
TWI276396B (en) * 2006-01-13 2007-03-11 Ind Tech Res Inst Closed-loop latent heat cooling method, and capillary force or non-nozzle module thereof
US20070227709A1 (en) * 2006-03-30 2007-10-04 Girish Upadhya Multi device cooling
US7453277B2 (en) * 2006-06-06 2008-11-18 Advanced Inquiry Systems, Inc. Apparatus for full-wafer test and burn-in mechanism
US20070291361A1 (en) * 2006-06-19 2007-12-20 Credence Systems Corporation Lens housing with integrated thermal management
US7548424B2 (en) * 2007-03-12 2009-06-16 Raytheon Company Distributed transmit/receive integrated microwave module chip level cooling system
TW200924625A (en) 2007-08-07 2009-06-01 Cooligy Inc Deformable duct guides that accommodate electronic connection lines
US7639030B2 (en) * 2007-10-15 2009-12-29 Intel Corporation Creating a jet impingement pattern for a thermal control system
JP4845897B2 (ja) * 2008-01-15 2011-12-28 株式会社東芝 サンプルステージ
US20090267631A1 (en) * 2008-04-24 2009-10-29 Honeywell International Inc. Large Component Thermal Head Adapter
US7684194B2 (en) * 2008-06-04 2010-03-23 International Business Machines Corporation Systems and methods for cooling an electronic device
US8553322B2 (en) 2008-11-04 2013-10-08 Dcg Systems, Inc. Variable magnification optics with spray cooling
US8045329B2 (en) * 2009-04-29 2011-10-25 Raytheon Company Thermal dissipation mechanism for an antenna
US8232637B2 (en) * 2009-04-30 2012-07-31 General Electric Company Insulated metal substrates incorporating advanced cooling
SG10201506637YA (en) 2009-05-01 2015-10-29 Dcg Systems Inc Systems and method for laser voltage imaging state mapping
CN102445571A (zh) * 2011-10-19 2012-05-09 昆山迈致治具科技有限公司 电路板多功能测试治具
US9459280B2 (en) * 2012-08-27 2016-10-04 Intel Corporation Using fluid to position a device in a socket for testing
US20160072209A1 (en) * 2014-09-05 2016-03-10 Hzo, Inc. Waterproof sockets and ports
US10634397B2 (en) * 2015-09-17 2020-04-28 Purdue Research Foundation Devices, systems, and methods for the rapid transient cooling of pulsed heat sources
TWI597508B (zh) * 2016-07-22 2017-09-01 致茂電子股份有限公司 電子元件溫控模組及具備該模組之檢測設備
EP3460558A1 (en) 2017-09-20 2019-03-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Cryo-light microscope and immersion medium for cryo-light microscopy
KR101997847B1 (ko) * 2018-04-26 2019-07-08 (주)티에스이 냉각제를 이용한 반도체소자 테스트용 인터페이스 보드
KR102249401B1 (ko) * 2020-05-14 2021-05-07 주식회사 티에프이 반도체 테스트와 관련된 소켓 모듈
KR102363018B1 (ko) * 2020-07-14 2022-02-15 주식회사 엑시콘 냉각 성능이 우수한 반도체 디바이스 테스트 시스템
JP7227193B2 (ja) * 2020-07-15 2023-02-21 浜松ホトニクス株式会社 冷却ユニット、対物レンズモジュール、半導体検査装置、半導体検査方法
CN113358969B (zh) * 2021-06-02 2022-04-05 江苏利华之光汽车配件有限公司 信号转换器测试工装
JP2023136908A (ja) 2022-03-17 2023-09-29 浜松ホトニクス株式会社 冷却ユニット、対物レンズモジュール及び半導体検査装置
JP2023136910A (ja) 2022-03-17 2023-09-29 浜松ホトニクス株式会社 冷却ユニット、対物レンズモジュール及び半導体検査装置
CN115449576B (zh) * 2022-10-19 2023-06-20 中冶华天工程技术有限公司 一种自动热感应高炉晚期喷淋冷却设备及实施方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070040A (en) 1990-03-09 1991-12-03 University Of Colorado Foundation, Inc. Method and apparatus for semiconductor circuit chip cooling
EP0516478A2 (en) * 1991-05-30 1992-12-02 Nec Corporation Cooling structure for integrated circuits
JPH05136305A (ja) * 1991-11-08 1993-06-01 Hitachi Ltd 発熱体の冷却装置
US5220804A (en) * 1991-12-09 1993-06-22 Isothermal Systems Research, Inc High heat flux evaporative spray cooling
JPH05166912A (ja) 1991-12-18 1993-07-02 Kawasaki Steel Corp 半導体集積回路チップの発熱部検出方法
US5361032A (en) * 1992-01-27 1994-11-01 Motorola, Inc. Method of troubleshooting electronic circuit board assemblies using temperature isolation
US5515910A (en) 1993-05-03 1996-05-14 Micro Control System Apparatus for burn-in of high power semiconductor devices
US5511415A (en) 1994-01-18 1996-04-30 Cambridge Aeroflow, Inc. Gas flow and temperature probe and gas flow and temperature monitor system including one or more such probes
DE69531390T2 (de) 1994-11-30 2004-05-27 Sumitomo Electric Industries, Ltd. Substrat, Halbleiteranordnung, Anordnung für Elementmontage
US5895972A (en) 1996-12-31 1999-04-20 Intel Corporation Method and apparatus for cooling the backside of a semiconductor device using an infrared transparent heat slug
US6140141A (en) 1998-12-23 2000-10-31 Sun Microsystems, Inc. Method for cooling backside optically probed integrated circuits
US6498725B2 (en) * 2001-05-01 2002-12-24 Mainstream Engineering Corporation Method and two-phase spray cooling apparatus
US6621275B2 (en) * 2001-11-28 2003-09-16 Optonics Inc. Time resolved non-invasive diagnostics system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105350951A (zh) * 2015-11-02 2016-02-24 中国船舶重工集团公司第七一八研究所 用于元素测井仪探头bgo晶体探测器的保温与预冷却装置
CN105350951B (zh) * 2015-11-02 2018-06-08 中国船舶重工集团公司第七一八研究所 用于元素测井仪探头bgo晶体探测器的保温与预冷却装置
CN107390739A (zh) * 2016-04-28 2017-11-24 通用电气能源能量变换技术有限公司 带有压力调节的冷却系统
CN107390739B (zh) * 2016-04-28 2021-08-17 通用电气能源能量变换技术有限公司 带有压力调节的冷却系统
CN106409791A (zh) * 2016-11-29 2017-02-15 广东合新材料研究院有限公司 一种液体浸没式芯片散热器
CN113227805A (zh) * 2018-12-27 2021-08-06 浜松光子学株式会社 冷却单元、物镜模块、半导体检查装置、半导体检查方法
CN113227805B (zh) * 2018-12-27 2024-03-22 浜松光子学株式会社 冷却单元、物镜模块、半导体检查装置、半导体检查方法

