CN1745607A - 产生等离子体的电极组件 - Google Patents

产生等离子体的电极组件 Download PDF

Info

Publication number
CN1745607A
CN1745607A CN 200480003103 CN200480003103A CN1745607A CN 1745607 A CN1745607 A CN 1745607A CN 200480003103 CN200480003103 CN 200480003103 CN 200480003103 A CN200480003103 A CN 200480003103A CN 1745607 A CN1745607 A CN 1745607A
Authority
CN
China
Prior art keywords
electrode
plasma
assembly
liquid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200480003103
Other languages
English (en)
Other versions
CN100518430C (zh
Inventor
弗兰克·斯沃洛
彼得·多宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Corning Ireland Ltd
Original Assignee
Dow Corning Ireland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Ireland Ltd filed Critical Dow Corning Ireland Ltd
Publication of CN1745607A publication Critical patent/CN1745607A/zh
Application granted granted Critical
Publication of CN100518430C publication Critical patent/CN100518430C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Abstract

一种产生等离子体辉光放电和/或介电层放电的组件(1),包括至少一对基本上等间距隔开的电极(2),当引入处理气体并且允许气态、液态和/或固态前体通过的情况下,电极之间的间距适于形成一个等离子体区域(8),其特征在于,至少一个电极(2)包括一个外壳(20),它具有一个内壁(5)和一个外壁(6),其中内壁(5,6)是由一种非多孔电介质材料形成的,并且外壳(20)基本上保留了一种至少基本为非金属的导电材料。

