CN1720445B - 使用x-射线发射以用于制程监控的系统及方法 - Google Patents

使用x-射线发射以用于制程监控的系统及方法 Download PDF

Info

Publication number
CN1720445B
CN1720445B CN2003801051424A CN200380105142A CN1720445B CN 1720445 B CN1720445 B CN 1720445B CN 2003801051424 A CN2003801051424 A CN 2003801051424A CN 200380105142 A CN200380105142 A CN 200380105142A CN 1720445 B CN1720445 B CN 1720445B
Authority
CN
China
Prior art keywords
impact
impact point
image
different
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2003801051424A
Other languages
English (en)
Other versions
CN1720445A (zh
Inventor
德罗尔·舍梅什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN1720445A publication Critical patent/CN1720445A/zh
Application granted granted Critical
Publication of CN1720445B publication Critical patent/CN1720445B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

现提供数种通过带电粒子束(例如电子或离子)所引诱的X-射线发射为基础而用于制程监控的系统及方法,其概念在文中有描述。

Description

使用X-射线发射以用于制程监控的系统及方法
技术领域
本发明是关于扫描式电子显微镜,且尤其是与测量铜层厚度以及检测孔洞(voids)有关。
背景技术
集成电路为一种具有许多层且非常复杂的组件。各层可能包括导电材料以及/或绝缘材料,而其它层可能包括半导体材料。这些不同材料是按图案排列,通常是与集成电路所预期的功能相符。图案也会反映集成电路的制程。
集成电路是由复杂的多步骤制程所制造,此制程可能包括将光阻材料沉积在一基材或一层上、以光微影制程选择性暴露该光阻材料、以及显影该光阻材料以形成图案,以界定出某些随后欲蚀刻或作其它制程的区域。在图案化后会以不同材料进行处理,例如沉积铜层。在移除(如以化学机械研磨)接触材料后通常会接着进行沉积步骤。而研磨常导致各种形变,例如浅碟化(dishing)或过蚀(erosion)。
现已发展出各种量度、检测以及缺陷分析技术以检测制造步骤期间的集成电路,也就是在连续不断的制造步骤之间,无论是与制造制程结合(也称为线上(in line)检测技术)或不结合(也称为离线(off line)检测技术)。现已知制造缺陷可能会影响集成电路的电子特性,且与图案所欲尺寸有所偏差时会导致此等缺陷出现。
X-射线反射率(X-Ray Reflectivity,XRR)以及X-射线荧光(X-RayFluorescence,XRF)均为利用X-射线来判定薄膜厚度的方法,不同设备商会销售利用此等方法的设备以进行薄膜厚度判定。此等设备商之一者为一间有销售各种设备的以色列公司Jordan Valley,其所贩售的JVX 5200量度设备便可执行前述两种方法。
也可利用以X-射线为主的方法来检测薄膜内的孔洞,目前业界已知技术方案可参照下列专利及专利申请案,同时其全文均合并于此以供参考:Mazor等人所领证的美国专利第6,556,652号,其标题为“Measurement ofcritical dimensions using X-ray”;Yokhin所领证的美国专利第6,535,575号,标题为“Pulsed X-ray reflectometer”;Yokhin所领证的美国专利第6,041,095号,标题为“X-ray fluorescence analyzer”;Yokhin等人所领证的美国专利申请案第2003/0156682号,其标题为“Dual-wavelength X-rayreflectometry”。
X-射线点通常相对较大,例如,JVX 5200设备在执行XRF时会形成约18-30微米的点,以及在执行XRR时所形成一较大的点(由于掠射角亮度所致),其长度约2-8毫米。此等测量需要相当大的测试板(XRF需约70×100微米,而XRR需约150×2000-5000微米)。
电子束量度以及缺陷检测设备(例如扫描式电子显微镜)一般是以高分辨率方式测量表面特征以及表面缺陷与污染物。此等设备会形成非常小的电子点,一般点的长度约为几纳米。此等电子束量度以及缺陷检测工具且无法检测孔洞或测量层的厚度,例如不透明层(opaque layer),尤其是铜层。
Nasser-Ghodsi等人所申请的美国专利申请序号第10/242,496、09/990,170及09/990,171号,其等标题分别为“Methods and system fordishing and erosion characterization”、“Methods and system for defectlocalization”以及“Methods and system for void characterization”等均已说明用以分析铜薄膜的现有方法与系统。