Also Published As

Publication number Publication date
US6836131B2 (en) 2004-12-28
EP1604217A1 (en) 2005-12-14
KR20050111751A (ko) 2005-11-28
US20040032275A1 (en) 2004-02-19
TW200420862A (en) 2004-10-16
TWI251067B (en) 2006-03-11
WO2004079380A1 (en) 2004-09-16
JP2006519359A (ja) 2006-08-24

Similar Documents

Publication Publication Date Title
CN1756961A (zh) 冷却光探测的集成电路的装置和方法
US7504845B2 (en) Spray cooling thermal management system and method for semiconductor probing, diagnostics, and failure analysis
US20100039117A1 (en) Temperature control system for a device under test
JP5140049B2 (ja) 時間分解非侵入性判断システム
JP2008070351A (ja) 温度管理および温度勾配低減のためのシステムおよび方法
US6091494A (en) Particle sensor with cooled light trap and related method
US20120154934A1 (en) Thermal management for a solid immersion lens objective in optical probing
TW202138812A (zh) 載置台及檢查裝置
US20070291361A1 (en) Lens housing with integrated thermal management
JP6736651B2 (ja) 冷却ユニット、対物レンズモジュール、半導体検査装置、半導体検査方法
US7064568B2 (en) Optical testing of integrated circuits with temperature control
CN106198280B (zh) 高温维氏硬度计
US12092559B2 (en) Method, system, and lighting module for fast-moving particle characterization
KR101992335B1 (ko) 미세먼지 전구물질의 정밀 측정 시스템
TWI848998B (zh) 冷卻單元、對物透鏡模組、半導體檢查裝置、半導體檢查方法
Pautsch et al. Correlation of heat transfer data to film thickness data of the thin film found in spray cooling
CN211603496U (zh) 一种紫外灯用寿命测试装置
JP2020190561A (ja) 冷却ユニット、対物レンズモジュール、半導体検査装置、半導体検査方法
CN112816523A (zh) 一种带有清洗装置的露点仪
CS241340B1 (en) Charge carriers' optical excitation device
JPH11271210A (ja) 塵粒子検出方法及びこの方法を用いた塵粒子検出器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication