CN1666101B - 带电粒子束装置和侦测样本的方法 - Google Patents

带电粒子束装置和侦测样本的方法 Download PDF

Info

Publication number
CN1666101B
CN1666101B CN038162245A CN03816224A CN1666101B CN 1666101 B CN1666101 B CN 1666101B CN 038162245 A CN038162245 A CN 038162245A CN 03816224 A CN03816224 A CN 03816224A CN 1666101 B CN1666101 B CN 1666101B
Authority
CN
China
Prior art keywords
charged particle
optical axis
primary charged
particle bundle
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN038162245A
Other languages
English (en)
Other versions
CN1666101A (zh
Inventor
伊戈尔·彼得罗夫
兹维加·罗森贝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN1666101A publication Critical patent/CN1666101A/zh
Application granted granted Critical
Publication of CN1666101B publication Critical patent/CN1666101B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • H01J37/256Tubes for spot-analysing by electron or ion beams; Microanalysers using scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1478Beam tilting means, i.e. for stereoscopy or for beam channelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor

Abstract

一种射束导引方法及装置,用于空间地分隔开初级电荷粒子束BP及次级粒子束BS,其为与初级电荷粒子束交互作用后从样本2回返的结果。该初级电荷粒子束被导引沿着通过侦测器9上的开孔9A的第一轴OA’朝向射束导引装置,侦测器在开孔外具有电荷粒子侦测区9B。初级电荷粒子束的轨道会受到影响而造成初级电荷粒子束沿着大致平行于第一轴且与第一轴间隔开来的第二轴OA”前进至该样本。这会造成次级电荷粒子束前进至位于侦测器开孔外的侦测区。

