CN1705148A - 一种锂离子电池负极材料的改性方法 - Google Patents

一种锂离子电池负极材料的改性方法 Download PDF

Info

Publication number
CN1705148A
CN1705148A CNA2004100206068A CN200410020606A CN1705148A CN 1705148 A CN1705148 A CN 1705148A CN A2004100206068 A CNA2004100206068 A CN A2004100206068A CN 200410020606 A CN200410020606 A CN 200410020606A CN 1705148 A CN1705148 A CN 1705148A
Authority
CN
China
Prior art keywords
negative material
lithium ion
ion battery
modifying
battery negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100206068A
Other languages
English (en)
Other versions
CN100338796C (zh
Inventor
刘畅
成会明
张勇
张绪刚
李峰
王作明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CNB2004100206068A priority Critical patent/CN100338796C/zh
Publication of CN1705148A publication Critical patent/CN1705148A/zh
Application granted granted Critical
Publication of CN100338796C publication Critical patent/CN100338796C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种锂离子电池负极材料的改性方法,负极材料为一维纳米炭材料或一维纳米炭材料与碳质、锡基、硅基材料的复合物,一维纳米炭材料的直径范围在1nm-500nm之间,其特征在于:对负极材料表面进行金属与非金属间隔多层包覆处理,金属采用锡、铜、银、铬,非金属采用碳、硅、硼。本发明方法对锂离子电池负极材料的改性提高了锂离子电池负极的储锂容量、循环特性、动力学性能。