Nasser-Ghodsi在美国专利申请序号第09/990,171号中公开了一种可响应测量计算而提供有关孔洞存在位置的系统及方法。然而应注意的是前述以计算为基础的系统与方法容易因测量不精确性(例如测量设备间的差异、不同材料所具有不同X-射线的吸收与发散特性)而有各种错误。
发明内容
本发明于各种实施例中是提出数种依据带电粒子束(如电子或离子)所引诱的X-射线发射来进行制程监控的系统及方法。
该系统及方法提供一图像,其影响从定位于样品的一区域内的多个位置所发射的X-射线。一处理器可以产生该图像且控制该图像的图形表示以及处理过程。
在另一实施例中,本发明是提出一种用于制程监控的系统及方法,其可在空孔填充导电材料之前分析该空孔(cavity)。
在又一实施例中,本发明是提出一种用于制程监控的系统及方法,它是应用定量反复分析校正技术于已检测X-射线发射中。
附图说明
为了解本案技术以及其实务上如何执行,现将配合非限制性的例子并参照附加图式来说明本案较佳实施例,其中:
图1说明一样品及一带电粒子束之间的反应制程以及各种信息体积;
图2说明依据本发明可使用进行制程监控的扫描式电子显微镜(Scanning Electron Microscope,SEM);
图3说明一样品的一小部份的截面;
图4说明一包含许多目标点的晶圆;
图5a-5d说明示例性的目标点;
图6说明依据本发明的一实施例中用于寻找一目标点或一区域的方法;
图7-9为流程图,说明依据本发明的一实施例中用于制程监控的方法;
图10是一依据本发明的一实施例的示例性样品图像,其可提供有关孔洞体积的色彩标示。
附图标记说明:
2  一次电子束          3  薄信息体积
4  俄歇电子            5  大信息体积
6  背向散射电子        8  X-射线电子
9  对象                11 交互作用点
12 物镜                14 EDX检测器
16 二次电子检测器      17 透镜内检测器
18 孔径                20 样品
22 镜台                40 基材
41 空孔                42 大填垫物
44  小部份        60  晶圆
62  晶粒          64  目标点
71’空孔          72  基材
73  目标点        74  L形导体
75  目标点        77  目标点
79  铜层          81  铜层
82  第一部份      84  附加部分
86  孔洞
具体实施方式
本发明是关于制程监控的系统及方法,用以检测薄层中的孔洞,或者,可用以判定薄而不透明层的厚度。
图1说明各种交互作用制程以及各种信息体积(information volumes)。信息体积是一种空间,于其中会进行交互作用步骤并引诱X-射线或电子散射,其最后可被检测以提供有关信息体积的信息。
该图说明了二次电子2是于一交互作用点11处撞击一样品20。因此,二次电子2及俄歇电子(Auger electrons)4会由一非常薄的信息体积3发散,同时背向散射电子(Back Scattered Electron,BSE)6及X-射线8会由一相当大的信息体积5(深度甚至超过一微米)离开该已检测对象。
应注意的是该相当大的信息体积5内的电子分布并非均匀。电子通量会随着距交互作用点11的距离增加而渐减。
孔洞深度的标示可通过以不同能量的电子束照射孔洞邻近区予以检测。
图2说明依据本发明的一实施例中可用于制程监控的扫描式电子显微镜(Scanning Electron Microscope,SEM)10。SEM 10包括一用以产生一次电子束的电子枪(图中未标示),以及多个控制与电压供应单元(标示为11)、一物镜12及一EDX检测器14。
应注意的是SEM 10也可包含多于一单一检测器。SEM 10可包括至少一定位于透镜内(in-lens)的检测器(如同选择性设置的二次电子检测器16)以及/或至少一外部检测器(例如EDX检测器14)。SEM 10可包括不同类型的检测器,例如二次电子检测器、背向散射电子检测器、窄频X-射线检测器以及类似者。各检测器可包括一单一感应组件,或可包括一感应组件数组。该等检测器可经定位以检测发散向不同方位的射线。
在SEM 10中,一次电子束是导经一孔径18(位于该选择性设置的透镜内检测器17内)以由物镜12作聚焦而落于检测样品20上。该一次电子束会与样品20交互作用,并因此反射或散射各种形式的电子及光子,例如二次电子、背向散射电子、俄歇电子以及X-射线量子。
EDX检测器14是经定位以检测至少一部份的发散X-射线。EDX检测器14为一宽频X-射线检测器,其可提供一辐射谱,经分析后可判定哪些材料与电子束交互作用。本案发明人是使用各种EDX检测器,例如ThermoNoran的EDX检测器,其具有Phi-Rho-Z电子碳针校正程序(名为PHI-RHO-Z)。本案发明人也应用其它定量校正系统,例如ZAF分析。Phi-Rho-Z校正程序以及ZAF分析均可将X-射线强度的峰面积(peak area)转为化学数值,其代表频谱的元素组成的元素重量约数(elemental weightfraction)。此等技术可补偿多种材料制成的样品以EDX分析时的各种现象。
有关使用ZAF分析的EDX分析器的概要说明是公开于Fiori等人所领证的美国专利第5,299,138号中,其全文合并于此以供参考。
样品20是定位于一镜台22上。制程监控期间会在样品20及一次电子束2之间形成相对移动,其包含样品的机械移动、SEM 10其它部件的机械移动以及/或电子束2的电子检测,或移动与检测的组合。一般而言,在找出一特定目标点或一特定区域后便会进行机械移动,然而也可以在扫描该目标点或区域时进行。
当需检测一特定目标或区域时,会需要找出特定目标点或区域。图6即描述一示例性寻找流程,说明寻找一区域或一目标点的流程50。流程50起始于步骤52,即机械移向一特定目标或区域的邻近区(选择性实施)。步骤52之后进行步骤54,其通常利用机械移动不精确性所推得的视野来取得该邻近区的图像,而该图像是通过扫描一撷取窗口内邻近区的方式取得。图5a即描述前述邻近区,包括该目标点(其在依序扫描时包括由氧化物所围绕的空孔)以及其它空孔71’以及L形导体74。步骤54之后进行步骤56,处理该图像以找出目标点或区域。步骤56通常包括比较一目标点与一先前取得的目标点图像。一旦找到该特定目标点或区域后,便以一扫描窗口(通常明显小于撷取窗口)进行扫描。应注意的是,因对已检测图案的一特定尺寸而言,图案本身的信号是与扫描面积成反比,故EDX感应器(用于制程监控)的信号噪声比(signal to noise ratio)及/或该EDX检测器的反应周期通常会对该扫描窗口的尺寸有所影响。
SEM 10一般用于执行各种制程监控方法(例如本案图式中的方法100-300),但某些步骤可能会需要使用其它设备,例如光检测设备或方法200的步骤210期间所欲使用的关键尺寸扫描式电子显微镜。
SEM 10可包括沿带电粒子束之路径所设置的附加电极与阳极,其等可与电流计(可评估带电粒子束的强度)连接,成为电子束的一部份而与电极或阳极交互作用。该电子束也可引导至一特别目标点(在该样品内形成),以便测量电子束强度。
SEM 10包括一可处理检测信号的处理器8,且也可控制SEM 10各种部件的操作。一般而言,处理器8具有图像处理及控制能力。例如,处理器8可判定以何种方式处理该已检测X-射线发射,及如何形成一图像。
图像的形成步骤包含判断各种孔洞体积范围、各种平面厚度值范围、目标点厚度范围、孔洞深度范围及类似者等需配以何种颜色及/或标示。
图3是说明一样品20的一小部份44的截面。该小部份44包括环绕多个空孔41的基材40以及一大型填垫物42,每一者均由基材40所环绕,但并未将其覆盖。该大型填垫物及空孔(其等已放大尺寸以便说明)是由导电材料制成,例如铜。该导电材料是沉积于一经蚀刻的基材40,并接着进行接触导电材料的移除制程42。应注意的是在许多情况中,中间阻障层可设于各个空孔41间以及大型填垫物与基材40之间。
该制程会导致孔洞及/或导体上表面形变。此等形变包括过蚀、浅碟化以及刮痕,且通常在导体相当大时尤其明显。此在导体为填垫物状或一长的导体线时也会发生,但在导体为小的内联机或空孔时较不明显。此处所称的“大”是界定与照射点的尺寸相关,反应出其它对象(例如空孔)的尺寸、或反应出取决于集成电路功能的尺寸形变的影响。
图4说明一可包括许多目标点64的晶圆60,其中该晶圆60具有许多晶粒62。各晶粒62可包括一单一目标点64,但通常包括为数众多的目标点64。当存有许多目标点64时,制程监控步骤可包括选择哪一目标点进行评估。某些目标点可形成在晶粒间的晶圆割线内,而其它目标点则可形成在该等晶粒之内。一经扫描的目标点或区域可包括由硅氧烷所部分环绕的空孔,但并非一定需要如此。本案发明人也扫描了导线部分,并了解在制程监控步骤期间也可以扫描其它形状的目标点。典型的目标点则进一步描述于图5a-5d中。
为能提供不同目标点间的比较值,组成材料应相同,且较佳具有相同外型。本案发明人发现目标点可为任何图案。例如,可选择由氧化物所环绕的铜空孔作为目标点。选择均与制造制程特性有关(例如倾向形成孔洞、会受到浅碟化影响的大型物以及类似者)。
图5a-5c说明不同目标点70、73、75的俯视图,而图5d则说明目标点77的截面图。目标点70、73及75是接触铜移除后建立,而目标点77包括随后欲移除的接触铜。图5a表示目标点70,其包含一由基材72所环绕的单一铜空孔71。图5b表示目标点73,其包括多个由基材72以及一部份导线74所环绕的空孔71。图5c表示目标点75,其包括一导线的一部份76,它是由基材72所环绕。图5d表示目标点77,其包括一埋设空孔71、一上层铜79、基材72以及一可能的第一部份82及一附加部分84,这些是以不同能量的电子束照射该目标点而形成。空孔连接至铜层79及一下层铜81。该第一部份及附加部分的形状是对应于孔洞(例如空孔71内的孔洞86)存在与否。
图5a也说明目标点70的邻近区68,即由一撷取窗口所界定的范围。该邻近区包括其它空孔71’以及一L形导体。图5b-5c的各者均表示一扫描窗口。
图7是一说明制程监控方法100的流程图。方法100起始于步骤110,接收一样品(例如由二或多种材料制成的样品20)。步骤110之后进行步骤120,判别样品20的哪一区域或区域(群)欲进行扫描。通常样品为晶圆,且各区域均包含数个目标点,在依序扫描时可能包括至少由其它材料(例如硅氧化物基材)所部分环绕的铜对象(例如图5a-5d的空孔71)。
一般而言,尤其在进行晶粒对晶粒(die-to-die)比较时,每一晶粒均会扫描相同区域,然而此并不是必须的。
步骤120之后进行寻找该区域的步骤130。找寻一区域可能包含图6所示的步骤52-56,然而此同样并不是必须的。例如,某些情况中可能就不需要机械移动。
步骤130之后进行步骤140以扫描该样品的定位区域,例如引诱来自该样品的一第一部份(如图1相对大的信息体积5或图5d的部分82或84)的X-射线发射。
第一部份的形状及尺寸乃响应于该样品的不同特性,以及带电粒子束的不同特性。例如,电子的穿透能力易受交互作用的目标点邻近区的材质、该邻近区的材料排列、一次电子的电子能量、电子束的倾斜角以及类似者所影响。
步骤140之后进行步骤150,判别由该第一部份发散的X-射线。此步骤可以包括检测该发散X-射线的一部分,而检测过程会受到EDX检测器的位置、照射路径和EDX检测器的敏感度以及类似者的影响。如先前所提及,检测步骤也可以多个检测器进行。这些检测器可为同样类型及特性,但频率响应以及敏感度可以变化。
步骤150之后进行步骤160,即提供有关步骤的标示。步骤160可能包含对已检测X-射线发射进行一定量分析校正技术。也可以选择的是,评估步骤可能包括晶粒对晶粒或晶粒对数据库比对。晶粒对晶粒包括比对当前照射目标点的结果与先前另一目标点的结果。本案发明人发现当前照射部分的结果与先前相同晶圆(甚至是相同晶粒)排除的另一目标点的比较结果相当有用,也就是会改变发散X-射线辐射的各种特性在晶圆对晶圆之间、甚至是晶粒对晶粒之间会有所变化。此等特性可能包括铜密度及类似者。
定量分析校正技术可能为Phi-Rho-Z校正程序及/或可将X-射线强度峰面积转为化学数值(其代表频谱的元素组成的元素重量约数)的ZAF分析。
步骤160可能包括比较当前时间与估算散射。估算散射易受一经评估的第一部份所影响,且更明确而言是易受该第一部份内所包含的评估材料,以及/或易受该第一部份内对象的评估排列所影响。
依据本发明的各种实施例,该第一部份至少包含由不同材料制成的对象,例如导电对象(例如空孔、连接至该空孔的金属层导体)、基材、阻障层以及类似者。该经评估的第一部份内容可反映出一大致无瑕疵的第一部份,但此并不是必须的。例如,其可反映出一典型的第一部份。评估步骤易受检测样品的设计及/或易受该样品或甚至其它样品的其它部分的先前测量值所影响。此评估步骤可能包含该样品或其它样品的其它部分的破坏性测量(例如包含样品截面的测量)、或非破坏性测量。
应注意的是,该第一部份的评估易受一种或多种影响该第一部份的形状或尺寸的参数所影响,例如一次电子束的能量、倾斜角以及照射样品。本案发明人是使用以Monte Carlo为基础的仿真来评估由一样品发散的X-射线。
依据本发明的一实施例,步骤160可提供反映该第一部份内一孔洞存在与否的标示。本案发明人发现即使是相当小的孔洞也可被检测出。例如,总体积为极少百分比的空孔体积的孔洞。在目标点以不同能量的一次电子束、甚至是不同倾斜角照射时,孔洞深度以及每一目标点的总体积即可作相当精确的判定。
依据本发明的另一实施例,步骤160可提供有关一定位于该指定区域中对象形状的标示。前述标示需要对该对象内不同位置进行多次测量,而不同位置可界定出一网格。每一次测量均可反映该对象于一特定位置处的厚度。因此,通过测量一特定导电性填垫物或其它大型对象的厚度,本方法将可标示该对象是否平坦、变形、呈碟形及类似者。
依据本发明的一实施例,方法100可包括一选择性步骤170,即评估一参考对象的特性。该参考对象通常为一经填充的空孔,填充有相同的导电材料以作为检测对象。步骤170之后进行步骤160,其中该标示同样易受该评估特性的影响。一般而言,前述特性即该参考对象的厚度。
步骤170可能包括测量该参考对象的一特性。该步骤包含于该参考对象的不同位置进行多次测量,然而也可以仅包含单一测量。本案发明人选择于一经筛选以致能提供有关该参考对象厚度的标示的位置处测量该参考对象。该选择可能包含评估何处不会有孔洞及/或何处浅碟的影响较小。例如,在一已知大型参考对象中,孔洞通常靠近一对象的边缘。因此,本案发明人所选位置较靠近该对象的中心。若该大型参考对象表面有可能发生变形,则可另外进行测量以提供该参考对象厚度的代表参数。
图8是用于制程监控的方法200的流程图。方法200可以多步骤的监控制造制程来分析一样品。方法200起始于步骤210,即取得一具有空孔特性的样品。该样品由至少一第一材料制成。一般而言,样品20为一具有至少一基材且可能包含多层(包含导电层)的集成电路。该样品可由许多材料制成,但该等材料至少某些需不会影响X-射线的发散,因此并不会设在会发散X-射线的第一部份内。空孔可于一随后欲填充有导电材料(例如铜)的基材内进行蚀刻。
步骤210之后进行判别该空孔特性的步骤220。该判别步骤可能包含判别该空孔的至少一尺寸,例如底部宽度、顶部宽度以及平均高度。该判别步骤可能包括以关键尺寸扫描式电子显微镜(Critical Dimension SEM,CD-SEM)来扫描该空孔,其中扫描可能包括垂直入射以及倾斜入射。该判别步骤可能包括光学测量(例如该等包含反射仪的光学测量),且也可能包含以比较该空孔对一群先前测量的空孔的测量的方式评估该空孔体积或其截面。该判别步骤也可能包括数学分析测量,以提供经判定的特性。此等数学分析方法的一种是由IBM所发展出,其包括将一数学方程式(通常为一特定阶层之多项式)应用在测量中。
该判别步骤易受一处或多处的空孔的一个或多个尺寸的一种或多种测量所影响。
步骤220之后进行制造步骤,在制造步骤期间该样品是提供至欲进行处理的一制造设备内,并接着返回该X-射线检测的设备中(例如图2的SEM 10)。该处理步骤包括填充该空孔,其也可以包含研磨或移除过量材料,但此并不是必须的。本案发明人是在包含一经填充空孔以及上层导电材料的样品上进行前述某些测量。在此等情况下发明人发现上层通常不会有孔洞。然而若不进行接触材料的移除动作,该上层下方的各种现象(例如层的浅碟化)将无法作监控。
因此,方法200包括接收一样品的步骤230,其包括将经处理空孔填充有一第二材料,例如导电材料,特别是铜此种导电材料。
步骤230之后进行步骤240,将一带电粒子束引导向该样品,借以引诱来自该样品的第一部份的X-射线发射,而该第一部份至少部分覆盖于该经处理空孔上。该第一部份通常包括该经处理空孔以及其环绕物。一旦出现孔洞,便需将该第一部份范围扩大以涵盖更多区域。
步骤240之后进行步骤250,检测由该第一部份发散的X-射线。
步骤250之后进行步骤260,提供有关该制程的标示以响应由该第一部份发散的已检测X-射线以及该空孔所判别的特性。依据本发明的不同实施例,该标示可反映该第一部份内是否有孔洞、或该经填充空孔的形状。该标示可反映不同位置处经处理空孔的厚度。
方法200是与一单一空孔有关。应注意的是依据本发明的一实施例,该方法也可用于监控该步骤以响应经多次处理的空孔,每一空孔都连接不同部分。因此,为了该经多次处理的每一空孔,步骤230及240至少需予以重复进行。有关该制程的标示步骤容易受由该与各空孔连接的部分检测出的X-射线发射以及至少一空孔的特性所影响。在此情况下,许多可以不同方式进行的多次测量均可提供与该制程有关的标示。每个结果均已可独立判读应用,但此并非必须如此,且其可进一步处理(包括统计学上的处理)以提供不同标示。
依据本发明的一实施例,多次结果是经处理以提供该样品的图像,其可指明所测得的X-射线发射(响应来自该样品多个部分的已检测X-射线发射)。
依据本发明的另一实施例,在进行多次测量同时改变各种照射或检测特性(例如加速电压、入射角、检测器位置、检测器敏感度以及类似者)后,孔洞特征便可更确切的界定出。因此,方法200可包括另一步骤(未示出,但应在步骤250后进行),即改变带电粒子束的特性以提供经变更的电子束,并重复步骤230及240,也就是引诱来自该样品的一第二部分(其至少部分覆盖该经处理空孔)的X-射线发射、以及检测发散自该第二部分的X-射线。步骤260也可修正以使有关该制程的标示能进一步对来自该第二部分的已检测X-射线发射有所反映。
依据本发明的又一实施例,方法200包括施加一定量分析校正技术于已检测X-射线发射,以进行制程监控。
图9是制程监控的方法300的流程图。方法300起始接收一由多种材料制成的样品的步骤310。
步骤310之后进行步骤320,扫描多个目标点以引诱来自多个目标点的X-射线发射、以及检测由该多个目标点发散的X-射线。多个目标点是定位于该样品的一第一区域内。步骤320可包括窄频或宽频X-射线检测。示例性的宽频X-射线检测包括EDX检测。窄频X-射线检测包括检测一窄频内的X-射线,其通常包括一经选择元素的特定发散线,例如铜的K-线或L-线。窄频检测器已为业界所周知,且有些已描述于Nasser-Ghodsi等人在美国专利申请号09/990,171中。
每个区域均经照射,且其辐射线在移至下一区域前予以检测,但也可进行多个目标点的同步照射以及对应的检测步骤。
步骤320可包括寻找多个目标点。该目标点可能包括方法50的步骤,但此并不是必须的。
步骤320之后进行步骤330,建立该样品至少一区域的图像,以指出响应于该多个目标点已检测X-射线的制程状态。
步骤330可包括制程测得之X-射线发射,以响应该目标点至少两材料的特性。该制程可为Phi-Rho-Z校正程序及/或ZAF制程。该制程可包括进行X-射线发射测量,以响应带电粒子束的测得强度。
该图像可指出下列至少一者:该样品内是否有孔洞、该孔洞深度、该孔洞体积、该目标点的形状偏差或浅碟化现象。
该图像可包含符号或颜色、或两者结合。不同符号测量或两者结合均可分配予不同孔洞体积范围、分配予不同孔洞深度范围、分配予不同目标点平坦度范围、分配予不同目标点厚度值范围以及类似者。图10的图像400是由分配不同颜色予不同孔洞体积所形成。图10是一仿真程序的示例性窗口,该仿真程序可估算一第一部份,特别是一样品所散发的辐射线。
依据本发明的一实施例,方法300还包括如下步骤:改变一带电粒子束(扫描多个目标点)的特性以形成一经改变的电子束,并以该经改变的带电粒子束扫描多个目标点,借以引诱来自该多个目标点的额外的X-射线发射;以及检测该额外的X-射线发射。在此情况下,有关该制程的标示会对额外已检测X-射线发射更有反应。
应注意的是在照射另一目标点之前,一个目标点可以一电子束及一经改变的电子束照射,但此并不是必须的。例如,在改变电子束以形成一经改变的电子束之前,多个目标点可由该(即未改变)电子束进行照射。
依据本发明的另一实施例,一旦多个空孔经过照射,每在照射前必须找出一经处理空孔。每一经处理空孔可通过取得该经处理空孔的一经评估邻近区的图像、并将之处理的方式找出。该图像一般是以扫描一撷取窗口内的样品的方式取得。通常一经处理空孔是在一小于该撷取窗口的扫描窗口内进行扫描。
依据本发明的另一实施例,有关该制程的标示会进一步受一参考参数影响,例如反映其它经处理空孔的测量、或反映一经评估的已检测X-射线发射等参考参数。
本发明可利用已知设备、方法及组成物进行操作。因此,前述设备、组成物及方法的细节本文并未详述。在先前说明中,许多特定细节的公开是为了通盘了解本发明而提出的。然而,应理解本发明的实施并不受限于前述特定细节。
本案发明内容中所表示及公开的内容只是作为示例性的实施例及其少数范例的变化。应理解的是,本发明可在各种组合方式及环境下实施,且应可在下文所界定的发明范围内进行改变或修饰。

Claims (60)

1.一种用于制程监控的方法,该方法至少包含下列步骤:
接收一由至少两种材料制成的样品;
扫描多个目标点,借以引诱来自多个目标点的X-射线发射,而该多个目标点是定位于该样品的一第一区域内;
检测发散自该多个目标点的X-射线;以及
建立该样品的至少一区域的一图像,其可指出该制程的一状态以响应来自多个目标点的已检测X-射线发射。
2.如权利要求1所述的方法,其特征在于,所述的检测X-射线的步骤至少包含经发散X-射线的宽频检测。
3.如权利要求1所述的方法,其特征在于,所述的检测X-射线的步骤至少包含X-射线的窄频检测。
4.如权利要求1所述的方法,其特征在于,所述的建立一图像的步骤至少包含处理所测得的X-射线发射,以响应该目标点的至少两种材料的特性。
5.如权利要求4所述的方法,其特征在于,所述的处理至少包含ZAF处理。
6.如权利要求1所述的方法,其特征在于,还包含监控带电粒子束的强度,以及处理X-射线发射测量以响应该强度。
7.如权利要求1所述的方法,其特征在于,还包含寻找所述的多个目标点的步骤。
8.如权利要求7所述的方法,其特征在于,寻找一目标点的步骤至少包含取得该目标点的一经评估邻近区的图像,并处理该图像以找出该目标点。
9.如权利要求8所述的方法,其特征在于,所述的图像是通过于一撷取窗口内扫描该样品的方式取得。
10.如权利要求9所述的方法,其特征在于,所述的一目标点是在一小于该撷取窗口的扫描窗口内进行扫描。
11.如权利要求10所述的方法,其特征在于,所述的一目标点至少包含一由一第一材料制成的第一对象,该第一对象是由一第二材料制成的一第二对象所部分环绕。
12.如权利要求11所述的方法,其特征在于,所述的第一对象为一空孔或一内联机。
13.如权利要求11所述的方法,其特征在于,所述的第一材料为导体。
14.如权利要求11所述的方法,其特征在于,所述的第一对象是由铜制成,且该第二对象是由硅氧化物制成。
15.如权利要求1所述的方法,其特征在于,所述的图像可反映该样品内孔洞的存在。
16.如权利要求1所述的方法,其特征在于,所述的图像可反映该目标点形状上的偏差。
17.如权利要求16所述的方法,其特征在于,所述的偏差会反映出浅碟化现象。
18.如权利要求1所述的方法,其特征在于,所述的图像可提供一与各目标点内的一孔洞体积有关的标示。
19.如权利要求18所述的方法,其特征在于,不同孔洞体积范围是配予了不同的符号。
20.如权利要求18所述的方法,其特征在于,不同孔洞体积范围是配予了不同的颜色。
21.如权利要求1所述的方法,其特征在于,所述的图像可提供一与各目标点平坦度有关的标示。
22.如权利要求21所述的方法,其特征在于,不同平坦度范围是配予了不同的符号。
23.如权利要求21所述的方法,其特征在于,不同平坦度范围是配予了不同的颜色。
24.如权利要求1所述的方法,其特征在于,所述的图像可提供一与各目标点的厚度有关的标示。
25.如权利要求24所述的方法,其特征在于,不同厚度范围是配予了不同的符号。
26.如权利要求24所述的方法,其特征在于,不同厚度范围是配予了不同的颜色。
27.如权利要求1所述的方法,其特征在于,所述的图像可提供一与各目标点内一孔洞的深度有关的标示。
28.如权利要求27所述的方法,其特征在于,不同孔洞深度范围是配予了不同的符号。
29.如权利要求27所述的方法,其特征在于,不同孔洞深度范围是配予了不同的颜色。
30.如权利要求1所述的方法,其特征在于,还至少包含改变一扫描多个目标点的带电粒子束的一特性以提供一经改变的电子束的步骤。
31.如权利要求30所述的方法,其特征在于,还至少包含以该经改变的带电粒子束扫描多个目标点,借以由多个目标点引诱额外的X-射线发射,并检测该额外的X-射线发射。
32.如权利要求31所述的方法,其特征在于,与该制程有关的标示还可响应该额外的已检测X-射线发射。
33.一种用于制程监控的系统,该系统至少包含:
扫描装置,用以扫描多个目标点以引诱来自多个目标点的X-射线发射,而该多个目标点是定位于一由多种材料制成的样品的一第一区域内;