Description

产生等离子体的电极组件
本发明涉及产生等离子体的组件,它由至少一对隔开的电极构成,其中至少一个电极基本上是非金属的。
如果连续给物质提供能量,它的温度上升并且通常从固体转化成液体,然后转化成气态。继续提供能量会引起体系状态的进一步变化,气体中的中性原子或分子由于能量碰撞而分裂而产生带负电的电子,带正电或负电的离子,和其它的物质。这种呈现聚集行为的带电粒子的混合体被称为“等离子体”。由于它们的电荷,等离子体很容易受外界电磁场的影响,这使得等离子体很容易控制。此外,它们的高能量使得它们不可能或者很难通过其他的物质形态来实现处理,比如通过液体或者气体处理。
术语“等离子体”包含很大范围的体系,其密度和温度有多个数量级的变化。一些等离子体非常热并且其所有的微观物质(离子,电子等)接近处于热平衡,进入体系的能量通过原子/分子级碰撞广泛分布。然而,另外一些等离子体中的微粒处于低气压(如100帕),其碰撞相对较少发生,这样的等离子体有着温度非常不同的组成物质,被称为“非热平衡”等离子体。在这些非热平衡的等离子体中,自由电子非常热,其温度为数千开氏温度,同时原子和离子物质保持冷却。因为自由电子质量可以忽略,整个体系的热容低并且等离子体接近室温运行,因此不需要在样品上面施加导致损害的热负载就可以对温度敏感材料进行处理,比如塑料或者聚合物。然而,通过高能碰撞(这是带有很高化学势能的能够发生化学和物理变化的游离基和受激物质的丰富来源)产生了热电子。正是低温运行与高反应度的结合使得非热平衡等离子体在技术上非常重要,并且对于制造和材料处理是一种非常有效的工具,其能够实现处理,如果不采用等离子体,这种处理将需要非常高的温度或者有害的且具有侵袭性的化学制品。
对于等离子体技术的工业应用,常规的方法是把电磁场能量耦合到大量的处理气体中,这些气体可能是气体和蒸汽的混合物,其中待处理的工件/样品被浸没或者通过。这是通过将处理气体(比如氦气)通过有巨大电位差的相邻电极间的空隙来实现的。通过电极之间的电位差效应激发气体原子和分子,一个等离子体在空隙中(此后称为等离子体区域)形成。气体在等离子体中变得离子化,产生化学基、紫外线、与样品表面起反应的受激原子和离子。随着等离子体产生的辉光是由受激物质在回到更低激发态时发出的光引起的。通过正确选择处理气体的组分、驱动电源的频率、能量的耦合方式、压力和其他的控制参数,等离子体工艺能够根据制造商的特殊要求来定制。
因为等离子体巨大的化学和热范围,它们适合许多正在不断延伸的技术应用。非热平衡的等离子体对于表面活化、表面清洁、材料表面刻蚀和涂层尤其有效。
聚合物材料的表面活化广泛使用在汽车工业倡导的工业等离子体技术中。因此,举例来说,用于可回收目的的通用的聚烯烃,如聚乙烯和聚丙烯,具有非极性的表面和较差的涂层性或粘附性。但是,通过氧气等离子体处理后可形成高可湿性的表面极性团,因此对金属、涂料、粘合剂或其他涂层有优异的覆盖性和粘附性。因此,举例来说,等离子体表面工程对于交通工具、仪表板、缓冲器等的制造、玩具等元件组装等工业是必要的。在印刷、涂料、粘附、分层、和在聚合物、塑料、陶瓷/无机物、金属和其他材料的组分的常用涂层中,也有许多其它的应用。
全球环境立法不断上升的普遍性和力度正在对工业界形成实质性的压力,要求减少或消除在制造过程中的溶剂和其他湿的化学物品,尤其对于组分/表面清洁。特别地,基于CFC的清洁操作已经被用氧气、空气和其他无毒气体操作的等离子体清洁技术大量代替。结合基于水的预清洁,等离子体甚至可以清洁重污染的组分,并且得到的表面性质要优于从常规方法中产生的表面性质。任何有机表面的污染能够用室温的等离子体快速清洁并且转化成气态的二氧化碳和水,这可以安全排放。
等离子体也可以用于散装材料的刻蚀,也就是说,移除不需要的材料。因此,举例来说,基于氧气的等离子体刻蚀聚合物,这是用于电路板等生产中的一个工艺。金属、陶瓷和无机物这些不同材料通过慎重选择的前体气体和关注等离子体的化学组成而被刻蚀。降至纳米标准尺寸的结构现在正在用等离子体刻蚀技术生产。
一种正在快速进入主流工业界的等离子体技术是等离子体涂层/薄膜沉积。典型地,通过将等离子体用于单一气体和蒸汽来实现高级别的聚合产物。因此,一种密集的、紧密结合的和三维连接的薄膜能够形成,它具有热稳定性、非常高的化学稳定性和机械牢固性。这样的薄膜甚至可以在最复杂的表面上沉积,其温度保证在衬底上的热负载很低。因此对于精细的、热敏的和坚固的材料涂层,等离子体是理想的。甚至在薄层中,等离子体摆脱了微孔。涂层的光学特性,比如颜色,常常能够定制,并且等离子体涂层甚至对于非极性材料,比如聚乙烯,以及钢(如金属反射物上的抗腐蚀薄膜)、陶瓷、半导体、织物等粘附性很好。
在所有这些工艺中,等离子体工程生产出一个根据期望的应用的表面效果或者一个一点也不影响基体材料的产品。等离子体工艺因此提供给制造商一个通用的并且是强大的工具允许选择材料,根据它的基本技术和独立自由处理它的表面来符合多种不同需要的商业特性。等离子体技术因此非常大地提高了产品的功能、性能、寿命和质量,并且给予生产企业的产能很重要的附加利益。
这些特点促使工业界采用基于等离子体的工艺,并且这种趋势自从二十世纪六十年代以来被微电子界领导,其已使低压辉光放电等离子体开发为一种超高的技术和用于半导体、金属和电介质工艺的高资金成本工程的工具。自从二十世纪八十年代以来,已经越来越渗进其他工业领域的同样的低压辉光放电类型的等离子体提供了更加适度的成本、工艺,例如为增强粘附/键合强度的聚合物表面活化、高品质的脱脂/清洁和高性能的涂层沉积。因此,等离子体技术已经有了实质性的发展。辉光放电既可以在真空也可以在大气压下实现。在大气压下的辉光放电情况中,气体,如氦气或者氩气,作为稀释剂(处理气体),和采用高频率(比如大于1kHz)的电源在大气压下通过彭宁电离效应机制(举例来说,参见Kanazawa et al,J.Phys.D:Appl.Phys.1988,21,838,Okazaki et al,Proc.Jpn.Symp.Plasma Chem.1989, 2,95,Kanazawa et al,Nuclear Instruments and Methods in PhysicalResearch 1989,B37/38,842,and Yokoyama et al/,J.Phys.D:Appl.Phys.1990, 23,374)来产生均匀的辉光放电。
然而,等离子体技术的采用已经被大多数工业等离子系统所限制,也就是说,它们需要在低气压下操作。部分的真空操作意味着一个封闭的周边,密闭的反应器系统仅离线地提供离散工件的分批处理。生产能力低或适中,并且需要为真空提供额外资金和运行成本。
但是,大气压等离子体给工业界提供开放的端口或者周边系统,其通过网络自由进出等离子体区域,并且因此在线地连续处理大的或者小的区域网,或者传输带运载的离散网。生产能力高,并且通过从高气压操作下得到的高物质流量得到了加强。许多工业部门,比如纺织品、封装、纸、医疗、汽车、航空等等,几乎完全依赖连续的、在线处理,因此在大气压下开放端口/周边结构的等离子体提供了一种新的工业处理能力。
电晕和火焰(也是一种等离子体)处理系统30年来为工业界提供了一种大气压等离子体处理能力的有限形式。尽管它们便于规模生产,但是这些系统在工业级别超大规模下已经失败。这是因为电晕/火焰系统有重大的缺陷。它们在周围空气中操作,其提供一个单一表面活化工艺,对很多材料,效果可以忽略,并且对大部分只有很弱的效果。这个处理经常是非均一的并且电晕工艺对于厚网或者三维网是不兼容的,而火焰工艺对于热敏衬底是不兼容的。这已经明确,大气压等离子体技术必须更深入发展成大气压等离子体谱来开发先进的系统,满足工业需求。
在大气压下的等离子体沉积已经取得了重大的进展。大气压辉光放电的稳定性方面已经有了大量的工作,Satiko Okazaki,MasuhiroKogoma,Makoto Uehara和Yoshihisa Kimura在J.Phys.D:Appl.Phys.26(1993)889-892上的“在大气压下用一个50Hz的源在空气、氩气、氧气和氮气中稳定辉光放电现象”进行了阐述。此外,美国专利No.5414324(Roth等人)也阐述了大气压下用一个1到100kHz,1到5kV的均方根电位来供能的射频(R.F.)能量在一对隔开至5厘米的金属平板电极稳态辉光放电等离子体的产生。美国专利No.5414324讨论了电隔离金属平板电极的使用和用平板电极时观察到的问题以及阻止电极尖端的电击穿的必要性。它进一步阐述了铜平板形式电极和一个水冷系统的使用,水冷系统通过与电极相连的液体流管道来供给,因此水不会直接与任何电极表面接触。
在美国专利No.5185132中,阐述了一种大气压等离子体反应方法,其中使用了垂直结构的金属平板电极。但是,在垂直结构中的电极很少用来提供等离子体,而且等离子体是从在水平表面上垂直安置的电极下的平板之间导出。
在EP0431951中提供了一个大气压的等离子体组件,用通过等离子体处理不活泼气体/活泼气体的混合产生的物质来处理衬底。在电介质中至少部分涂层的金属电极彼此并行放置并且垂直对齐,所以它们与在电极之间的缝隙之下通过的衬底是垂直的。这个组件要求一个集成的表面处理单元,它能通过表面处理单元的宽度有效地限制任何待处理的衬底的宽度,本身使得系统笨重。
采用涂层或粘附电介质材料的金属平板和/或网状电极时,一个主要的问题是电极表面和电介质材料之间的均匀性。甚至在非常小的金属板和电介质之间,要保证完全的均匀性几乎是不可能的,这是因为在一个或者另一个尤其是金属表面上存在表面缺陷。因此构建这种适合工业应用类型的电极异常困难,这是工业规模上开发大气压等离子体工艺的一个主要问题。
WO 02/35576阐述了附在垂直电介质平板背面的金属电极的使用,其上喷了一种液态的有限导体来提供热处理和电极钝化的两种功能。使用诸如水这样的部分导电的液体能够帮助减轻微放电,其可能来自金属表面粗糙的“突出点”并且通过提供一条穿越在较差均匀性的电极与电介质之间的间隙部分的导电路径来改善金属电极对电介质表面的均匀性。部分导电的水能够使在电介质的电表面平滑,因此建立一个近似均匀的表面电势。这种技术受限于构建一个合适的喷雾分配系统的复杂性和保证足够的甚至是从每个电极组件排水的困难性。
尽管直接与金属电极相接触的冷却水的使用减轻了不均匀性,但是它并没有消除而是大量增加了复杂度和所要求的等离子体设备的成本。对于工程师来说,一个既没有残余的表面粗糙也没有边缘污染物并且能够很安全和紧密的附在大的电介质表面的完美的金属电极是很困难的。使用诸如水这样的部分导电液体能够减轻微放电,其可能来自金属表面粗糙的“突出点”,并且通过提供一条穿越在较差均匀性的电极与电介质之间的间隙部分的导电路径来改善金属电极对电介质表面的均匀性。部分导电的水能够使在电介质的电表面平滑,因此建立一个近似一致的表面电势。
前面在文献中描述为产生直流电(D.C)的电源的水电极是在电极和水表面或水柱之间的等离子体。例如P.Andre等人(J.of Physics D:Applied Physics(2001)34(24),3456-3465)阐述了在两柱流水间D.C.放电的产生。
A.B.Saveliev和G.J.Pietsch(Hakone VIII ConferenceProcessings-高压低温等离子体特性国际专题研讨会,July 21-252002,Puhajarve,Estonia.)也阐述了水电极产生表面放电的应用。表面放电与前面提到的平行板辉光放电不同,作为装置包含一个附属于具有与电介质材料面直接接触的棒状表面电极的电介质的平面电极,放电然后作为沿着电介质表面的尖端放电存在。在Saveliev描述的例子中,水电极主要用于提供透明电极。
T.Cserfavi等人(J.Pys.D:Appl.Phys.26,1993,2184-2188)阐述了一种放电的产生,该放电被他们描述为在金属阳极与作为阴极的开口容器水表面之间的辉光放电。然而,这与前面定义的辉光放电不同,在电板之间没有放置电介质,且在这样一个系统中看到的将是在金属阳极与水表面之间“跳动”的放电。在水表面与阳极之间的空气空隙中的放电通过光学发射光谱分析仪来确定在水中的分解盐。
在US 6232723中,多孔非金属电极被用于通过散布导电流体穿过非金属电极的孔来产生等离子体。表面上看在电极之间没有放置电介质材料,然而,意味着在电极之间可能发生由于短路引起的问题。
在US4130490和JP 07-220893中阐述了通过使用由通过导电流体的电介质材料组成电极的系统的流。US4130490阐述了通过来自空气或氧气环境的污染物氧化来移除的一种装置,该装置由一个内部金属管状电极组成,诸如水流这样的冷却剂通过流到远离电极的冷却剂储存槽或者从所述储存槽流来。外部的电极由电介质材料的外壳组成,其有一个入口和出口,一种来自储存槽的导电液态冷却剂通过所述入口和出口。在电极之间的间隙定义为气体室,在里面污染物被氧化。
本申请尝试采用一种导电媒质,其与电介质表面相符合,因此原来需要的金属电极可以省去,这将导致均匀电荷的电介质表面和由等离子体用一个导电介质产生热量的热处理,其表明了对内部和外部壁界面的长期粘附/接触。
根据本发明,提供了一个产生等离子体辉光放电和/或介电层放电的组件,包含至少一对基本等间距隔开的电极。在引入处理气体并且在需要时允许气体、液体和/或固体前体通过的情况下,电极的间隔适于形成一个等离子体区域,其特征在于至少一个电极包含一个外壳,该外壳其有一个内壁和一个外壁,其中至少内壁是由一种非多孔介电材料形成,并且外壳基本保留一种至少基本为非金属的导电材料。
等离子体应理解为在相邻电极对的相对的壁(此后称为内壁)之间的区域,在那里当电极之间存在电位差时可以产生一个等离子体。
每个电极最好由一个外壳组成,所述外壳具有一个内壁和外壁,其中至少内壁是由从电介质材料形成,并且所述外壳包含一种直接与内壁相接触的至少基本为非金属的导电材料,代替了“常规”的金属板或者网状电极。这种电极更为适宜,因为发明者已经认识到,通过采用与本发明一致的电极来产生辉光放电能够产生均匀辉光放电,而且与采用金属平板电极的系统相比,减小了非均匀性。在本发明中,一个金属平板从来不直接固定在一个电极的内壁上,并且非金属导电材料最好是直接与电极内壁相接触。
根据本发明的电介质材料可以由任何合适的电介质构成,例如包含但是不限于聚碳酸酯,聚乙烯,玻璃,玻璃薄层,环氧填充的玻璃薄层和类似材料。优选地,为了防止任何弯曲或者由于电极中导电材料引起的电介质变形,电介质要有足够的强度。优选地,使用的电介质可以用机器来加工,并且提供最多为50毫米的厚度,较好的是有最多为40毫米的厚度,最好是15-30毫米的厚度。当选择的电介质不够透明的情况下,可以用一个玻璃或者类似的窗口来观察产生的等离子体。
电极可以通过垫片或者类似的东西隔离开来,其最好是用电介质材料制成,因此通过消除在导电液体边缘之间的放电电势使得系统的整个电介质的强度得到提升。
根据本发明的组件的电极对可以由任何合适的几何形状和尺寸构成。很清楚,最简单的几何形状是有超过1平方米表面积的平行平板,因此能够形成适合工业等离子体用于网络或者类似处理的大规模的等离子体区域,但是它们也可以用同心管或者管状或者类似的形式来处理粉末状和液体或者类似物。
基本上为非金属的导电材料可以是液体,如极性溶剂,例如水、酒精和/或乙二醇或者水溶盐溶液及其混合物,但是最好采用水溶的盐溶液。当单独使用水的时候,最好由自来水或者矿泉水组成。更好地,这种水包含最多重约25%的水溶性盐,如碱金属盐,例如钠或者钾或者氯化物或者碱土金属盐。用前面提到的离子盐来提高液体的导电性可以明显降低非均匀性,因此表明了前面平板电极的多余。这是因为在本发明的电极中出现的导电材料有着良好的均匀性,因此在电介质表面有一个更均匀的表面电势,使用中可以观察到一个特点,因为受本发明的电极影响的等离子体发出了更均匀的辉光,而不会产生由于弱等离子体形成的较黑区域。更进一步的事实支持了这个结论,在这里描述的电极之间产生的等离子体中没有观察到局部的尖端放电。改变导电液体中离子化物质的种类和浓度可以很容易地控制本发明的电极的电容和电阻。这样的控制可以用来降低在电极之间用来产生等离子体的射频发生器和变压器系统中的阻抗匹配电路的要求。
如果用在本发明的电极中的至少基本为非金属的导电材料是一种极性溶剂,比如在电介质限制区域之内的水、酒精和/或乙二醇或者水溶性的盐溶液,根据所选择的电介质,电极可能是透明的,因此使得容易进行光学诊断,而基本为非金属的导电材料本身有利于从诸如辉光放电设备这样的等离子体设备中除去热负载。将本发明与WO02/35576中描述的喷射工艺相比,这大大简化了热移除问题而且改善了电极的覆盖和电钝化。导电液体的使用通过确保固定电荷分布进一步提高了电介质面上电势的均匀性,然而金属电极对电介质面的均匀性不能够保证。导电液体的均匀性能够使电极的内壁和/或外壁表面有固定并且紧密的接触。
可选地,基本为非金属的导电材料可以用一种或多种导电聚合物组分的形式,典型地是用糊剂的形式提供。目前这样的糊剂应用在电子工业中,用于粘附和电子元器件的热处理,比如微处理器芯片组。典型的,这些糊剂有足够的迁移率来流动并且顺应表面的不规则性。
根据本发明的导电聚合物组分的合适聚合物可以包含硅氧烷,环氧聚烃烯弹性体,一种基于蜡的热熔物,比如硅氧烷蜡,树脂/聚合物混合体,硅氧烷-聚酰胺共聚物或者其他的硅氧烷-有机物共聚物或类似物或者环氧树脂,聚酰亚胺,丙烯酸酯,胺基甲酸酯或者基于异氰酸酯的聚合物。典型地,聚合物将包含导电颗粒,典型的是银但是作为替代的导电颗粒也可以采用金,镍,铜,混杂的金属氧化物和/或碳,包含碳纳米管或者是金属化的玻璃珠或陶瓷珠。可使用的聚合物的特殊例子包括在EP240648中描述的导电玻璃聚合物或者用银填充的基于有机多分子硅醚的成分,如由Dow Corning公司销售的DowCorning DA6523,Dow Corning DA6524,DowCorningDA6526BD和Dow CorningDA6533或者银填充的基于环氧树脂的聚合物,如来自EpoTekH20E-PFC或者EpoTekE30(Epoxy Technology Inc)的Ablebond8175(AblestikElectrinic Materials & Adhesives)。
如上面提到,本发明的一个主要优势是均匀性,通过采用一个液体/糊剂来保证电极的内壁和外壁与界面之间有一个固定并且紧密的接触/粘附。可以通过使用诸如液体或者糊剂这样的可流动的介质来得到接触/粘附,它也可以通过在电极的内壁和外壁表面上物理粘附能够吸收在那些表面的、能够导致脱层的机械应力和热应力的导电介质来得到。这样,一个具有导热性和导电性的粘附弹性体能够作为电极内外壁表面之间的介质使用。一种导电的糊剂能够敷设在电介质的表面上,并且化学结合形成一个具有弹性的、导电的介质,它能够导电和导热,通过结合电介质和结构上受限制的平板来提供结构强度,它也能够吸收将导致更坚固粘附的脱层的应力。本发明的均匀性方面的一个主要优势是通过采用液体/糊剂保证电极的内壁和外壁与界面之间有一个固定并且紧密的接触/粘附,为制造大面积的电极提供了一个机会。考虑到在工业规模下应用,这是一个主要的优势,其中为了以适当的速率处理工业尺度的衬底需要大面积的电极系统。
例如,这种电极组件可以包括一个由电介质材料制成的内壁,在其上连结了一个包括金属散热片的复合电极,其提供全局结构上的整合,在它们之间提供了一个导热的、导电的、填充的弹性体,其形成一个粘附、有弹性的界面。
在等离子体组件中热移除是一个主要的问题,尤其是对于使用金属平板类型的电极。但是,在如上描述的电极中,因为通过液体的热能对流效应,这个问题明显减小。此外,通过导电液体的对流,电的突出点被去除。需要注意的是,当采用一个或者多个如上讨论的电极时,由电极产生的热量例如可以通过采用冷却线圈被散发,利用电极外壁作为散热的装置,因此外壁最好由合适的散热片构成。散热片最好采用金属形式并且包括向外突出的散热片,可以用冷却流体,典型的如空气或者外部的冷却线圈来增强冷却处理。
目前诸如采用金属平板电极的大气压辉光放电系统那样的等离子体系统面临的一个主要问题是没有不通过物理替代电极的办法来改变通过活化的等离子体区域的衬底的通道长度。有个方案需要随时间的变化,在这个方案中通过改变衬底通过速度使衬底被固定在等离子体区域中。在上面阐述的那种电极提供了一种更简单的方案。最好采用一种极性溶剂,例如水、酒精和/或乙二醇或者水的盐溶液及其混合物的每个电极包含了一个入口,并且最好包括一个入口和一个出口。入口和出口都包含阀门,能够引入和去除极性溶剂,例如水、酒精和/或乙二醇或者水溶盐溶液及其混合物。这些阀门可以包含任何合适的形式,并且尤其用于改变通道长度和衬底通过的等离子体处理区域本身。通过拥有阀门的入口和出口,可以很容易地改变电极系统的通道长度,通过打开出口阀门和入口阀门,允许液体通过出口阀门流出但是阻止液体进入入口,或者通过打开入口阀门引入更多的液体和引入原先确定数量的液体来提高电极的有效尺寸。这样依次轮流意味着用户能够更好地控制等离子体的反应时间,从而通过使用一个或多个本发明的电极来对衬底进行等离体处理,尤其是当衬底通过等离子体的相对速度难以改变时。
不需要如US4130490和JP07220895中阐述的那样,连续循环使极性溶剂,如水、酒精和/或乙二醇或者水溶盐溶液及其混合物,通过电极系统流到一个储存槽或类似物,并从储存槽或类似物流过来,这意味着由于不再要求连续流的通过,根据本发明的电极系统所需的设备复杂性明显降低。
根据本发明的每个电极可以通过使用支撑肋被分隔开,支撑肋是设计用来将外壳分成两个或者多个部分。这种分割法以协助等离子体区域通道长度变化的方式提供了额外的优势,例如如果在不同的部分之间连续的电场没有建立起来,则每个独立的部分将会作为一个独立的电极工作,使得等离子体区域的通道长度可以很容易改变并且根据要求的目的进行优化。支撑肋可以附在内壁和外壁中的任何一个上或者这两者上,通过一根线连接或者在使用导电液体的情况下通过每个部分之间的连续导电液体通道的存在来维持电场连续性。通过保护连着支撑肋的内壁和外壁,在其上方的区域由非金属导电材料内部压力引起的最大压力被减小,从而减小了可能潜在地引起内壁和/或外壁变形的力。通过引入支撑肋而使等离子体区域的通道长度可以很容易改变并且优化。
根据本发明的电极,这种可以用于工业规模的组件的例子提供了一个包括第一和第二对根据本发明的平行隔开的电极的大气压等离子体组件,每一对电极的内部平板之间的间距形成第一和第二等离子体区域,其中组件还包括一个连续传送衬底使其通过所述第一和第二等离子体区域的装置和一个用来引入雾状液体或固体涂层使材料敷设到所述第一或第二等离子体区域之一的喷雾器。这样的设备的基本概念在申请人的同时待定的申请WO 03/086031中有阐述,其将在本发明的优先权日之后公布并在这里结合起来作为参考。在一个首选的实施例中,电极是垂直设置。
如前面所阐述的,液体用作导电材料的一个主要优势是每对电极能够有不同数量的液体,导致不同大小的等离子体区域、通道长度以及当衬底在不同电极对之间通过时不同的反应时间。这意味着在当一个涂层被敷设到衬底上并且仅有相关的反应变化时,有不同数量的导电液体引入不同的电极对,第一等离子体区域内的清洁过程的反应时间可以不同于第二等离子体区域内的通道长度和/或反应时间。优选地,在一个如上文所述的电极对的每个电极使用相同数量的液体。
本发明的电极可以用在任何合适的等离子体系统中,诸如脉冲等离子体系统,但是尤其适用在辉光放电或者介电层放电组件中,其可以在任何适合的气压下工作。特别地,它们可以集成在一个低压或者大气压辉光放电组件中,尤其是那样非热平衡类型的组件,最好用于大气压系统中。
用于使用本发明的电极的等离子体处理工艺的处理气体可以是任何合适的气体,但是最好是惰性气体或者基于惰性气体的混合气体,例如氦气、氦氩混合气体、基于氩的另外含有酮类和/或者相关成分的混合气体。这些处理气体可以单独使用或者与其它潜在的反应气体,如氧化和还原气体组合使用,如氮气、氨气、臭氧、氧气、水、二氧化氮、空气或者氢气。但是,处理气体可以包含一种或者多种所谓的潜在反应气体。处理气体最好仅仅是氦气或者是氦气与一种氧化或者还原气体的结合。气体的选择依赖于将要进行的等离子体工艺。当诸如一种氧化或者还原处理气体这样的潜在反应气体需要与氦气或者任何其他的基于惰性气体的混合气体结合时,在混合气体中最好含有90-99%的惰性气体或者惰性气体混合气体,1-10%的氧化或者还原气体。
在氧化的条件下,本方法可以用来在衬底上形成含氧涂层。举例来说,基于二氧化硅的涂层能够由雾状的含二氧化硅的涂层形成材料在衬底表面上形成。在还原条件下,根据本发明的组件可以用来提供无氧涂层的衬底,例如,基于硅碳化合物的涂层可以由雾状含硅涂层形成材料形成。
在一个含氮气氛中,氮气能够结合在衬底表面,在含氮和氧的气氛中,硝酸盐能够在衬底表面上结合并且/或者形成。这样的气体也可以在暴露在涂层形成物质之前用来预处理衬底表面。举例来说,衬底的含氧等离子体处理可以改善对随后敷设的涂层的粘附。含氧等离子体是通过在等离子体中引入诸如氧气或者水这样的含氧材料而产生。
目前可以获得各种各样的等离子体处理,包含表面活化、表面清洁、材料刻蚀和涂层敷设的本发明的电极尤其重要。衬底可以用任何合适的上述组合经过一系列等离子体区域被活化和/或处理,由一系列等离子体系统驱动,在各自的等离子体区域内可获得包含一对或者多对根据本发明的、提供所需额外组分的电极的至少一个等离子体系统。举例来说,在衬底通过一系列等离子体区域的情况下,衬底可以在第一个等离子体区域内被清洁和/或活化,在第二个等离子体区域内被表面活化,并且在第三个等离子体区域内被涂层或者刻蚀。
可选地,第一个等离子体区域可以通过用氦气等离子体来进行的等离子体处理来清洁和/或活化衬底表面,第二个等离子体区域可以用于敷设前体气体材料的涂层,例如通过了一个如申请人的同时待定的专利申请WO 02/028548中所述的喷雾器或者雾化器敷设一种气体前体或者一种液体或固体喷雾前体。作为另一个可选择的方案,第一个等离子体区域可以用作氧化装置(例如在一种氧气/氦气处理气体中)或者用于敷设涂层,第二个等离子体区域用于敷设不同前体气体的第二个涂层。作为一个具有预处理和后续处理步骤的例子,下面的工艺适于提供SiOx阻隔层,其具有一个抗污染/燃烧的外表面,它可以用作太阳能电池或者汽车应用,其中衬底首先通过衬底的氦气清洁/活化进行预处理,然后在第一个等离子体区域内由来自甲基矽酮前体的SiOx进行沉积。进一步的氦等离子体处理提供了SiOx层额外的交联,并且最终用一种氟化的前体敷设涂层。可以进行任何合适的预处理,比如衬底可以被清洗、干燥、清洁或者用诸如氦气的处理气体来净化气体。
在另一个实施方式中,衬底被涂层,其中没有多组等离子体组件,一个单一的等离子体组件可以用作改变通过在电极之间形成的等离子体区域的材料的装置。例如,最初通过所述等离子体区域的仅有的物质可以是处理气体,如氦气,其通过在形成等离子体区域的电极之间施加电势被激发。所得到的氦气等离子体可以用于清洁和/或活化衬底,其穿过或者相对与等离子体区域通过。一个或者多个形成涂层的前体材料可以被引入并且通过等离子体区域和处理衬底被激活。在大多数情况下,衬底可以穿过或者相对于等离子体区域移动,从而影响多个分层,形成涂层的前体材料的合适组分可以通过替换、增加或者停止引入一个或者多个例如形成涂层的前体材料,如反应气体或者液体或者固体来改变。
在系统被用于利用前体材料对衬底进行涂层的情况下,形成涂层的前体材料可以用任何传统的方法使之雾化,比如一个超声波喷嘴。喷雾器最好产生形成涂层的材料滴,尺寸从10到100微米,最好是从10到50微米。本发明中使用的合适的喷雾器是来自美国纽约Milton的Sono-Tek公司或者是德国麦琴根市的Lechler公司的超声波喷嘴。本发明的装置可包含多个喷嘴,其用于多种用途,例如所述装置被用作在两个不同的涂层形成材料的衬底上形成一个共聚物涂层,其中的单体是不可混合的或者是在不同的相,例如第一个是固态而第二个是气态或者液态。
应该理解,衬底和等离子体区域彼此之间可以相对移动,也就是说,衬底可以在相邻的电极对之间物理地通过,可以相邻于电极对通过,假设认为所述衬底通过受到所使用的处理气体结合的电极对影响的等离子体区域。在后一种情况下,应理解等离子体区域和衬底彼此相对移动,也就是说,电极组件穿过一个固定的衬底或者衬底可以相对于一个固定的电极系统移动。在另一个实施方式中,电极系统可以远离衬底,这样衬底用被激发的物质涂层,这些被激发的物质通过一个等离子体,但不必受等离子体的影响。
在本发明的电极集成到一个适合对衬底涂层的组件的情况下,在衬底上形成的那种涂层由所用的形成涂层的前体材料决定。形成涂层的前体材料可以是有机的或者是无机的、固态的、液态或者是气态的、或者是其混合物。合适的有机形成涂层前体材料包含羰化物,异丁烯酸盐,丙烯酸盐,苯乙烯,2-甲基丙烯腈,烯烃和二烯烃,例如甲基异丁烯酸盐,乙基异丁烯酸盐,丙基异丁烯酸盐,包含有机功能的异丁烯酸盐和丙烯酸盐,包含甲基丙烯酸缩水甘油醚,三甲氧基硅烷丙基丙烯酸脂,甲基丙烯酸烯丙酯,甲基丙烯酸羟乙酯,甲基丙烯酸羟乙酯,二烷氨烷基异丁烯酸酯和氟代烷基(网络)丙烯酸酯,甲基丙烯酸,丙烯酸,反丁烯二酸和酯,亚甲基丁二酸(和酯),顺丁烯二酸,酸酐,α-甲基苯乙烯,卤化的烯烃,例如,乙烯基卤化物,比如乙烯基氯化物和乙烯基氟化物,和氟化的烯烃,例如,全氟烯烃,丙烯腈,2-甲基丙烯腈,乙烯,丙烯,烯丙基胺,亚乙烯基卤化物,丁二烯,丙烯酰胺,诸如N-异丙基丙烯酰胺,甲基丙烯酰胺,环氧化合物,例如,甘油丙基三甲氧基硅烷,缩水甘油,氧化苯乙烯,丁二烯一氧化物,乙二醇对二环氧丙酯,甲基丙烯酸缩水甘油酯,双酚A对二环氧丙酯(和它的低聚物),乙烯基环己烯氧化物和基于聚合物的聚乙烯氧化物。也可以使用诸如吡咯和噻吩这样的导电聚合物和它们的衍生物,以及例如二甲烯丙基磷酸含磷化合物。合适的无机的形成涂层的材料包含金属和金属氧化物,包含胶体金属。对于形成涂层的材料,有机金属化合物也是合适的,包含金属醇化物,如钛酸盐,锡醇化物,锆酸盐和锗和铒的醇化物。
衬底也可以用基于二氧化硅或者硅氧烷的涂层来提供,其使用了形成涂层的含硅材料的组分。合适的含硅材料包含但是不仅仅限于硅烷(例如硅烷,烷基硅烷烷基硅烷盐,烷氧基硅烷,环氧硅烷和或者氨基功能团的硅烷)和线性的(比如聚二甲硅氧烷)和周期性的硅氧烷(比如八甲环四硅氧烷),包含有机功能团的线性和周期性硅氧烷(比如含硅氢的、盐功能团的、环氧功能团的、氨功能团的和卤烷基功能团的线性和周期性的硅氧烷,比如四甲基环四硅氧烷和三(非氟丁基)甲基环四硅氧烷)。也可以使用不同含硅材料的混合物,如为特殊需求(例如热性能,光学性能,如折射系数和粘弹性能)定制衬底涂层的物理性能。
被涂层的衬底可以包含任何材料,其足够柔软能够通过如前面所述的电极组件被传输,比如塑料,例如热塑性塑料,如聚烯烃,例如聚乙烯和聚丙烯,聚碳酸酯,聚胺酯,聚氯乙烯,聚酯(例如聚亚烃对苯二酸酯,尤其是聚乙烯对苯二酸酯),聚甲基丙烯酸酯(例如聚甲基丙烯酸甲酯和聚甲基丙烯酸羟乙酯的聚合物),聚环氧化物,聚磺基,聚亚苯基,聚乙醚酮,聚酰亚胺,聚酰胺,聚苯乙烯,聚二甲硅氧烷,酚,环氧和三聚氰胺-甲醛树脂,及其混合物和共聚物。优选的有机聚合材料是聚烯烃,尤其是聚乙烯和聚丙烯。可选地,被涂层的衬底也可以是一层薄的金属箔,由诸如铝、铜、铁或者钢或者金属膜制成。前面所述的本发明的系统那种类型的被涂层的衬底最好被用作处理坚硬的衬底,如玻璃、金属板和陶瓷和类似物。
通过根据本发明的组件处理的衬底可以是人工合成的和/或天然的纤维、纺织或者无纺纤维、粉末、硅氧烷、织物、纺织或者无纺纤维、天然纤维、人工合成纤维材料和粉末或有机聚合材料和含有机硅的粘合剂,它是可混合的或者如在申请人的待决专利申请WO01/40359中所述的与有机聚合材料不可混合。衬底的尺寸受到产生大气压等离子体放电的容积的尺寸限制,即根据本发明的电极的内壁之间的距离。对于典型的等离子体发生设备,等离子体在3至50毫米的间隙内产生,例如5至25毫米。因此,本发明对于涂层薄膜、纤维和粉末有特殊的用途。
在大气压下稳态辉光放电的产生最好在相邻电极之间得到,相邻电极根据所使用的处理气体最多间隔5厘米。电极用1至100千伏的均方根(rms)电势进行射叔供能,最好是在4至30千伏之间,频率是1至100千赫兹,最好是15至40千赫兹。用于形成等离子体的电压典型在2.5至30千伏之间,最好是在2.5至10千伏之间,但是实际的值取决于化学/气体的选择和电极之间的等离子体区域大小。
同时,大气压辉光放电组件可以在任何合适的温度下工作,最好在室温(20℃)和70℃之间工作,典型的是用在30至40℃范围内的温度。
根据本发明准备的电极相对于如在申请人的待决PCT申请WO02/35576中阐述的那样将金属电极和冷却系统结合在一起的设计方案在制造时更为简单和廉价。例如,通过去除在WO02/35576中所述的电极表面上的液体流的要求,能够减小本发明电极的内外壁之间的距离,因此减小了所需的导电材料的空间,减小了组件的重量。
根据本发明的电极也减小了保证相邻电极之间的理想的等距离和平行的复杂度,这在金属电极中是一个特别的问题。而且进一步可以用一种电介质,其可以是透光的,允许很容易地观察和诊断等离子体。
此外,这样的组件减小了保证电极和电介质材料的界面处的均匀性的复杂度,当使用金属平板电极用作类似应用时,这是更重要的一个问题。
从下面一些本发明的实施方式的描述,可以更清楚地理解本发明。其将仅仅参考附图以例子的方式提供:
图1是包含两个非金属电极的大气压等离子体系统的视图;
图2,3,4,5a,5b和5c是如图1所示组件的可选实施例的纵剖面图;
图6是一个大气压等离子体系统的纵剖面图,其中电极是同心管道形式;
图7是一个图6的大气压等离子体组件的纵剖面图,其适合于对粉末或者液体进行等离子体处理;
图8是另一个可选的大气压等离子体组件的纵剖面图;
图9a依然是另一个可选的大气压等离子体组件的纵剖面图;
图9b是一对电介质管电极的平面图,其用于如图9a所描述的大气压等离子体组件;
图10是以相反电压平行对结合在一起弹性管道的视图,其形成平面薄片状并且被弯曲以适配于表面轮廓;
图11是本发明用于处理在电极对之间经过的衬底的组件视图;以及
图12是显示辉光放电类型的等离子体产物的图表。
参照图1提供了一个大气压等离子体组件1,其具有一对非金属电极,用附图标记2表示。每个电极2是以外壳20的形式,并且有一个室11,在其一端有一个入口3,在其另一端有出口4,一种导电盐溶液可以通过所述入口或出口被引入或者移出。在图1的情况下,电极是完全被盐溶液浸没。入口3和出口4均包含一个阀门,它们是用来控制导电盐溶液的进入和移出。每一个电极2具有一个由电介质材料制成的内壁5和由电介质材料或者金属制成的外壁6。间隔装置7维持电极2的相邻末端以一个预先确定的距离隔开。当使用的时候,在相邻电极2的内壁5之间的间隙8形成等离子体区域8。电源9通过电缆10连接到每一个入口3。在图2至5b中将使用相同的附图标记。
在使用时,阀门3a和4a开启,一种导电液体通过外壳20的入口3被引入室11中,并通过出口4流出。然后阀门3a和4a关闭,阻止任何溶液在电极系统使用的时候进入或者移出。液体既作为电极2的导电部分,与内壁和外壁5,6的界面形状一致,也作为每个电极2的温度热管理的一种装置。导电液体通过入口3在引入室11之前被冷却,因为由于系统内电压的使用,液体常留在那里可能升高温度。当通过出口4流出电极时,导电液体被接到一个外部的冷却装置(没有被显示),然后可以通过由入口3再次引入,在将来的电极系统中再次使用。
为了在等离子体区域8中初始化一个等离子体,在电极2上施加电极电势。一旦在电极2上有一个合适的电极电势,处理气体(典型的是氦气)被通过等离子体区域8,并且被激发形成等离子体。如图1所示的每个电极2在它与由电介质材料制成的内壁5之间的界面处产生一个理想的均匀电场,这是因为液体在导电液体与内壁5之间的界面处的均匀性和横向导电性。
图2至5显示了图1的各种可供选择的实施方式。它们尤其用于减小、最好是消除由电介质材料制成的内壁5的扭曲,如由于内部压力和可选的/附加的用于冷却电极组件的装置所引起的弯曲等等。这些可选的设计尤其是用于具有大表面积的内壁5的电极,也就是说,用于具有大等离子体区域8的系统,例如有1平方米或者更大截面面积的等离子体区域。
在图2中,每个电极2利用支撑肋15被分割开来,其将外壳20分成两部分22,23。支撑肋15附在内壁和外壁5,6上,并且通过两部分之间的连续导电液体通道18的存在使连续的电场得以保持。通过将内外壁5,6固定到支撑肋15上,施加了最大压力的面积被减小,因此降低了可能潜在引起扭曲的力。图2中“分开”的电极提供了额外的可变通道长度的优势,如果每个部分作为独立的电极工作,等离子体区域的通道长度可以很容易改变并且优化。在这种情况下,电极中的导电液体的高度通过阀门3a和4a的动作来控制。当如图2中所示,室11,22,23充满导电流体的时候,导电流体通过入口3a进入并通过如图1中描述的出口4a移出。但是,当通道长度变化的时候,也就是说,当室11,22,23没有充满导电液体的时候,液体通过入口3a进入和移出,出口4a是用于阻止在室11,22,23不包含导电液体的区域的空气囊处形成真空。
在如图3所示的另一个实施方式中,出口4(或者入口3(没有显示))既用作入口也用作出口,并且除非电极被完全浸没,阀门4a总是保持在开启位置,使得液体在使用时由于温度和/或压力变化等原因从室11中释放出来。在图3a中,使用了一个平面冷却板6a作为在包含导电液体的室11中的后面容量边界,因此导电液体被限制在内壁5的电介质表面与冷却平板6a之间。热量从内部导电液体流过平板6a流至外部表面,其被第二个源冷却,在图3的室11的部分22的情况下,第二源是一股冷淬过的流,如通过冷却线圈25的水或者空气。
如果第二个冷却媒介是一种液体,也就是说,如图3所示的一种通过冷却线圈25的液体,那么平板6a设计成使得在冷却线圈25中的液体压力不致于扭曲平板6a,并且转移这种压力到室11中的导电液体上来,从而引起在内壁5上的有害扭曲,尤其是在导电液体和内壁5之间的界面。在平板6a上的一个小角度的扭曲可以通过在内壁5和平板6a之间的间隙的一小部分60中留有自由液体而在导电液体中适应。例如,这样的间隙60可以封闭和清空,或用一种没有施加压力的惰性气体或者空气任意填充,或者简单地向空气开放。然后在平板6a内的扭曲可以随着在室11内的导电液体重量变化而适应。
另一个可选的热移除处理如图4所示,其中平面冷却板6a具有一个鳍状外部表面30,其用自然或者强制对流来冷却,例如,在后一种情况下,一种冷却流体(典型的是空气)被控制(被吹)在鳍30和平板6a上以冷却电极。
在使用中,由于导电液体被保留或者基本上保留在每个电极之内,电连接必须在电极2之内并且不要接近管道系统,就像在流通过系统的情况那样。这通过以下方式非常有效地得以实现:通过施加穿过平板6a(图3)的电极电势,其提供了一个非常好的方法来传递电荷至室11中的导电液体。因此在图3中,可以说电极2是一个由金属平板6a和形成合成电极的导电液体11合成的电极。此外,平板6a为室11中的导电液体形成一个限制表面,如此设计是为了给电极组件2提供结构上的集成。
对于热量是由导电液体通过平板6a而不是通过内部的冷却线圈被引出的设计,导电液体的厚度(距离d)能够减小,以进一步减小在组件2内的重量。如图1和2所示的电极,在平板6和内壁5之间的距离d(图1),也就是导电液体层的厚度,典型的是在5至45毫米的范围内,最好在5至30毫米之间。但是,这样的厚度仅仅是受到液体扩散局部电场不规则性的能力限制,其穿过平板6的表面位于外壁6的表面处,使得均匀的电荷被传递到内壁5。在实际中,避免在室11中的冷却系统,由浓盐溶液制成的导电液体的距离d甚至可以在1毫米以下。在小的d值(小于10毫米)的电极中,如图3和4所示的那些潜在电极,导电液体利用了表面张力,其具有吸引液体进入间隙60并且在导电液体之内的流体静力学压力下导致明显的液滴的效果。在流体静力学内的这个液滴减小了作用在内壁上的力,并且因此减小了用作内壁5的电介质材料由于导电液体重量而发生的扭曲。导电液体有效地变成自我支撑,这对于由电介质材料5制成的具有超过1平方米的表面积的内壁结构是有益的。
在小的d值(小于10毫米)下,热对流部分从内壁5的电介质材料传递到平板6,或者6a变得忽略不计而热传导占主导地位。因此这对于优化导电液体的导热率有利的,由于液体在非流体复合电极间隙中的移动性不再关键,导电液体的粘性不再是一个约束。导电液体的移动性仅仅对于保证电介质和金属电极表面的导电液体的均匀性是必要的。
在图1至4中描述的所有实施方式避免了由通过在现有技术中阐述的电极泵取液体的需求而产生的压力增大。来自系统的泵取压力的移除仅仅剩下来自组件内包含的液体高度的静液压头,并且因此减小了电极壁的扭曲的可能性,其将减小电极系统的效率,并且能够产生遍及等离子体区域的均匀等离子体。
图5a显示了一个电极组件,先前所使用的导电液体在室11中由导电、导热的粘合剂40所代替,其既影响均匀的电场也影响热量从内壁5到具有冷却鳍或类似物30的冷却平板6a的有效传输。图5b显示了使用一片电介质67的电极组件,其具有一个由电介质67的主体所加工出来的室11b。在这种实施方式中,电介质用于接纳具有冷却鳍30的平板6a并且包住导电液体。典型地,电介质材料是挖空的,采用或者不采用支撑肋15,当采用支撑肋时所述支撑肋由剩下的没有挖空的部分形成。所使用的典型电介质材料是一个工程塑料(聚乙烯,聚丙烯,聚碳酸酯或者诸如PEEK的适当材料)或者工程陶瓷薄片。然后每个电极2可以由室11b中的导电液体组装而成,用鳍30、以及可用空气或冷却液体来冷却的金属平板6a密封。在图5b中描述的实施方式中,导电材料通常是一种诸如盐溶液这样的导电液体。
在图5c中,挖空的室11b的需求能够通过用一个位于内壁5和平板6a之间的适合的固化或者非固化的导电粘合剂62层代替而避免。粘合剂可以保持非固化,但是最好是固化,以提高对平板6a和电介质61的粘合度。平板6a再一次由空气或者冷却液体冷却。在图5a,5b和5c中所述的实施例中,电势加在金属平板6a上,并且通过导电液体和室11中的粘合剂均匀地分散到内壁5的后表面上。
在本发明的另一个实施例中,导电液体被包在如图6和7所示的一个双同心管道设计的内部和外部区域中,其中在外部管道32和内部管道34之间的间隙形成一个等离子体区域36,其在使用时在管道之间产生。这种实施方式可以用来处理材料,诸如气体,液体气雾,粉末,纤维,薄片,泡沫等等,其可以通过这种双同心管道设计被传输以用于等离子体处理。在固体材料的情况下,比如粉末,例如管道可以用在一个如图7所示的基本垂直的位置。如图6和7所示的实施方式中,一种冷却液体可以通过入口3a和出口4a进入、通过和流出内部管道34,并且一个外部的冷却线圈25a可以用作至少基本上环绕的外部管道32,以移除通过影响等离子体而产生的热量。
在如图8所示的本发明另一个实施方式中,当需要对容器38的内表面40进行等离子体处理时,所述容器38部分被浸没在带电的导电液体42中。电极的液体形式保证了外部电极与容器38的复杂表面结构的完全一致性。可选地,可以用一个柔软的电介质膜44或类似物来制作一个形状完全相似的模具,用引入充气气体50的方法来保持在位置上。反向电势可以通过影响内表面上的等离子体区域的容器内的反向电极来提供,内部电极具有电介质涂层以避免局部放电。内部电极可以是一个固体探头,其本身也可以是形状完全相似的,因此保证了电势表面之间的局部平行得到维持,由此改善了辉光放电等离子体的条件。可选地,它也可以是一个液体电极51,其具有一个入口3c和一个出口4c,用于通过阀门(没有显示)来引入和移除导电液体进入和流出电极51。在这样的情况下,等离子体区域8通过使用间隔装置7a保持其间隙。用于处理的物品可以在拓扑空间中打开或者部分关闭(比如瓶子或者容器)。在部分关闭物体的情况下,一个内部的形状完全相似的表面能够通过一个膨胀的气球来产生,气球是通过导电液体或者一种引入的气体来增压的,在其周围导电液体的表面被捕获。这样的概念也可以使用在对瓶子或者类似容器进行等离子体处理中,其中瓶子被部分浸没在导电盐溶液中,或者被引入一种具有弹性的电介质模具中,其用来增加压力和与瓶子表面的外部轮廓保持形状相符,同时与一个内部电介质气球的膨胀一起来保持与内表面形状相符,内外液体电极的极性相反。
如图9a所描述的本发明的另一个实施方式中提供了一个大气压等离子体组件100,由一个大气压等离子体发生单元107组成,其具有一个基本为圆柱形的主体117,它具有基本为圆形的横截面,包含一个引入作用于等离子体的处理气体的入口(没有显示),一个产生雾状的液态和/或固态的涂层形成材料的超声波喷嘴(没有显示)和一对包含液体的电极104,这两个电极在由介质材料103制成的外壳中均包含导电液体。所述电极通过一对电极隔离装置105保持一段预定的距离。电极103,104从大气压等离子体发生单元107向外伸出。电极之间的间隙形成一个等离子体区域106。大气压等离子体发生单元107可以设计成使得唯一的用于处理气体及引入单元107的反应试剂的出口能够通过在被电介质涂层的电极103,104之间的等离子体区域106。这个大气压等离子体发生单元107被固定,并且衬底101以任何形式的传输方法(没有显示)在组件下面通过,传输方法可以改变以适合被处理的衬底,其中考虑到传输带并没有形成组件的一部分。
与大气压发生单元107相类似,提取器单元108通常是带有基本为圆形横截面的柱体,由诸如聚丙烯或者PVC这样的电介质材料制成。单元107和108是同心的,提取器单元108有更大的直径。提取器单元108包括边缘105,其包围着电极103,104并且在它们之间形成沟道109,剩余的处理气体、反应物和副产品通过沟道被提取。作为电极103,104的基座,边缘116的末端设计成与衬底1等距,但是可以更近。提取器108还包括一个到泵(没有显示)的出口,其用来提取来自组件的残余处理气体、反应试剂和副产品。外部提供给边缘116的限制条102用来最小化来自大气的空气进入提取单元109。限制条可以是接触衬底101的边缘封条,或者是依靠被处理的衬底,它们也可以是用在塑料薄膜工业中的抗静电条,用高静电势从衬底表面消除静电并且可选地用空气喷射消除灰尘颗粒或者抗静电的碳刷。
本发明的电极可以用于在电极103,104中相邻导电液体沟道之间形成一个窄的等离子体区域,其通过以下方式生成:减小平行平板组件的电介质表面至一个低的高度(图9a),或者更简单,从两个并排放置并且等间距隔离的非导电电介质管形成相反的电极对来减小它们长度(图9b)。在这个管间区域内的等离子体气体通过提取器单元108移除。这种无金属电极设计通过消除导致跨越窄间隙微放电的任何表面粗糙度而在电极之间提供了一个更加均匀的电场。
本发明的另一个实施方式(图10)通过有弹性的管子保留导电液体,这些管子能够在相反电压并联对130,132内结合在一起,并且形成如图10所示的能够弯曲地固定轮廓表面的平板。在交变电压管之间的电场扩展了上面和下面的平板,因此能够在这些区域内在工业界所知的合适的处理气体成分中形成一个等离子体区域。如此形成的平板能够沿着物体轮廓表面卷绕起来。这对于处理部分表面、或者处理那些不容易穿过常规的大气压等离子体处理系统的大型物体将尤其有用。另一种可选的方案是将相反的电压管缠在一起作为一个螺旋缠绕对,其能够形成一个宽直径的管子。一个等离子体区域能够在这个缠绕管的外表面上形成,但更有用的是在内表面上形成,来满足对薄壁管或者瓶的处理。
例子
参照图11和图12和表1,本发明电极在一个大气压辉光放电系统中的使用例子如下阐述:
图11描述了一个具有弹性的衬底是如何使用包含本发明的电极的申请人的待决专利申请WO 03/086031中描述的组件来进行等离子体处理。每个电极对是如之前在图5b中描述的类型,1.2米宽1米长,在内壁67与后壁6a(图5b)之间装有接近24毫米厚度(d)的盐水溶液(重量为2%的氯化钠)。以导向辊170,171和172的形式提供了一个使组件传输通过衬底的装置。提供了用于将雾状液体引入等离子体区域160的一个处理气体入口175,一个组件盖子176和一个超声波喷嘴174。处理气体入口175也可能位于组件盖子176中,以代替如图11所示的侧面。
在使用中,具有弹性的衬底被传输到导向辊170上方,并且在导向辊170上方,因此通过在盐水电极120a和126a之间的等离子体区域125被引导。在等离子体区域125中的等离子体是清洁的氦等离子体,也就是说,没有反应物直接进入等离子体区域125。氦是通过入口175进入系统。盖子176被放置在系统顶部之上以防止氦气泄漏,因为它比空气轻。当离开等离子体区域125时,被等离子体清洁的衬底通过导向辊171并且直接向下穿过等离子体区域160,在电极126b和120b之间并且在导向辊172上方,然后通过同类型的其他单元进一步处理。然而,等离子体区域160通过引入反应前体为衬底产生一个涂层。这个反应前体可以包括气体、液体和/或固体涂层制造材料,但是最好是通过喷雾器174以液体或固体形式引入液体和固体的涂层制造材料。一个重要的事实是被涂层的反应剂是液体或者固体,所述雾状的液体或者固体在重力作用下穿过等离子体区域160并且与等离子体区域125保持隔离,因此在等离子体区域125中不会有涂层存在。然后将要涂层的衬底通过等离子体区域160,并且在涂层后传输通过导向辊172,随后被收集或者例如用另外的等离子体进行进一步处理。
雾状液体前体从喷嘴174引入等离子体区域160,在液体的情况下喷嘴会产生雾状的前体小液滴,前体小液滴与等离子体和衬底相互作用来产生涂层,其化学结构与前体有直接并且紧密的关系。喷嘴174用超声波激活,并且液体流用质流控制器(MFCs)控制。通过施加一个大的穿越相邻电极对之间空隙的电势来产生等离子体。从一个在输出端带有高压变压器的可变频率发生器给电极提供一个高压。从这个发生器的最大功率是10千瓦,最大电压是4千伏RMS(均方根)和在10-100千赫兹范围内的频率。在处理过程中记录的电测量值从发生器本身获得,并由安装电极上的电压和电流探针得到。每个电极有1.2米宽,1米长。使用与冷却翼连接的高压空气刀来冷却电极的后壁,保证电极温度保持在80摄氏度以下。
辉光放电特性
介电层放电以丝状或者辉光放电形式存在。当局部的电场势或者电荷密度不均匀引起局部气体离子化而变成局部化、并且在很短时间间隔(大约持续2-5纳秒范围)内导致高度集中的电流放电时,发生丝状放电。这些类型的放电由于丝状放电的局部剧烈特性会产生非均匀的涂层或者破坏衬底。根据本发明的电极的选择与合适的电极几何形状、气体的成分和功率/频率条件一起保证了大气压介电层放电能够在等离子体跨越电极的宽度均匀形成的辉光放电模式下发生。这会导致比丝状放电更长时间的电流放电,持续2-10纳秒,其导致均匀得多的涂层的形成。
在本例中,紧跟在大气压组件中的电流放电之后的是跟踪和测量。从等离子体中发射出来的光用高速光电二极管接收。图12显示了下列条件下以等离子体产生的光电二极管的输出:1000瓦,每分钟10升氦气。输出结果显示了1至3微秒之间的电流峰值,其清楚地表明了工作在辉光放电模式。
防水涂层
如上所述的装置与四甲基环四硅氧烷结合使用,当通过等离子体区域160时,其沉积在一个聚乙烯对苯二酸盐(PET)无纺衬底表面上。这个PET在处理之前是极其防水的。
防水响应是后续处理中利用异丙酮(IPA)在水中的不同密度用探针方法测量。用大约400-1000微升/分钟的整个前体流率,功率在5到9千瓦之间,衬底速度2到10米/分钟之间,得到5级的防水响应,对衬底的物理性质没有任何不利的影响。
表1.用于测量PET衬底防水响应的等级
  探针液体   防水等级
  水   1
  98%水/2%IPA   2
  95%水/5%IPA   3
  90%水/10%IPA   4
  80%水/20%IPA   5

Claims (18)

1、一种产生等离子体辉光放电和/或介电层放电的组件(1),包括至少一对基本上等间距隔开的电极(2),当引入处理气体并且必要时允许气态、液态和/或固态前体通过的情况下,电极之间的间距适于形成一个等离子体区域(8),其特征在于,电极(2)中至少一个电极包括一个外壳(20),所述外壳具有一个内壁(5)和一个外壁(6),其中内壁(5,6)是由一种非多孔的电介质材料形成的,并且外壳(20)基本上保留至少一种基本为非金属的导电材料。
2、根据权利要求1的组件,其中提供了多对电极(2)。
3、根据先前的权利要求中任一项的组件,其中基本为非金属的导电材料是一种极性溶剂。
4、根据权利要求3的组件,其中所述极性溶剂是水、酒精和/或乙二醇。
5、根据权利要求3或4的组件,其中所述非金属导电材料是一种盐溶液。
6、根据权利要求1或2的组件,其中所述至少基本为非金属的导电材料是从导电聚合物糊剂和导电粘合剂中选出的。
7、根据权利要求6的组件,其中所述导电聚合物糊剂和导电粘合剂是可固化的。
8、根据先前的权利要求中任一项的组件,其中每个外壳(20)具有一个入口(3)或者具有一个入口(3)和出口(4),使得非金属导电材料可以从电极(2)通过所述入口(3)和/或出口(4)被引入和移除。
9、根据先前的权利要求中任一项的组件,其中电极背壁(6)是一个散热片。
10、根据先前的权利要求中任一项的组件,其中每个电极的功能尺寸通过引入和移除所述非金属导电材料来改变。
11、根据权利要求8的组件,其中一个或者多个冷却线圈(25)或冷却翼(30)被固定在背壁(6,6a)上,以冷却导电液体和组件(1)。
12、根据先前的权利要求中任一项的组件,其中电极(2)是同心圆柱体(32,34)的形状。
13、根据先前的权利要求中任一项的组件,其中每个电极(2)是立方形的,包含一个外壳,所述外壳具有一个适用于接纳至少基本为非金属的导电材料的室(11b),所述电极(2)是由电介质材料(67)的远离一个适合用作散热片的金属背板(6a)的单个部分制成的。
14、根据先前的权利要求中任一项的大气压等离子体组件,包括第一和第二对并行隔的平面电极(120a,126a和126b,120b),第一和第二对电极中的每对电极之间的间隔形成第一和第二个等离子体区域(25,60),其特征在于,所述组件还包括一个连续传送衬底(70,71,72)使其穿过所述第一和第二个等离子体区域(25,60)的装置,以及一个适用于引导气体或雾状的液体和/或固体涂层制作材料进入所述第一和第二个等离子体区域的喷嘴(74)。
15、使用根据先前的权利要求中任一项的组件来对薄膜、网络、无纺和纺织织物和/或金属箔进行处理。
16、使用根据权利要求1至14中任一项的组件来对粉末和颗粒材料进行处理。
17、一对基本上等间距隔开的电极,其特征在于,电极(2)中的至少一个电极包括一个外壳(20),所述外壳具有一个内壁(5)和外壁(6),其中内壁(5)由非多孔电介质材料形成,并且所述外壳(20)基本上保留了一种至少基本为非金属的导电材料。
18、利用根据权利要求1至11中任一项所述的产生等离子体辉光放电和/或介电层放电的组件来对衬底进行等离子体处理的方法,所述方法包括使衬底通过影响电极(2)之间的等离子体而形成的等离子体区域(8)。
CNB2004800031038A 2003-01-31 2004-01-28 产生等离子体的电极组件 Expired - Fee Related CN100518430C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0302265.4 2003-01-31
GB0302265A GB0302265D0 (en) 2003-01-31 2003-01-31 Plasma generating electrode assembly
GB0304094.6 2003-02-24