Description

一种锂离子电池负极材料的改性方法
技术领域:
本发明方法涉及锂离子电池负极材料的改性方法,本发明方法特别提供了一种间隔多层包覆的方法改进锂离子电池负极材料的性能。
背景技术:
锂离子电池是一种新型高效的化学电源,被广泛应用于便携式电子产品的配套电源。随着材料技术进步和电池设计即使的改进,锂离子电池的应用范围可望从信息产业进一步拓展到能源交通、航天航空、国防等领域。这也对锂离子电池的使用寿命、放电倍率等性能提出了更高要求。锂离子电池性能的提高在很大程度上决定于负极材料性能和比容量的改善。
纳米炭管和纳米纤维是具有准一维结构的纳米炭材料,具有长径比大、比强度高、导电性能好、化学稳定性好等特点。纳米炭纤维/纳米炭管既可单独用做锂离子电池负极,也可以一定比例加入其他负极材料组成复合负极材料。
本发明方法提出了一种纳米炭管/纳米炭纤维锂离子负极材料或纳米炭管/纳米炭纤维复合锂离子电池负极的表面间隔包覆改性方法,具有显著提高其储锂容量、循环特性、动力学性能等特点。
发明内容:
本发明方法的目的在于通过改性锂离子电池负极材料来提高锂离子电池的储锂容量、循环特性、动力学性能。
本发明方法提供了一种锂离子电池负极材料的改性方法,负极材料为一维纳米炭材料或一维纳米炭材料与碳质、锡基、硅基材料的复合物,一维纳米炭材料的直径范围在1nm-500nm之间,其特征在于:对负极材料表面进行金属与非金属间隔多层包覆处理,金属采用锡、铜、银、铬,非金属采用碳、硅、硼。
锂离子电池负极材料的改性方法,在所述负极材料上第一层包覆金属,有锡、铜、银、铬。
锂离子电池负极材料的改性方法,在所述负极材料上第一层包覆金属的方法是化学镀。
锂离子电池负极材料的改性方法,在所述负极材料上第二层包覆非金属,有碳、硅、硼
锂离子电池负极材料的改性方法,在所述负极材料上第二层包覆非金属的方法有化学气相沉积、先包覆前驱体再高温处理二种。
锂离子电池负极材料的改性方法,所述化学镀方法是对负极材料在重铬酸钾、高锰酸钾或硫代硫酸盐的氧化下,分别经氯化锡和氯化钯敏化和活化后,在硫酸铜或硝酸银溶液中电镀。
锂离子电池负极材料的改性方法,所述化学气相沉积处理是以碳氢化合物为碳源,在600-800乇压力和800-1200℃温度或以硅烷类化合物为硅源在600-800乇压力和500-800℃下进行沉积处理。
锂离子电池负极材料的改性方法,所述先包覆液相前驱体再高温处理是将负极材料与沥青、树脂混合均匀,在惰性气氛和900-1200℃条件下处理3-6小时。
本发明方法对锂离子电池负极材料的改性提高了锂离子电池负极的储锂容量、循环特性、动力学性能。
具体实施方式:
实施例1:
选用平均直径150nm的纳米炭纤维首先在重铬酸钾溶液中氧化1小时,再分别于氯化锡和氯化钯溶液中敏化和活化,之后在硫酸铜溶液中电镀,得到表面包覆铜的纳米炭纤维负极材料;将其与高温沥青均匀混合后在氩气气氛下1100℃处理3小时,得到表面包覆铜和碳层的纳米炭纤维负极材料。按常规锂离子电池负极评价方法检测结果为:500次循环充放电后容量提高10%,首次容量提高30%,首次效率保持不变。
实施例2:
选用平均直径250nm的纳米炭纤维首先在重铬酸钾溶液中氧化1小时,再分别于氯化锡和氯化钯溶液中敏化和活化,之后在硝酸银溶液中电镀,得到表面包覆银的纳米炭纤维负极材料;以丙烷为碳源在1000℃下化学气相沉积2小时,得到表面包覆银和碳层的纳米炭纤维负极材料。按常规锂离子电池负极评价方法检测结果为:500次循环充放电后容量提高15%,首次容量提高35%,首次效率保持不变。
实施例3:
选用平均直径90nm的纳米炭管(10wt%)/中间相炭微球复合负极材料首先在重铬酸钾溶液中氧化1小时,再分别于氯化锡和氯化钯溶液中敏化和活化,之后在硝酸银溶液中电镀,得到表面包覆铜的复合负极材料;以丙烷为碳源在1000℃下化学气相沉积2小时,得到表面包覆铜和碳层的复合负极材料。按常规锂离子电池负极评价方法检测结果为:500次循环充放电后容量提高18%,首次容量提高30%,首次效率保持不变。
实施例4:
选用平均直径200nm的纳米炭纤维(重量比8%)/天然石墨复合负极材料,首先在重铬酸钾溶液中氧化1小时,再分别于氯化锡和氯化钯溶液中敏化和活化,之后在硝酸银溶液中电镀,得到表面包覆银的复合负极材料;将其与高温沥青均匀混合后在氩气气氛下1100℃处理3小时得到表面包覆银和碳层的复合负极。按常规锂离子电池负极评价方法检测结果为:500次循环充放电后容量提高20%,首次容量提高20%,首次效率保持不变。

Claims (8)

1、一种锂离子电池负极材料的改性方法,负极材料为一维纳米炭材料或一维纳米炭材料与炭质、锡基、硅基材料的复合物,一维纳米炭材料的直径范围在1nm-500nm之间,其特征在于:对负极材料表面进行金属与非金属间隔多层包覆处理,金属采用锡、铜、银、铬,非金属采用碳、硅、硼。
2、按照权利要求1所述锂离子电池负极材料的改性方法,其特征在于:在所述负极材料上第一层包覆金属有锡、铜、银、铬。
3、按照权利要求2所述锂离子电池负极材料的改性方法,其特征在于:在所述负极材料上第一层包覆金属的方法是化学镀。
4、按照权利要求2所述锂离子电池负极材料的改性方法,其特征在于:在所述负极材料上第二层包覆非金属,碳、硅、硼
5、按照权利要求4所述锂离子电池负极材料的改性方法,其特征在于:在所述负极材料上第二层包覆非金属的方法有化学气相沉积、先包覆液相前驱体再高温处理二种。
6、按照权利要求3所述锂离子电池负极材料的改性方法,其特征在于:所述化学镀方法是负极材料在重铬酸钾、高锰酸钾或硫代硫酸盐氧化,再经氯化锡敏化和氯化钯活化,最后在硫酸铜或硝酸银溶液中电镀。
7、按照权利要求5所述锂离子电池负极材料的改性方法,其特征在于:所述化学气相沉积处理是以碳氢化合物为碳源,在600-800乇压力和800-1200℃温度或以硅烷类化合物为硅源在600-800乇压力和500-800℃下进行沉积处理。
8、按照权利要求5所述锂离子电池负极材料的改性方法,其特征在于:所述先包覆液相前驱体再高温处理是将负极材料与沥青、树脂混合均匀,在惰性气氛和900-1200℃条件下处理3-6小时。
CNB2004100206068A 2004-05-26 2004-05-26 一种锂离子电池负极材料的改性方法 Expired - Fee Related CN100338796C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100206068A CN100338796C (zh) 2004-05-26 2004-05-26 一种锂离子电池负极材料的改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100206068A CN100338796C (zh) 2004-05-26 2004-05-26 一种锂离子电池负极材料的改性方法

Publications (2)

Publication Number Publication Date
CN1705148A true CN1705148A (zh) 2005-12-07
CN100338796C CN100338796C (zh) 2007-09-19

Family

ID=35577543

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100206068A Expired - Fee Related CN100338796C (zh) 2004-05-26 2004-05-26 一种锂离子电池负极材料的改性方法

Country Status (1)

Country Link
CN (1) CN100338796C (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986442A (zh) * 2010-05-25 2011-03-16 耿世达 一种内部含有三维导电结构的锂离子电池负极材料及其制备方法
CN101626075B (zh) * 2009-08-03 2011-03-30 北京化工大学 锡碳复合纳米纤维薄膜负极材料及其制备方法
CN102122708A (zh) * 2010-01-08 2011-07-13 中国科学院物理研究所 用于锂离子二次电池的负极材料、含该负极材料的负极及其制备方法以及含该负极的电池
CN102185142A (zh) * 2011-04-08 2011-09-14 厦门大学 锂离子电池用复合碳负极材料及其制备方法
CN102324508A (zh) * 2011-09-14 2012-01-18 耿世达 一种内部含有三维导电结构的合金包覆负极材料及其制备方法
CN102479948A (zh) * 2010-11-30 2012-05-30 比亚迪股份有限公司 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN102844917A (zh) * 2010-03-03 2012-12-26 安普雷斯股份有限公司 用于沉积活性材料的模板电极结构
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
CN105098163A (zh) * 2014-05-16 2015-11-25 微宏动力系统(湖州)有限公司 一种包覆型电极材料的制备方法
TWI565654B (zh) * 2014-08-08 2017-01-11 Kureha Corp Production method of carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
WO2017024898A1 (zh) * 2015-08-07 2017-02-16 田东 一种高容量锡碳负极材料的制备方法
CN107093710A (zh) * 2017-03-31 2017-08-25 宁夏博尔特科技有限公司 双包覆层锂离子电池负极材料及其制备方法和锂离子电池
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US9923201B2 (en) 2014-05-12 2018-03-20 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US10090512B2 (en) 2009-05-07 2018-10-02 Amprius, Inc. Electrode including nanostructures for rechargeable cells
US10096817B2 (en) 2009-05-07 2018-10-09 Amprius, Inc. Template electrode structures with enhanced adhesion characteristics
WO2019114373A1 (zh) * 2017-12-12 2019-06-20 中国科学院物理研究所 一种复合包覆的纳米锡负极材料及其制备方法和应用
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
US11121396B2 (en) 2009-11-11 2021-09-14 Amprius, Inc. Intermediate layers for electrode fabrication
US11996550B2 (en) 2009-05-07 2024-05-28 Amprius Technologies, Inc. Template electrode structures for depositing active materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280697B1 (en) * 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
US20030152835A1 (en) * 2002-02-08 2003-08-14 Sankar Dasgupta Carbon fibre containing negative electrode for lithium battery

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10090512B2 (en) 2009-05-07 2018-10-02 Amprius, Inc. Electrode including nanostructures for rechargeable cells
US11996550B2 (en) 2009-05-07 2024-05-28 Amprius Technologies, Inc. Template electrode structures for depositing active materials
US11024841B2 (en) 2009-05-07 2021-06-01 Amprius, Inc. Template electrode structures for depositing active materials
US10811675B2 (en) 2009-05-07 2020-10-20 Amprius, Inc. Electrode including nanostructures for rechargeable cells
US10230101B2 (en) 2009-05-07 2019-03-12 Amprius, Inc. Template electrode structures for depositing active materials
US10096817B2 (en) 2009-05-07 2018-10-09 Amprius, Inc. Template electrode structures with enhanced adhesion characteristics
US9172094B2 (en) 2009-05-07 2015-10-27 Amprius, Inc. Template electrode structures for depositing active materials
CN101626075B (zh) * 2009-08-03 2011-03-30 北京化工大学 锡碳复合纳米纤维薄膜负极材料及其制备方法
US11121396B2 (en) 2009-11-11 2021-09-14 Amprius, Inc. Intermediate layers for electrode fabrication
CN102122708A (zh) * 2010-01-08 2011-07-13 中国科学院物理研究所 用于锂离子二次电池的负极材料、含该负极材料的负极及其制备方法以及含该负极的电池
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
CN102844917A (zh) * 2010-03-03 2012-12-26 安普雷斯股份有限公司 用于沉积活性材料的模板电极结构
CN105206794A (zh) * 2010-03-03 2015-12-30 安普雷斯股份有限公司 用于沉积活性材料的模板电极结构
CN102844917B (zh) * 2010-03-03 2015-11-25 安普雷斯股份有限公司 用于沉积活性材料的模板电极结构
CN105206794B (zh) * 2010-03-03 2018-02-23 安普瑞斯股份有限公司 用于沉积活性材料的模板电极结构
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
CN101986442A (zh) * 2010-05-25 2011-03-16 耿世达 一种内部含有三维导电结构的锂离子电池负极材料及其制备方法
US9029020B2 (en) 2010-11-30 2015-05-12 Shenzhen Byd Auto R&D Company Limited Negative active material, method for preparing the same and lithium ion battery comprising the same
CN102479948B (zh) * 2010-11-30 2015-12-02 比亚迪股份有限公司 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN102479948A (zh) * 2010-11-30 2012-05-30 比亚迪股份有限公司 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN102185142A (zh) * 2011-04-08 2011-09-14 厦门大学 锂离子电池用复合碳负极材料及其制备方法
CN102324508A (zh) * 2011-09-14 2012-01-18 耿世达 一种内部含有三维导电结构的合金包覆负极材料及其制备方法
US9923201B2 (en) 2014-05-12 2018-03-20 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US11855279B2 (en) 2014-05-12 2023-12-26 Amprius Technologies, Inc. Structurally controlled deposition of silicon onto nanowires
US11289701B2 (en) 2014-05-12 2022-03-29 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
CN105098163A (zh) * 2014-05-16 2015-11-25 微宏动力系统(湖州)有限公司 一种包覆型电极材料的制备方法
CN105098163B (zh) * 2014-05-16 2017-09-29 微宏动力系统(湖州)有限公司 一种包覆型电极材料的制备方法
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
US10797319B2 (en) 2014-08-08 2020-10-06 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
TWI565654B (zh) * 2014-08-08 2017-01-11 Kureha Corp Production method of carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
WO2017024898A1 (zh) * 2015-08-07 2017-02-16 田东 一种高容量锡碳负极材料的制备方法
CN107093710B (zh) * 2017-03-31 2019-10-08 宁夏博尔特科技有限公司 双包覆层锂离子电池负极材料及其制备方法和锂离子电池
CN107093710A (zh) * 2017-03-31 2017-08-25 宁夏博尔特科技有限公司 双包覆层锂离子电池负极材料及其制备方法和锂离子电池
JP2021506056A (ja) * 2017-12-12 2021-02-18 中国科学院物理研究所 複合被覆ナノスズ負極材料並びにその製造方法及び使用
WO2019114373A1 (zh) * 2017-12-12 2019-06-20 中国科学院物理研究所 一种复合包覆的纳米锡负极材料及其制备方法和应用
US11362328B2 (en) 2017-12-12 2022-06-14 Institute Of Physics, Chinese Academy Of Sciences Composite-coated nano-tin negative electrode material and preparation method and use thereof
JP7299214B2 (ja) 2017-12-12 2023-06-27 中国科学院物理研究所 複合被覆ナノスズ負極材料並びにその製造方法及び使用