至少一检测器,用以检测发散自该多个目标点的X-射线;以及
一处理器,用于建立该样品的至少一区域的一图像,其可指出该制程的一状态以响应来自该多个目标点的已检测X-射线发射。
34.如权利要求33所述的系统,其特征在于,所述的至少一检测器为一宽频检测器。
35.如权利要求33所述的系统,其特征在于,所述的至少一检测器为一窄频检测器。
36.如权利要求33所述的系统,其特征在于,所述的处理器会通过处理所测得的X-射线发射的方式建立一图像,以响应该目标点的至少两种材料的特性。
37.如权利要求33所述的系统,其特征在于,所述的处理至少包含ZAF处理。
38.如权利要求33所述的系统,其特征在于,还包含用以监控带电粒子束的强度的监控装置,且该处理器可处理X-射线发射测量以响应该强度。
39.如权利要求38所述的系统,其特征在于,还可寻找多个目标点。
40.如权利要求39所述的系统,其特征在于,寻找一目标点还至少包含取得该目标点一经评估邻近区的一图像,并处理该图像以找出该目标点。
41.如权利要求39所述的系统,其特征在于,所述的系统可通过扫描一撷取窗口内的样品的方式取得图像。
42.如权利要求41所述的系统,其特征在于,所述的系统可于一小于该撷取窗口的扫描窗口内扫描一目标点。
43.如权利要求33所述的系统,其特征在于,所述的图像可反映该样品内孔洞的存在。
44.如权利要求33所述的系统,其特征在于,所述的图像可反映该目标点形状上的偏差。
45.如权利要求33所述的系统,其特征在于,所述的偏差可反映出浅碟化现象。
46.如权利要求33所述的系统,其特征在于,所述的图像可提供一与各目标点内的一孔洞体积有关的标示。
47.如权利要求46所述的系统,其特征在于,所述的处理器会对不同孔洞体积范围给予不同符号。
48.如权利要求46所述的系统,其特征在于,所述的处理器会对不同孔洞体积范围给予不同颜色。
49.如权利要求33所述的系统,其特征在于,所述的图像会提供一与各目标点的平坦度有关的标示。
50.如权利要求49所述的系统,其特征在于,所述的处理器会对不同平坦度范围给予不同符号。
51.如权利要求50所述的系统,其特征在于,不同平坦度范围是配予了不同的颜色。
52.如权利要求33所述的系统,其特征在于,所述的图像可提供一与各目标点的厚度有关的标示。
53.如权利要求52所述的系统,其特征在于,所述的处理器会对不同厚度范围给予不同符号。
54.如权利要求52所述的系统,其特征在于,所述的处理器会对不同厚度范围给予不同颜色。
55.如权利要求33所述的系统,其特征在于,所述的图像可提供一与各目标点内一孔洞的一深度有关的标示。
56.如权利要求55所述的系统,其特征在于,所述的处理器会对不同孔洞深度范围配予不同符号。
57.如权利要求55所述的系统,其特征在于,所述的处理器会对不同孔洞深度范围配予不同颜色。
58.如权利要求33所述的系统,其特征在于,还可改变一扫描多个目标点的带电粒子束的一特性,以提供一改变的电子束。
59.如权利要求58所述的系统,其特征在于,还可以经改变的电子束扫描多个目标点,借以引诱来自该多个目标点的额外X-射线发射,并检测该额外的X-射线发射。
60.如权利要求59所述的系统,其特征在于,与该制程有关的标示还可响应该额外的已检测X-射线发射。
CN2003801051424A 2002-10-08 2003-10-08 使用x-射线发射以用于制程监控的系统及方法 Expired - Fee Related CN1720445B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41727302P 2002-10-08 2002-10-08
US60/417,273 2002-10-08
PCT/US2003/032037 WO2004034044A1 (en) 2002-10-08 2003-10-08 Methods and systems for process monitoring using x-ray emission