Publications (2)

Publication Number Publication Date
CN1745607A true CN1745607A (zh) 2006-03-08
CN100518430C CN100518430C (zh) 2009-07-22

Family

ID=9952209

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800031038A Expired - Fee Related CN100518430C (zh) 2003-01-31 2004-01-28 产生等离子体的电极组件

Country Status (2)

Country Link
CN (1) CN100518430C (zh)
GB (1) GB0302265D0 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647323A (zh) * 2007-02-23 2010-02-10 米兰-比可卡大学 用于加工材料的大气压等离子体加工方法
CN102859638A (zh) * 2010-04-30 2013-01-02 旭硝子欧洲玻璃公司 用于介质阻挡放电等离子体方法的电极
CN103255467A (zh) * 2012-10-25 2013-08-21 北京太禹天工科技有限公司 一种新型材料表面改性的方法和装置
CN104541582A (zh) * 2012-05-09 2015-04-22 林德股份公司 用于提供等离子体流的装置
CN105101603A (zh) * 2015-08-04 2015-11-25 昆山禾信质谱技术有限公司 一种介质阻挡放电等离子体射流装置
CN105895477A (zh) * 2015-02-13 2016-08-24 株式会社日立高新技术 等离子体离子源以及带电粒子束装置
CN105944523A (zh) * 2016-06-08 2016-09-21 上海盛剑环境系统科技有限公司 一种等离子体气体废气处理装置
CN109414517A (zh) * 2016-06-30 2019-03-01 3M创新有限公司 等离子体灭菌系统和方法
CN109772248A (zh) * 2019-03-25 2019-05-21 安吉润风空气净化科技有限公司 一种带有冷却功能的介质阻挡等离子体放电反应器
CN113491174A (zh) * 2018-12-20 2021-10-08 机械解析有限公司 用于等离子体放电设备的电极组件
CN113731325A (zh) * 2021-09-03 2021-12-03 重庆大学 一种空气等离子体合成氮氧化物装置
CN114342123A (zh) * 2019-06-03 2022-04-12 道达尔能源公司 生态电极、储存电能的装置及其制备方法
CN115475498A (zh) * 2022-08-25 2022-12-16 大连海事大学 一种船舶废气等离子体脱除装置的余热回收系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1401692A (en) * 1972-03-23 1975-07-30 Electricity Council Ozonisers
CN1026186C (zh) * 1990-09-27 1994-10-12 机械电子工业部第四十九研究所 一种制作介质薄膜的方法
RU2159520C1 (ru) * 1999-04-30 2000-11-20 Камский политехнический институт Плазмотрон с жидкими электродами (варианты)
CN1180151C (zh) * 2001-04-10 2004-12-15 中国科学院化学研究所 羊毛纤维制品的防缩处理方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647323A (zh) * 2007-02-23 2010-02-10 米兰-比可卡大学 用于加工材料的大气压等离子体加工方法
CN102859638A (zh) * 2010-04-30 2013-01-02 旭硝子欧洲玻璃公司 用于介质阻挡放电等离子体方法的电极
CN102859638B (zh) * 2010-04-30 2016-09-21 旭硝子欧洲玻璃公司 用于介质阻挡放电等离子体方法的电极
CN104541582A (zh) * 2012-05-09 2015-04-22 林德股份公司 用于提供等离子体流的装置
CN103255467A (zh) * 2012-10-25 2013-08-21 北京太禹天工科技有限公司 一种新型材料表面改性的方法和装置
CN105895477B (zh) * 2015-02-13 2020-05-01 株式会社日立高新技术 等离子体离子源以及带电粒子束装置
CN105895477A (zh) * 2015-02-13 2016-08-24 株式会社日立高新技术 等离子体离子源以及带电粒子束装置
CN105101603A (zh) * 2015-08-04 2015-11-25 昆山禾信质谱技术有限公司 一种介质阻挡放电等离子体射流装置
CN105944523A (zh) * 2016-06-08 2016-09-21 上海盛剑环境系统科技有限公司 一种等离子体气体废气处理装置
CN105944523B (zh) * 2016-06-08 2022-06-21 上海盛剑环境系统科技股份有限公司 一种等离子体气体废气处理装置
CN109414517A (zh) * 2016-06-30 2019-03-01 3M创新有限公司 等离子体灭菌系统和方法
CN113491174A (zh) * 2018-12-20 2021-10-08 机械解析有限公司 用于等离子体放电设备的电极组件
CN109772248A (zh) * 2019-03-25 2019-05-21 安吉润风空气净化科技有限公司 一种带有冷却功能的介质阻挡等离子体放电反应器
CN114342123A (zh) * 2019-06-03 2022-04-12 道达尔能源公司 生态电极、储存电能的装置及其制备方法
CN113731325A (zh) * 2021-09-03 2021-12-03 重庆大学 一种空气等离子体合成氮氧化物装置
CN113731325B (zh) * 2021-09-03 2022-05-13 重庆大学 一种空气等离子体合成氮氧化物装置
CN115475498A (zh) * 2022-08-25 2022-12-16 大连海事大学 一种船舶废气等离子体脱除装置的余热回收系统

Also Published As

Publication number Publication date
CN100518430C (zh) 2009-07-22
GB0302265D0 (en) 2003-03-05

Similar Documents

Publication Publication Date Title
KR101072792B1 (ko) 플라즈마 발생 전극 조립체
CN1314301C (zh) 大气压等离子体组件
DE60302345T2 (de) Bei atmosphärendruck arbeitende plasmaanlage
CN1647591A (zh) 保护涂料组合物
CN100518430C (zh) 产生等离子体的电极组件
JP3182293U (ja) 非平衡状態大気圧プラズマを発生する装置
Pappas Status and potential of atmospheric plasma processing of materials
CN100338977C (zh) 凝胶和粉末的制备方法和装置以及所得产品
JP2010539694A (ja) 大気圧プラズマ
JP2014514454A (ja) 基板のプラズマ処理
CN101049054A (zh) 等离子体系统
JP2013538288A (ja) 基板のプラズマ処理
Kusano Plasma surface modification at atmospheric pressure
CN1698176A (zh) 大气压等离子体组件
JP2005238204A (ja) 有機あるいは無機化合物合成装置および方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090722

Termination date: 20150128

EXPY Termination of patent right or utility model