CN1735676A - 用于测定和控制热解的氢-碳比的装置和方法 - Google Patents

用于测定和控制热解的氢-碳比的装置和方法 Download PDF

Info

Publication number
CN1735676A
CN1735676A CNA2003801083020A CN200380108302A CN1735676A CN 1735676 A CN1735676 A CN 1735676A CN A2003801083020 A CNA2003801083020 A CN A2003801083020A CN 200380108302 A CN200380108302 A CN 200380108302A CN 1735676 A CN1735676 A CN 1735676A
Authority
CN
China
Prior art keywords
hydrogen
gas fraction
liquid distillate
cracking
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003801083020A
Other languages
English (en)
Other versions
CN100350018C (zh
Inventor
丹尼·育-广·颜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1735676A publication Critical patent/CN1735676A/zh
Application granted granted Critical
Publication of CN100350018C publication Critical patent/CN100350018C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/206Tube furnaces controlling or regulating the tube furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/125Preparation by evaporation pyrolising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种用于测定热解产物液体馏分的氢-碳比的方法及装置,其通过测定热解产物气体馏分的氢-碳比,再从所测得的热解炉烃进料的氢-碳比中减去上述所测得的值。使用所测得的液体馏分的氢-碳比的值作为裂解度的量度并用于热解炉响应于液体馏分所需的与实际的氢-碳比之间的差值的控制。

Description

用于测定和控制热解的氢-碳比的装置和方法
发明领域
本发明涉及一种测定液体烃的氢-碳比的方法及装置。本发明的另一方面涉及一种控制热解裂解工艺的裂解度的方法及装置。
发明背景
许多用于烃精炼及加工的工艺都需要知晓烃加工和/或生产中的氢-碳比。一种这样的工艺是通过烃原料的热裂解来生产烯烃,尤其是低级烯烃。
由烃原料热裂解或热解制备烯烃是本领域已知的一种技术。该方法以商业规模的操作来大量生产烯烃,例如乙烯及丙烯。一种商业应用的普通方法是其中使烃原料通过界定出热解炉热裂解区的一或多个管或盘管的方法。通过燃烧器提供热量输入。
烃原料的性质和热裂解发生的条件决定产物的性质及含量。一般而言,希望操作热裂解的工艺以使得焦化程度最小化。热裂解过程中裂解的深度或转化的程度称为裂解度(cracking severity)。焦化程度一般是随着热裂解裂解度的增加而增加,直至达到焦炭量变为不可接受的点为止。此点经常被称为最大裂解度,且经常代表一最优点,其结合了高的烯烃收率和炉子在焦炭积聚至必须停炉除焦前可操作和可接受的时间长度。
在以商业规模生产烯烃时,常常非常需要能在最大裂解度或尽可能接近最大裂解度的条件下操作热裂解工艺。已确定有许多裂解度的指标可用来控制商业的热裂解工艺。这种指标的实例包括用于石脑油裂解的裂解度指数和用于瓦斯油热裂解的分子碰撞参数。其它指标包括热裂解管或盘管的出口温度,和裂解工艺液体产物的氢含量。乙烯制造常用的一个参数是热裂解工艺气体产物的丙烯-甲烷比(PMR),或乙烯-甲烷比(EMR)。然而,这些指标对如烃原料改变的因素及对产物取样技术的可靠性的敏感度,会在利用这些指标作为热裂解工艺控制体系的一部分时产生问题。
因此,需要有一种对如原料品质波动的工艺参数不敏感且可容易地并入工艺控制体系中的裂解度的指标。B.P.Ennis等人在“高温-低接触时间热解工艺”(“High Temperature-Low Contact Time PyrolysisProcess”,Symposium Series 43,Institute of Chemical Engineers,Harrogate,Eng.,1975年6月)中描述了一种用于大范围的石脑油馏分热裂解的蒸汽热解工艺。Ennis等人指出一个特别有价值的热解裂解度指数是热解汽油产物或C5和更重(C5+)产物的氢-碳原子比。Ennis等人将其描述为液相脱氢程度和所得焦炭生成趋势的量度。因为所计算的C5+产物的氢-碳比仅依赖于C4及更轻组分的预期收率和进料的氢-碳比,Ennis等人宣称这一裂解度指标是比较各种热解反应器或原料在同一裂解深度下的选择性的绝佳方式。
虽然Ennis等人建议利用C5+产物的氢-碳比作为裂解度的有用指标,但并未公开该参数如何测量或如何用来控制商业规模的热裂解工艺。迄今为止,热裂解工艺的液体(C5+)烃产物的氢-碳比还很难测定。典型地,在商业的热裂解工艺中,该比例是根据烃原料及气体(C4-)产物的分析计算,通常是在进行详细的进料表征,接着利用模型模拟裂解条件之后获得。然而,若欲利用氢-碳比作为控制参数,则所有可供利用的选择无一是实际可用的。
因此,需要有一种可容易地并入商业的工艺控制体系中来测定液体烃馏分的氢-碳比的方法。
发明概述
在其中将含已知量示踪气体、烃进料碳含量及烃进料氢含量的已知量烃进料加入至在热解裂解工艺条件下操作的热解炉中以产生热解产物,其中所述热解产物包含一液体馏分和一气体馏分,其中所述液体馏分包含一液体馏分氢含量和一液体馏分碳含量从而提供液体馏分的氢-碳比,而且其中所述气体馏分包含一气体馏分的示踪气体浓度、一气体馏分氢含量及一气体馏分碳含量的热解工艺中,本发明提供一种测定所述液体馏分的氢-碳比的方法,其包含下列步骤:
(a)测定所述烃进料的氢含量和所述烃进料碳含量;
(b)测定所述气体馏分的氢含量和所述气体馏分的碳含量;和
(c)测定所述液体馏分的氢-碳比,通过
将所测得的所述气体馏分的氢含量值从所测得的所述烃进料的氢含量值中减去以获得所述液体馏分的氢含量,
将所测得的所述气体馏分的碳含量值从所测得的所述烃进料的碳含量值中减去以获得所述液体馏分的碳含量,和
计算所述液体馏分的氢-碳比的值。
本发明也提供一种控制所述热解裂解工艺条件的方法,所述方法包含下列步骤:
(a)优选利用近红外分光法测定所述烃进料氢含量的第一测量值和所述烃进料碳含量的第二测量值;
(b)优选利用质谱法测定所述气体馏分氢含量的第三测量值和所述气体馏分碳含量的第四测量值;
(c)计算所述液体馏分氢-碳比的第一计算值;
(d)比较所述第一计算值与所述液体馏分氢-碳比的所需值以产生一差异值(differential value);和
(e)根据所述差异值控制所述热解裂解工艺的条件。
此外,本发明提供一种用于热裂解含已知量示踪气体、烃进料氢含量及烃进料碳含量的已知量烃进料的装置,所述装置包含:
热解炉设备,其界定出在包括热解裂解区温度的热解裂解工艺条件下操作的热裂解区,所述热解炉设备是用以裂解所述烃进料以产生包含一液体馏分和一气体馏分的热解产物;
第一分析仪设备,其用以测定所述烃进料的氢含量和用以测定所述烃进料的碳含量;
第二分析仪设备,其用以测定所述气体馏分的示踪气体浓度并用以测定所述气体馏分的氢浓度及用以测定所述气体馏分的碳浓度;和
计算设备,其用以利用由所述第一分析仪设备所测得的所述烃进料的氢含量和所测得的所述烃进料的碳含量,及由所述第二分析仪设备所测得的所述气体馏分的氢浓度和所测得的所述气体馏分的碳浓度,测定所述液体馏分的氢-碳比。
附图简述
图1是本发明热解工艺体系和用于测定和控制热解产物液体馏分氢-碳比的体系的一个实施方案的图解示意图。
发明详述
本发明提供一种测定热解产物液体馏分的氢-碳比的方法,该热解产物是由热解裂解工艺单元的热裂解区所产生。在热解或热裂解工艺中,烃原料被加入至热解或热裂解炉中,在此烃原料经历热解或热裂解工艺的条件。热解或裂解产物是由热解炉产生。
本发明热裂解工艺所用的烃原料可以是用于烯烃制备的常规热裂解工艺所用的任何烃或烃馏分。合适的原料包括C4馏分如丁烷;C5馏分如戊烷;以及汽油、石脑油、煤油及瓦斯油馏分。也可以使用重质如真空瓦斯油的烃原料也可使用。本发明的方法特别适用于汽油、石脑油、煤油及重质/真空瓦斯油馏分,而汽油、石脑油及重质/真空瓦斯油馏分为特别优选的原料。烃原料例如通过原油的常规精炼即可容易地制得。烃原料可由上述的单一馏分或上述馏分的混合物组成。
本发明方法的一个优点在于烃原料的组成及沸点范围可以发生波动,而且波动可由控制体系所适应。即,即使当烃原料的组成或沸点范围发生波动或变化时,本发明的方法也特别适用于测定及控制热解产物液体馏分的氢-碳比。
如前所述,烃原料在热裂解区中经历热裂解。任何适当的工艺配置及装置都可用于本发明的目的。商业规模常应用的一种工艺方式是利用安装在外部燃烧的加热器中的管状反应器盘管。烃原料被加入至管状反应器盘管中,该管状反应器盘管界定出向其中供应热量的热裂解区。盘管的加热典型地是通过适当燃料,如烃类油或炼厂气的燃烧来提供。用于进行热裂解的合适装置已为本领域所熟知。有关烃原料热裂解产生烯烃方面的一般性讨论,可查阅“Kirk-Othmer化学技术百科全书”(“Kirk-Othmer Encyclopedia of Chemical Technology”),第三版,第九卷,第400-411页。
热裂解区的操作条件依赖于热裂解装置的特定设计和所需的裂解度。在热裂解区中加热烃原料直至温度达到烃分子裂解的温度。实现裂解所需的温度依赖于原料的组成及沸点范围。在热裂解区出口测量的典型的热裂解温度为750℃至950℃,更优选800℃至900℃。
该方法可在任何合适的压力下操作。热裂解优选在热裂解区出口所测量的100kPa(1巴)至500kPa(5巴),更优选100kPa(1巴)至300kPa(3巴)的压力范围内进行。
烃原料供应至热裂解区的流速将依赖于工艺装置的特定设计。在这些限制之内,任何适当的流速皆可使用。在商业规模装置中烃原料的典型流速是在10,000kg/小时至60,000kg/小时,更优选在15,000kg/小时至50,000kg/小时的范围内。
烃原料在热裂解区的停留时间将依赖于装置的设计及其它工艺操作条件。烃原料在热裂解区的典型停留时间是在0.05秒至1.0秒,更优选0.10至0.50秒的范围内。
为了协助热裂解过程,烃原料可与惰性稀释剂混合而且所得混合物可加入热裂解区中。最合适的惰性稀释剂为蒸汽。惰性稀释剂的存在量典型地以稀释剂-烃的重量比而言为0.1kg/kg至1.0kg/kg,更优选0.3kg/kg至0.8kg/kg。
由热解工艺的热裂解区所产生的热解产物一般包含一液体馏分和一气体馏分。热解产物的液体馏分主要包含每个分子具有5个或更多碳原子的烃,而热解产物的气体馏分主要包含每个分子具有4个或更少碳原子的烃和包括一氧化碳、二氧化碳、硫化氢、氢及氦的气体化合物。
本发明包括将已知量的惰性示踪气体引入或加入至被送入本方法热解炉的烃原料中。适合用作示踪剂而通过热裂解区保持不变的任何惰性气体都可用于本发明。这种适合的示踪气体的实例包括选自氦、氩、氮及氖的气体。这些气体主要是因为它们在热解产物液体馏分中具有低的溶解度而所以适合。本发明所用的优选示踪气体为氦。示踪气体可引入的量为100ppm(体积)至1000ppm(体积),特别是100ppm(体积)至500ppm(体积)。
基本上所有的随烃原料引入热解炉的示踪气体都可与热解产物的气体馏分一起回收;而且因为引入烃原料中的示踪气体的量和烃原料的量都为已知,所以热解产物中气体馏分的比例可以通过测量气体馏分中示踪气体的浓度而容易地确定。热解产物中气体馏分的比例可由引入烃原料的示踪气体的已知量值除以气体馏分中示踪气体浓度的测量值而确定。
示踪气体的使用允许利用分析热解产物气体馏分的常规分析仪设备对热解产物气体馏分进行在线分析。合适的在线分析仪包括,例如气相色谱仪和质谱仪。
为了分析气体馏分,可将热解产物的样品冷却,并将气体馏分与液体馏分分离。然后,气体馏分可利用合适的分析仪设备分析,通过气体馏分的成分分析测定它的示踪气体浓度及氢-碳比。如上所述,示踪气体的浓度值可供测定作为气体馏分的热解产物的比例,且有了气体馏分的氢-碳比的测量值,即可利用这些信息的结合来测定气体馏分的氢含量及气体馏分的碳含量。
在本发明的方法中,热解产物液体馏分的氢-碳比是由下述方法间接测定的:通过上述方法测定气体馏分的氢及碳含量,并利用任何合适的分析仪设备测定进入热解装置的烃进料的氢及碳含量,然后计算气体馏分的氢及碳含量与烃进料的氢及碳含量之间的差值,以提供热解产物液体馏分中氢及碳量的值。
测定烃进料氢含量及测定烃进料碳含量的任何合适的分析仪设备皆可使用。分析烃进料的优选方式或方法包括使用任何常规的近红外(NIR)分析技术或使用常规的核磁共振(NMR)分析技术。优选的分析技术为NIR分析。在此应了解的是,烃进料的氢含量是由NIR或NMR分析技术分析,而碳含量则由相减差值(by difference)确定。也可附带测量烃的硫含量并用于测定碳含量。
NIR分光技术的使用可提供某些优点,如可对烃进料进行快速和直接的在线分析。通过使用在线分析仪获得的烃进料氢含量及烃进料碳含量的值,可经由任何合适的计算设备用于测定液体馏分的氢含量及液体馏分的碳含量。液体馏分的氢-碳比是利用由上述分析技术所获得的与烃进料及热解产物气体馏分的氢及碳含量有关的信息,并计算液体馏分氢含量及液体馏分碳含量的值而确定。有了这些数值之后,即可计算热解产物液体馏分的氢-碳比。任何合适的设备或方法都可用以进行这种计算,但优选使用计算机设备如常规计算机系统。
在本发明的另一方面,所测定的热解产物液体馏分的氢-碳比可用作裂解度的指标并可用于热裂解炉的控制。认为热裂解区裂解度与液体馏分氢-碳比之间的关系是成反比的,即,热裂解区裂解度提高将导致热解产物液体馏分的氢-碳比降低及热裂解区裂解度降低将导致热解产物液体馏分的氢-碳比提高。
希望尽可能经济地操作热裂解炉,以提供接近于1(1.0)的液体馏分的氢-碳比,以摩尔为基准;但是,一般而言,液体馏分的氢-碳比应控制在1.01至1.5的范围内,更典型地是控制在1.02至1.2的范围内,最典型地是在1.05至1.1的范围内,以摩尔为基准。进入热解裂解装置的烃进料的典型氢-碳比是在1.6至2.5,更典型地在1.7至2.2,最典型地在1.8至2.0的范围内,以摩尔为基准。
在控制热解裂解工艺的条件时,存在一个由所需的热解产物液体馏分的氢-碳比所代表的预定的所需的热裂解度。为了控制热解过程,在所需的液体馏分的氢-碳比与根据此处所述的本发明方法所测定的液体馏分的实际氢-碳比之间进行比较,以提供一差异值。热解工艺的条件是针对所需的与实际的氢-碳比之间的任何差异进行调整。
该差异值可定义为氢-碳比的差值,其由液体馏分氢-碳比的所需值减去液体馏分氢-碳比的实际值而确定。负数的差异值将需要提高热解过程的裂解度,而正数的差异值则需要降低热解过程的裂解度。
虽然许多热解工艺的操作条件都会影响热裂解条件的裂解度,但是响应于氢-碳比的差异值而控制的一个典型的工艺参数是热裂解区内的裂解温度。热裂解区的温度与热裂解区出口的热解产物的温度相关,而且可以通过测量后者对其进行监测。热裂解区的温度可通过调节热解炉燃烧器的燃烧速度加以控制。
现请参阅图1,其为用于热裂解烃进料的热解工艺体系10的简化的图解示意图。烃原料是经导管12以已知的速度被加入至热解或热裂解炉16的裂解炉管或盘管14中。稀蒸汽流可经由导管17引入导管12的烃原料中。热裂解炉16配备裂解炉管或盘管14及燃烧器18。热裂解炉16界定出加热区并提供用于热裂解烃进料的设备。裂解炉管或盘管14界定出热解或热裂解区,并提供用于接收烃进料的设备以将热量输入烃进料中。燃烧器18界定出燃烧区,并提供用于燃烧燃料以产生输入到由裂解炉管或盘管14所界定的热裂解区中的热量的设备。
燃料经由导管20引入燃烧器18中。插入导管20中的是控制阀22,其提供用于控制燃料进入燃烧器18的速度的设备,从而控制进入由裂解炉管或盘管14所界定的热裂解区中的热量。
示踪气体,如氦气,经由导管24以已知的速度引入稀蒸汽流17中,其与经由导管12加入至裂解炉管或盘管14的烃进料混合。热解产物经由导管26自裂解炉管或盘管14作为流出物取出。自导管26取出热解产物样品以供分析仪28分析。分析仪28提供用于分析热解产物气体馏分的示踪气体浓度、氢馏分及碳馏分的设备。为了分析热解产物的气体馏分,热解产物首先分离成气体馏分和液体馏分,而气体馏分由分析仪28分析。分析仪28所产生的信息由管线32提供给计算机及控制器30。
自导管12取出烃进料样品以供分析仪34分析。分析仪34提供用于测量及测定烃进料的氢及碳含量的设备。分析仪34所产生的信息由管线36提供给计算机及控制器30。计算机及控制器30提供用于处理输入信息以计算热解产物液体馏分的氢-碳比的设备,并进一步提供设备以控制热裂解炉16响应于液体馏分的氢-碳比变化而操作的裂解度。
为了控制裂解过程的裂解度,将所需的液体馏分氢-碳比的预定值,又称为设定点,经由管线38提供给计算机及控制器30。计算机及控制器30对经由管线32、管线36及管线38提供的信息进行处理以计算液体馏分的氢-碳比的值。由计算机及控制器30计算液体馏分实际的氢-碳比与液体馏分所需的氢-碳比之间的差异值,并由管线40将代表该差异值的输出信号送至控制阀22。控制阀22响应于来自管线40的输入信号进行调整,从而改变输入热裂解炉16的热量,并因此改变裂解度,最终提供具有所需氢-碳比的液体馏分。
以下实施例代表一假设的计算。
实施例
已知量:
示踪氦气:268.5g/小时
烃进料:34931.4kg/小时
测定及计算:
烃进料组成:13.86wt%氢、86.04wt%碳
烃进料氢含量:34931.4kg/小时的13.86wt%=4841.5kg/小时
烃进料碳含量:34931.4kg/小时的86.04wt%=30054.98kg/小时
气体馏分中氦的浓度:80ppm(体积)或12.807ppm(重量)
热解产物中气体馏分的比例:(268.5g/小时)/(12.807ppm(重量))=20965.1kg/小时
气体馏分组成:17.325wt%氢、82.675wt%碳
气体馏分氢含量:20965.1kg/小时的17.325wt%=3632.20kg/小时
气体馏分碳含量:20965.1kg/小时的82.675wt%=17332.90kg/小时
液体馏分氢含量:4841.5kg/小时-3632.20kg/小时=1209.30kg/小时
液体馏分碳含量:30054.98kg/小时-17332.90kg/小时=12722.08kg/小时
液体馏分的氢-碳比:(1209.30kg/小时)/(12722.08kg/小时)=0.095055,以重量计,
(0.095055)(12)=1.14,以摩尔计。
虽然这一假设的计算是以质量流速(kg/小时)计算,但也可以质量(例如,以kg计)计算,即,无时间因素。
虽然本发明已就现在的优选实施方案作了说明,但本领域技术人员应理解本发明可作合理的变化及改变。这些变化及改变也皆在所描述的本发明及所附的权利要求书的范围之内。

Claims (12)

1.在其中将含已知量示踪气体、烃进料碳含量及烃进料氢含量的已知量烃进料加入至在热解裂解工艺条件下操作的热解炉中以产生热解产物,其中所述热解产物包含一液体馏分和一气体馏分,其中所述液体馏分包含一液体馏分氢含量和一液体馏分碳含量从而提供液体馏分的氢-碳比,而且其中所述气体馏分包含一气体馏分的示踪气体浓度、一气体馏分氢含量及一气体馏分碳含量的热解工艺中,提供一种测定所述液体馏分的氢-碳比的方法,其包含下列步骤:
(a)测定所述烃进料氢含量和所述烃进料碳含量;
(b)测定所述气体馏分氢含量和所述气体馏分碳含量;和
(c)测定所述液体馏分的氢-碳比,通过
将所测得的所述气体馏分的氢含量值从所测得的所述烃进料的氢含量值中减去以获得所述液体馏分的氢含量,
将所测得的所述气体馏分的碳含量值从所测得的所述烃进料的碳含量值中减去以获得所述液体馏分的碳含量,和
计算所述液体馏分的氢-碳比的值。
2.如权利要求1的方法,其中在步骤(b)中,所述气体馏分氢含量和所述气体馏分碳含量通过以下方法测定:
测定所述气体馏分的示踪气体浓度,利用所测得的气体馏分示踪气体的浓度确定作为所述气体馏分的所述热解产物的比例,并利用所测得的作为所述气体馏分的所述热解产物的比例确定所述气体馏分氢含量及所述气体馏分碳含量。
3.如权利要求1或2的方法,其中:
所述测定步骤(a)通过近红外分光法或核磁共振法进行;
所述测定步骤(b)通过质谱法或气相色谱法进行;和
所述测定步骤(c)通过计算所述液体馏分的氢-碳比进行。
4.如权利要求1的方法,包含下列步骤:
(a)测定所述烃进料氢含量和所述烃进料碳含量;
(b)测定所述气体馏分氢含量和所述气体馏分碳含量;
(c)计算所述液体馏分氢-碳比,通过
利用步骤(b)所测得的所述气体馏分氢含量和步骤(a)所测得的所述烃进料氢含量以测定所述液体馏分氢含量;
利用步骤(b)所测得的所述气体馏分碳含量和步骤(a)所测得的所述烃进料碳含量以测定所述液体馏分碳含量;和
利用以上所测得的所述液体馏分氢含量和以上所测得的所述液体馏分碳含量计算所述液体馏分的氢-碳比。
5.如权利要求4的方法,其中:
测定步骤(a)利用近红外分光法进行以提供所述烃进料氢含量的第一测量值和所述烃进料碳含量的第二测量值;
测定步骤(b)通过以下方法进行:
利用质谱法测定所述气体馏分示踪气体浓度的第三测量值;
利用所述第三测量值计算作为所述气体馏分的所述热解产物的比例的第一计算值;和
利用所述第一计算值并结合所述气体馏分氢含量及碳含量的质谱分析以获得所述气体馏分氢含量的第四测量值和所述气体馏分碳含量的第五测量值;和
计算步骤(c)通过以下方法进行:
将所述第四测量值从所述第一测量值中减去以获得所述液体馏分氢含量的第二计算值;
将所述第五测量值从所述第二测量值中减去以获得所述液体馏分碳含量的第三计算值;和
计算所述液体馏分氢-碳比的第四计算值,其由所述第二计算值除以所述第三计算值而获得所述液体馏分的氢-碳比。
6.如权利要求1-5中任一项的方法,所述方法包含下列步骤:
(a)利用近红外分光法测定所述烃进料氢含量的第一测量值和所述烃进料碳含量的第二测量值;
(b)利用质谱法测定所述气体馏分氢含量的第三测量值和所述气体馏分碳含量的第四测量值;
(c)计算所述液体馏分氢-碳比的第一计算值;
(d)比较所述第一计算值与所述液体馏分氢-碳比的所需值以产生一差异值;和
(e)响应于所述差异值控制所述热解裂解工艺的条件。
7.如权利要求6的方法,其中:
测定步骤(b)通过以下方法进行:
利用质谱法测定所述气体馏分示踪气体浓度的第五测量值;
利用所述第五测量值计算所述作为所述气体馏分的所述热解产物的比例的第二计算值;和
利用所述第二计算值并与所述气体馏分氢含量及碳含量的质谱分析结合以获得所述第三测量值和所述第四测量值;
计算步骤(c)通过以下方法进行:
将所述第三测量值从所述第一测量值中减去以获得所述液体馏分氢含量的第三计算值;
将所述第四测量值从所述第二测量值中减去以获得所述液体馏分碳含量的第四计算值;和
计算所述第一计算值,其由所述第三计算值除以所述第四计算值而获得所述液体馏分的氢-碳比;
比较步骤(d)通过以下方法进行:
将所述第一计算值从所述所需值中减去而获得所述差异值;和
控制步骤(e)包括响应于所述差异值的负数值提高所述热解裂解工艺条件的裂解度,和响应于所述差异值的正数值降低所述热解裂解工艺条件的裂解度。
8.如权利要求1-7中任一项的方法,其中所述液体馏分氢-碳比的所需值,以摩尔计,在1.0至2.0,特别地1.01至1.5,更特别地1.02至1.2和最特别地1.05至1.1的范围内。
9.如权利要求1-8中任一项的方法,其中所述热解裂解炉包括热裂解区;和
其中所述热解裂解工艺条件包括代表所述热解裂解工艺裂解度的热裂解区温度,从而所述热裂解区温度上升时所述热解裂解工艺条件的裂解度将升高,而所述热裂解区温度降低时所述热解裂解工艺条件的裂解度将降低;和
控制步骤(e)用于保持所述热裂解区温度在750℃至950℃的范围内,其通过响应于所述差异值的负数值提高所述热裂解区的温度,和响应于所述差异值的正数值降低所述热裂解区的温度。
10.如权利要求1-9中任一项的方法,其中示踪气体选自氦、氩、氮和氖;而且示踪气体的存在量为以体积计的100ppm至1000ppm,特别地100ppm至500ppm。
11.一种用于热裂解含有已知量示踪气体、烃进料氢含量及烃进料碳含量的已知量烃进料的装置,所述装置包含:
热解炉设备,其界定出在包括热裂解区温度的热解裂解工艺条件下操作的热裂解区,所述热解炉设备用以裂解所述烃进料以产生包含一液体馏分和一气体馏分的热解产物;
第一分析仪设备,其用以测定所述烃进料的氢含量和用以测定所述烃进料的碳含量;
第二分析仪设备,其用以测定所述气体馏分的示踪气体浓度并用以测定所述气体馏分的氢浓度及用以测定所述气体馏分的碳浓度;和
计算设备,其用以利用由所述第一分析仪设备所测得的所述烃进料的氢含量和所测得的所述烃进料的碳含量,和由所述第二分析仪设备所测得的所述气体馏分的氢浓度和所测得的所述气体馏分的碳浓度,测定所述液体馏分的氢-碳比。
12.如权利要求11的装置,进一步包含:
比较设备,其用于比较由所述计算设备所测得的所述液体馏分的氢-碳比,以在所述液体馏分所需的氢-碳比与所述液体馏分所测得的氢-碳比之间产生一差异值;
控制设备,其用于响应于所述差异值调节所述热裂解区的温度;
所述第一分析仪设备包括近红外分析仪;和
所述第二分析仪设备包括质谱仪。
CNB2003801083020A 2002-12-23 2003-12-22 用于测定和控制热解的氢-碳比的装置和方法 Expired - Lifetime CN100350018C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/328,424 US7238847B2 (en) 2002-12-23 2002-12-23 Apparatus and method for determining and controlling the hydrogen-to-carbon ratio of a pyrolysis product liquid fraction
US10/328,424 2002-12-23

Publications (2)

Publication Number Publication Date
CN1735676A true CN1735676A (zh) 2006-02-15
CN100350018C CN100350018C (zh) 2007-11-21

Family

ID=32594465

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801083020A Expired - Lifetime CN100350018C (zh) 2002-12-23 2003-12-22 用于测定和控制热解的氢-碳比的装置和方法

Country Status (13)

Country Link
US (1) US7238847B2 (zh)
EP (1) EP1578890A1 (zh)
JP (1) JP2006511653A (zh)
KR (1) KR20050090412A (zh)
CN (1) CN100350018C (zh)
AU (1) AU2003301210B2 (zh)
BR (1) BR0317662A (zh)
CA (1) CA2511548A1 (zh)
MY (1) MY137318A (zh)
PL (1) PL376706A1 (zh)
RU (1) RU2335526C2 (zh)
TW (1) TW200504196A (zh)
WO (1) WO2004058919A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100578215C (zh) * 2007-06-12 2010-01-06 中国科学院广州地球化学研究所 开放式天然气生成动力学研究装置及使用方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083932B2 (en) * 2007-08-23 2011-12-27 Shell Oil Company Process for producing lower olefins from hydrocarbon feedstock utilizing partial vaporization and separately controlled sets of pyrolysis coils
US8430556B2 (en) * 2007-12-18 2013-04-30 Uop Llc Internal heat exchanger/mixer for process heaters
JP2014214237A (ja) * 2013-04-26 2014-11-17 三菱重工業株式会社 乾留装置
CN111829976A (zh) * 2019-04-18 2020-10-27 中国石油化工股份有限公司 一种由原油近红外光谱预测其汽油馏分烃族组成的方法
CN112179806B (zh) * 2019-07-03 2024-05-31 中国石油化工股份有限公司 评价烃源岩生烃潜力的方法
US20240175786A1 (en) * 2021-04-16 2024-05-30 Exxonmobil Chemical Patents Inc. Processes and Systems for Analyzing a Sample Separated from a Steam Cracker Effluent