Publications (2)

Publication Number Publication Date
CN1720445A CN1720445A (zh) 2006-01-11
CN1720445B true CN1720445B (zh) 2010-06-16

Family

ID=32093993

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2003801051443A Expired - Fee Related CN100557431C (zh) 2002-10-08 2003-10-08 使用x-射线发射监控制程的方法以及系统
CN2003801051424A Expired - Fee Related CN1720445B (zh) 2002-10-08 2003-10-08 使用x-射线发射以用于制程监控的系统及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2003801051443A Expired - Fee Related CN100557431C (zh) 2002-10-08 2003-10-08 使用x-射线发射监控制程的方法以及系统

Country Status (4)

Country Link
US (1) US7312446B2 (zh)
CN (2) CN100557431C (zh)
AU (2) AU2003279904A1 (zh)
WO (2) WO2004034043A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017997A1 (en) * 2003-08-01 2005-02-24 Applied Materials Israel, Ltd. Charged particle beam inspection
GB0512945D0 (en) * 2005-06-24 2005-08-03 Oxford Instr Analytical Ltd Method and apparatus for material identification
GB0712052D0 (en) * 2007-06-21 2007-08-01 Oxford Instr Molecular Biotool Method for quantitive analysis of a material
US8065094B2 (en) * 2008-07-30 2011-11-22 Oxford Instruments Nonotechnology Tools Unlimited Method of calculating the structure of an inhomogeneous sample
EP2605005A1 (en) * 2011-12-14 2013-06-19 FEI Company Clustering of multi-modal data
EP2755021B1 (en) * 2013-01-15 2016-06-22 Carl Zeiss Microscopy Ltd. Method of analyzing a sample and charged particle beam device for analyzing a sample
KR20140112230A (ko) * 2013-03-13 2014-09-23 삼성전자주식회사 막의 불균일도 검출 방법 및 이를 수행하기 위한 장치
US9805909B1 (en) * 2016-09-20 2017-10-31 Applied Materials Israel Ltd. Method for detecting voids in interconnects and an inspection system
US10453645B2 (en) * 2016-12-01 2019-10-22 Applied Materials Israel Ltd. Method for inspecting a specimen and charged particle multi-beam device
WO2019028017A1 (en) * 2017-08-01 2019-02-07 Applied Materials Israel Ltd. EMPTY DETECTION METHOD AND INSPECTION SYSTEM
CN113785170B (zh) * 2019-05-08 2023-07-14 株式会社日立高新技术 图案测量装置以及测量方法
EP3745442A1 (en) * 2019-05-29 2020-12-02 FEI Company Method of examining a sample using a charged particle microscope
DE102021117592B9 (de) 2021-07-07 2023-08-03 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Teilchenstrahlmikroskops, Teilchenstrahlmikroskop und Computerprogrammprodukt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857731A (en) * 1987-04-17 1989-08-15 Jeol Ltd. Instrument for analyzing specimen
US5801382A (en) * 1996-07-09 1998-09-01 Jeol Ltd. Method of analyzing foreign materials
CN1355558A (zh) * 2000-11-23 2002-06-26 三星电子株式会社 用于检测半导体器件中的缺陷的装置及使用该装置的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2842879B2 (ja) * 1989-01-06 1999-01-06 株式会社日立製作所 表面分析方法および装置
JPH08285799A (ja) * 1995-04-11 1996-11-01 Jeol Ltd 面分析装置
US6351516B1 (en) * 1999-12-14 2002-02-26 Jordan Valley Applied Radiation Ltd. Detection of voids in semiconductor wafer processing
JP2003107022A (ja) * 2001-09-28 2003-04-09 Hitachi Ltd 欠陥検査装置及び検査方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857731A (en) * 1987-04-17 1989-08-15 Jeol Ltd. Instrument for analyzing specimen
US5801382A (en) * 1996-07-09 1998-09-01 Jeol Ltd. Method of analyzing foreign materials
CN1355558A (zh) * 2000-11-23 2002-06-26 三星电子株式会社 用于检测半导体器件中的缺陷的装置及使用该装置的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
P.Willich R.Bethke.Performance and limitations of electron probemicroanalysis applied to the characterization of coatings andlayered structures.Fresenius' Journal of ANALYTICAL CHEMISTRY353 3-4.1995,353(3-4),389-392.
P.Willich R.Bethke.Performance and limitations of electron probemicroanalysis applied to the characterization of coatings andlayered structures.Fresenius' Journal of ANALYTICAL CHEMISTRY353 3-4.1995,353(3-4),389-392. *
同上.

Also Published As

Publication number Publication date
CN1720446A (zh) 2006-01-11
WO2004034044A1 (en) 2004-04-22
US20060049349A1 (en) 2006-03-09
AU2003277329A8 (en) 2004-05-04
WO2004034043A2 (en) 2004-04-22
AU2003277329A1 (en) 2004-05-04
WO2004034043A3 (en) 2004-07-01
US7312446B2 (en) 2007-12-25
CN100557431C (zh) 2009-11-04
CN1720445A (zh) 2006-01-11
AU2003279904A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
US6777676B1 (en) Non-destructive root cause analysis on blocked contact or via
CN1720445B (zh) 使用x-射线发射以用于制程监控的系统及方法
US7476875B2 (en) Contact opening metrology
US7483560B2 (en) Method for measuring three dimensional shape of a fine pattern
US6671398B2 (en) Method and apparatus for inspection of patterned semiconductor wafers
JP3877952B2 (ja) デバイス検査装置および検査方法
US9536700B2 (en) Sample observation device
US11211226B2 (en) Pattern cross-sectional shape estimation system and program
US6146910A (en) Target configuration and method for extraction of overlay vectors from targets having concealed features
TWI744644B (zh) 圖案測定方法、圖案測定工具、及電腦可讀媒體
US6787770B2 (en) Method of inspecting holes using charged-particle beam
US6723987B2 (en) Method of inspecting holes using charged-particle beam
US7473911B2 (en) Specimen current mapper
US6924484B1 (en) Void characterization in metal interconnect structures using X-ray emission analyses
US7365320B2 (en) Methods and systems for process monitoring using x-ray emission
US7186977B2 (en) Method for non-destructive trench depth measurement using electron beam source and X-ray detection
CA3139935A1 (en) Water impurity measurements with dynamic light scattering
Barkshire et al. The application of a low energy loss electron detector in conjunction with scanning Auger microscopy: an aid to quantitative surface microscopy
US6774648B1 (en) Apparatus and methods for optically detecting defects in voltage contrast test structures
JPH10221269A (ja) 異物検査装置
Wells et al. Top-down topography of deeply etched silicon in the scanning electron microscope
JPH05243352A (ja) パターンの寸法測定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100616

Termination date: 20141008

EXPY Termination of patent right or utility model