Also Published As

Publication number Publication date
CN100338796C (zh) 2007-09-19

Similar Documents

Publication Publication Date Title
CN100338796C (zh) 一种锂离子电池负极材料的改性方法
Jian et al. Flexible diamond fibers for high‐energy‐density zinc‐ion supercapacitors
Cao et al. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery
Wang et al. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries
Zheng et al. Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes
Yu et al. Vertical‐graphene‐reinforced titanium alloy bipolar plates in fuel cells
US9138964B2 (en) Surface-treated copper foil
CN103022418B (zh) 一种碳纳米管增强的锡铜镍合金负极及其制备方法
Deng et al. A hierarchical copper oxide–germanium hybrid film for high areal capacity lithium ion batteries
US20240097138A1 (en) Composite material and preparation method thereof, negative electrode material, and lithium ion battery
Uysal et al. Sn–Ni/MWCNT nanocomposite negative electrodes for Li-ion batteries: the effect of Sn: Ni molar ratio
CN103627923B (zh) 一种高导热低摩擦系数导电材料及其制备方法
Liu et al. Interrelation Between External Pressure, SEI Structure, and Electrodeposit Morphology in an Anode‐Free Lithium Metal Battery
Ren et al. Long‐cycling Zinc Metal Anodes Enabled by an In Situ Constructed ZnO Coating Layer
Hou et al. Ni-Al nanocomposite coating electrodeposited from deep eutectic solvent
Arai et al. A carbon nanotube-reinforced noble tin anode structure for lithium-ion batteries
Zhao et al. Electrochemical performance of Sn film reinforced by Cu nanowire
Zhang et al. Enabling the conventional TFSI-based electrolytes for high-performance Mg/Li hybrid batteries by Mg electrode interfacial regulation
Zhao et al. A new secondary battery technology: Electrode structure and charge–discharge mechanism of all-solid-state zinc-graphite batteries
Lai et al. Enhancing Zinc Electrode Stability Through Pre‐Desolvation and Accelerated Charge Transfer via a Polyimide Interface for Zinc‐Ion Batteries
Wang et al. Synergistic Effect of 3D Elastomer/Super‐Ionic Conductor Hybrid Fiber Networks Enables Zinc Anode Protection for Aqueous Zinc‐Ion Batteries
Gao et al. Electrochemical characteristics of electroplating and impregnation Ni-P/SiC/PTFE composite coating on 316L stainless steel
Guo et al. Fabrication of high-performance carbon nanotube/copper composite fibers by interface thiol-modification
Zhang et al. Influence of carbon fibers on interfacial bonding properties of copper-coated carbon fibers
Sutrisnoh et al. Toward High‐Capacity Carbon Fiber Cathodes for Structural Batteries using Electrophoretic Deposition: Effects of Oxidative Surface Treatment on Carbon Fibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070919

Termination date: 20200526

CF01 Termination of patent right due to non-payment of annual fee