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425807A (en) * 1965-04-15 1969-02-04 Hewlett Packard Co Pyrolysis system
NL7611006A (nl) * 1976-10-06 1978-04-10 Stamicarbon Werkwijze en laboratoriuminrichting voor het bepalen van het thermisch kraakgedrag van kool- waterstofvoedingen voor kraakovens.
US4209490A (en) * 1978-08-28 1980-06-24 Institute Of Gas Technology Reactor coking simulator
US4400784A (en) * 1981-02-25 1983-08-23 Phillips Petroleum Company Control of a cracking furnace
US4628204A (en) * 1984-08-16 1986-12-09 S.A. Texaco Belgium N.V. Optical method to study the stability of colloidal systems
US4800279A (en) * 1985-09-13 1989-01-24 Indiana University Foundation Methods and devices for near-infrared evaluation of physical properties of samples
FR2611911B1 (fr) * 1987-02-27 1989-06-23 Bp France Procede de determination directe d'un indice d'octane
FR2619631B1 (fr) * 1987-08-18 1993-12-03 Bp France Procede et dispositif de mesure du seuil de floculation d'un produit petrolier
EP0305090B1 (en) * 1987-08-18 1993-08-04 Bp Oil International Limited Method for the direct determination of physical properties of hydrocarbon products
ES2095205T3 (es) * 1987-08-18 1997-02-16 Bp Oil Int Metodo para la determinacion directa de propiedades fisicas de productos hidrocarbonados.
US4904604A (en) * 1987-11-23 1990-02-27 Kivlen John A Hydrocarbon mixture analysis
FR2631957B1 (fr) * 1988-05-30 1990-08-31 Bp Chimie Sa Procede et appareillage de fabrication d'olefines et de diolefines par reaction de vapocraquage d'hydrocarbures controlee a l'aide d'un systeme comprenant un spectrophotometre infrarouge
US4929335A (en) * 1988-07-22 1990-05-29 Mobil Oil Corporation Method for control of visbreaker severity
US4963745A (en) * 1989-09-01 1990-10-16 Ashland Oil, Inc. Octane measuring process and device
US5712481A (en) * 1990-04-09 1998-01-27 Ashland Inc Process and apparatus for analysis of hydrocarbon species by near infrared spectroscopy
US5145785A (en) * 1990-12-11 1992-09-08 Ashland Oil, Inc. Determination of aromatics in hydrocarbons by near infrared spectroscopy and calibration therefor
US5349188A (en) * 1990-04-09 1994-09-20 Ashland Oil, Inc. Near infrared analysis of piano constituents and octane number of hydrocarbons
US5121337A (en) * 1990-10-15 1992-06-09 Exxon Research And Engineering Company Method for correcting spectral data for data due to the spectral measurement process itself and estimating unknown property and/or composition data of a sample using such method
MY107650A (en) * 1990-10-12 1996-05-30 Exxon Res & Engineering Company Method of estimating property and / or composition data of a test sample
US5243546A (en) * 1991-01-10 1993-09-07 Ashland Oil, Inc. Spectroscopic instrument calibration
US5223714A (en) * 1991-11-26 1993-06-29 Ashland Oil, Inc. Process for predicting properties of multi-component fluid blends
US5681749A (en) * 1992-03-27 1997-10-28 Chevron U.S.A. Inc. Controlling acid concentration in a hydrocarbon process
ES2117126T3 (es) * 1992-05-27 1998-08-01 Ashland Oil Inc Metodo indirecto mejorado para determinar el contenido de oxigenatos utilizando espectros de absorcion de los infrarrojos proximos.
US5412581A (en) * 1992-11-05 1995-05-02 Marathon Oil Company Method for measuring physical properties of hydrocarbons
CN1026594C (zh) * 1993-01-28 1994-11-16 化学工业部北京化工研究院 石油烃蒸汽裂解方法的改进
US5404015A (en) * 1993-09-21 1995-04-04 Exxon Research & Engineering Co. Method and system for controlling and optimizing isomerization processes
US5430295A (en) * 1993-12-16 1995-07-04 Uop And Arco Process for controlling blending
US5572030A (en) * 1994-04-22 1996-11-05 Intevep, S.A. Method for determining parameter of hydrocarbon
US5935863A (en) 1994-10-07 1999-08-10 Bp Chemicals Limited Cracking property determination and process control
EP0706049A1 (en) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Cracking property determination
EP0706040A1 (en) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Property determination
EP0706050A1 (en) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Lubricant property determination
EP0706041A1 (en) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Chemicals property determination
US5641962A (en) * 1995-12-05 1997-06-24 Exxon Research And Engineering Company Non linear multivariate infrared analysis method (LAW362)
US5512751A (en) * 1994-12-19 1996-04-30 Uop Calibration of NIR spectra in measuring properties of petroleum products
CA2168384C (en) * 1995-02-08 2007-05-15 Bruce Nelson Perry Method for characterizing feeds to catalytic cracking process units
US5684580A (en) * 1995-05-01 1997-11-04 Ashland Inc. Hydrocarbon analysis and control by raman spectroscopy
US6070128A (en) * 1995-06-06 2000-05-30 Eutech Engineering Solutions Limited Method for determining properties using near infra-red (NIR) spectroscopy
US5840582A (en) * 1995-06-07 1998-11-24 Shell Oil Company Method for determining the hydrogen-to-carbon ratio in a liquid hydrocarbon fraction and use thereof
US5673904A (en) * 1995-11-16 1997-10-07 Nifco Inc. Temporarily-retaining clip set for window glass and mounting jig thereof
US5610836A (en) * 1996-01-31 1997-03-11 Eastman Chemical Company Process to use multivariate signal responses to analyze a sample
DE69636276T2 (de) 1996-04-09 2006-11-09 Innovene Europe Ltd., Staines Steuerung eines Prozesses
US5892228A (en) * 1996-09-30 1999-04-06 Ashland Inc. Process and apparatus for octane numbers and reid vapor pressure by Raman spectroscopy
US5956254A (en) * 1996-10-10 1999-09-21 Tokheim Corporation Octane sensitive dispenser blending system
US6512156B1 (en) 1996-10-22 2003-01-28 The Dow Chemical Company Method and apparatus for controlling severity of cracking operations by near infrared analysis in the gas phase using fiber optics
US6140647A (en) * 1997-12-19 2000-10-31 Marathon Ashland Petroleum Gasoline RFG analysis by a spectrometer
US6346813B1 (en) * 1998-08-13 2002-02-12 Schlumberger Technology Corporation Magnetic resonance method for characterizing fluid samples withdrawn from subsurface formations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100578215C (zh) * 2007-06-12 2010-01-06 中国科学院广州地球化学研究所 开放式天然气生成动力学研究装置及使用方法

Also Published As

Publication number Publication date
WO2004058919A1 (en) 2004-07-15
CA2511548A1 (en) 2004-07-15
AU2003301210B2 (en) 2007-06-28
BR0317662A (pt) 2005-11-29
EP1578890A1 (en) 2005-09-28
CN100350018C (zh) 2007-11-21
US20040122276A1 (en) 2004-06-24
RU2335526C2 (ru) 2008-10-10
KR20050090412A (ko) 2005-09-13
US7238847B2 (en) 2007-07-03
AU2003301210A1 (en) 2004-07-22
MY137318A (en) 2009-01-30
JP2006511653A (ja) 2006-04-06
TW200504196A (en) 2005-02-01
PL376706A1 (pl) 2006-01-09
RU2005123379A (ru) 2006-01-20

Similar Documents

Publication Publication Date Title
Grana et al. An experimental and kinetic modeling study of combustion of isomers of butanol
El Merhubi et al. A high pressure experimental and numerical study of methane ignition
Schenk et al. Detailed mass spectrometric and modeling study of isomeric butene flames
US7640109B2 (en) Fingerprinting of complex hydrocarbon containing mixtures
Murugan et al. Effect of low-temperature oxidation on the pyrolysis and combustion of whole oil
CN100350018C (zh) 用于测定和控制热解的氢-碳比的装置和方法
CN110412151B (zh) 一种确定油气藏相态的方法
Shang et al. Benchmarking dual-level MS-Tor and DLPNO-CCSD (T) methods for H-abstraction from methyl pentanoate by an OH radical
Zhang et al. Position-specific carbon isotopic composition of thermogenic propane: Insights from pyrolysis experiments
Li et al. Shock tube and modeling study of 2, 7-dimethyloctane pyrolysis and oxidation
CN109817287B (zh) 一种延迟焦化模型集成方法
CN107085059B (zh) 一种测定汽油辛烷值的方法及装置
Cao et al. An evaluation of alumina reaction tube conditioning for high‐precision 2H/1H isotope measurements via gas chromatography/thermal conversion/isotope ratio mass spectrometry
CN102183609B (zh) 内燃机燃烧所生成的多环芳香烃定量检测方法
Xie et al. Evaluating the role of hydroxyl keto-hydroperoxide in the low temperature oxidation of alkenes
Cain et al. Enhancing partial least squares modeling of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry data by tile-based variance ranking
Lee et al. Investigation of methods for determining aromatics in middle-distillate fuels
Dimitrijevic et al. Pyrolysis of acetylene during viscous flow at low conversions; influence of acetone
Wang et al. Experimental investigation of secondary reactions of intermediates in delayed coking
CN116046908B (zh) 一种进行裂解并在线色谱分析裂解产物的方法和装置
Khan Oxidation of industry standard fuels and blends of primary reference fuels in the low temperature and negative temperature coefficient regions
CN115753499A (zh) 一种检测氟硅油中氟含量的方法
CN111579661A (zh) 一种以粗苯三苯率调节脱苯塔参数实现粗苯稳产高产的操作方法
RU2421712C1 (ru) Способ определения содержания компонент смеси углеводородов
Hoblos et al. A chemical kinetic study of tetrahydropyran high-pressure oxidation in a jet-stirred reactor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20071121