Description

带电粒子束装置和侦测样本的方法
技术领域
本发明有关于一种射束导引装置及一种使用该方法通过用被聚焦的带电粒子束,如电子、正子或离子,来照射这些样本来侦测样本的电荷粒子束设备。此设备以扫描式电子显微镜(SEM)的形式被使用,特别是用来侦测半导体晶片。
背景技术
扫描式电子显微镜被广泛地使用在半导体晶片制造中,是一种习知的技术,其被使用在被称之为CD-SEM(关键尺寸扫描式电子显微镜)的关键尺寸度量工具中及被称为DR-SEM(缺陷检查扫描式电子显为镜)的缺陷检查度量工具SEM中。在SEM中,待检样本的表面区域被初级带电粒子束(通常式电子束)作二维扫描,这些带电粒子沿着设备的光轴运动。用初级电子束照射样本可释放出次级(或回散射的)电子以界定次级电子束。这些次级电子是从样本的被初级电子束所照射的一侧释出的,且往回运动而被侦测器所捕捉,侦测器产生与被侦测到的次级电子束成正比的输出电子讯号。次级电子的能量和/或能量分布是样本的本质及组成的表示。
SEM通常包括这样的初级结构零件作为电子束来源,电子束立柱(column),及侦测单元。电子束立柱包含射束对准机构(其被称为”对准线圈”)及沿着阳极管安排的射束形塑机构,其界定初级射束漂移空间,并包含聚焦机构用来将初级电子束导引至样本上并将次级电子朝向一或多个侦测单元导引。聚焦组件通常包括物镜结构及扫描线圈。
为了要提高影像分辨率及改善影像获得,主要电子束应尽可能地不要受到影响,且次级电子应被完全地侦测。影像分辨率的提高可通过降低聚焦的色差及偏转来达成。转让给本申请受让人的专利申请WO01/45136揭示一种偏转及聚焦技术,其中色差通过使用初级电子束的一或多个朝向样本的偏转,如透镜前(pre-lens)偏转,透镜中(in-lens)偏转,或两者皆有,而被补偿。这些次级电子的完全侦测需要将该初级及次级作空间上的隔离及在最小的电子损失下对次级电子作有效的侦测。
在许多情形中,侦测器是被容纳在物镜的初级射束前进通过立柱的路径之外的上方。为了要将次级电子导引至侦测器,正交电子及磁场的产生器(其被称为Wien-滤光器)被使用(如,美国专利第5,894,124;5,900,629号)。为了要确保侦测那些没有被完全被Wien-滤光器所偏转的次级电子,由能够在电子撞击它时产生一次级电子的物质所制造的标靶或电极可被额外地使用。这一标靶被形成为具有孔洞且被设置成初级射束的轴朝向聚焦机构前进会与此孔洞交会,以此作为初级射束孔。
为了要省掉Wien滤光器的使用(因为使用它需要极端小心且很难调整),WO99/26272专利申请建议用一或多个初级射束入射角来扫描样本。根据此技术,初级射束被导引成在与该聚焦组件的光轴成对角的路径上前进,且被设在侦测器底下的再导引单元再导引至该光轴上,侦测器是装在初级射束路径之外。再导引单元也会影响次级电子,因为它会将初级及次级电子分开来。
上述转让给本申请受让人的公开专利WO01/45136号使用设有初级射束孔的次级电子的侦测器,初级射束孔位于初级电子束往该聚焦组件前进的路径上。在此处,偏转系统被设在侦测器的下游(相对于初级电子束朝向样本的方向而言)且被操作用以影响初级电子束的轨道,使得初级电子束沿着轴打击到样本上,轴相对于样本表面形成一特定的角度(其被称为“偏斜模式”)。这是为了要解决与被同案化的表面的检查和/或测量有关的检查系统的另一个问题。该图案通常是多个被间隔开来的沟渠,该技术是将扫描射束相对于表面偏斜。大体上,偏斜机构可通过机械性地相对于带电粒子束立柱(如,美国专利第5,734,164;5,894,124;6,037,589号)或相对于立柱(如,美国专利第5,329,125号)来偏斜样本载具来加以操作。公开专利WO01/45136号的技术是通过使用单一偏转或双偏转来影响初级电子束的轨道来完成偏斜机构。然而,公开专利WO01/45136号的立柱结构在使用上述的偏斜操作模式来提供次级电子的有效侦测时,当以初级射束的法向入射(即,射束以大致垂直于样本表面的方式入射)操作时,在侦测次级电子,特别是快速的次级电子(被称为HAR模式)时将会遭遇到问题。
发明内容
因此,在此工艺中对于通过提供新颖的射束导引方法及装置来用带电粒子束检查样本,及利用此方法的带电粒子束设备存在着需求。
本发明的初级概念包含了用侦测器来提供次级带电粒子束的有效侦测,侦测器设有开孔并具有在此开孔外部的侦测区域,且其被设置在初级带电粒子束的路径上使得初级射束前进轴会与开孔交会,开孔是作为初级射束孔之用。这是所谓的“在立柱内的侦测器”。本发明提供影响初级及次级带电粒子束通过射束导引装置的轨道用以造成合意的初级带电粒子束入射到样本上,及造成次级射束前进至位于初级射束孔外部的侦测器的区域上。
使用于本文中的“初级射束”或“初级带电粒子束”指带电粒子束,由来源(阴极)所产生的带电粒子所形成,且其将被导引到样本上以撞出带电粒子形成“次级射束”(亦被称为“次级带电粒子束”),次级射束用于侦测。
以上是通过将初级射束偏转沿着射束前进的第一轴进入到射束导引装置中来加以操作,以造成初级射束沿着与该第一轴分隔开来的第二轴入射到样本上,造成次级射束朝向位于初级射束孔外部的侦测器的区域前进。
本发明可实施“法向”及“偏斜”这两种操作模式而无需将样本相对于带电粒子束设备偏斜,或将带电粒子束设备相对于带电粒子束偏斜。本文中所用的“法向模式”一词意指初级射束以零入射角,即大致垂直于样本的表面,入射到样本上。本文中所用的“偏斜模式”一词指初级射束沿着与样本的表面成一特定的非零角度的轴入射到样本上。
因此,依据本发明的一个方面,本发明提供一种用来将初级带电粒子束与次级带电粒子束分隔开来的方法,次级带电粒子束由初级带电粒子束与样本的相互作用产生,该方法包含:
(a)将初级带电粒子束沿着通过侦测器上的开孔的第一轴导引,侦测器具有位于开孔外部的带电粒子侦测区;
(b)影响初级带电粒子束的轨道以提供初级带电粒子束沿着大致平行于第一轴且与第一轴分隔开来的第二轴前进至样本,以造成次级带电粒子束前进到侦测器的位于开孔外部的侦测区。
依据本发明的另一个广义的方面,本发明提供一种用带电粒子束及上述将初级带电粒子束及次级带电粒子束分隔开来的技术来检查样本的方法。
所述结构最好是,第一轴(典型地由阳极管的纵轴来界定)大致垂直于样本的表面。本发明也可用具有相对于样本平面偏斜的阳极管(界定第一轴)的立柱来操作。在此例子中,初级带电粒子束的轨道被影响用以提供初级带电粒子束沿着第二轴前进,第二轴与第一轴成一角度。
因此,依据本发明的另一个方面,一种用来将初级带电粒子束与次级带电粒子束分隔开来的方法被提供,次级带电粒子束由初级带电粒子束与样本的相互作用产生,该方法包含:
--将初级带电粒子束沿着通过侦测器上的开孔的第一轴朝向射束导引装置导引,侦测器具有位于开孔外部的带电粒子侦测区;
--让初级带电粒子束通过射束导引装置,射束导引装置包括聚焦组件,其界定与第一轴成一角度的光轴,及偏转组件,该偏转组件被操作用以将第一带电粒子束由其沿着第一轴前进偏转成第一初级带电粒子束沿着第二轴前进至样本,第二轴大致平行于聚焦组件的光轴,及用以影响次级带电粒子束的轨道用以让次级带电粒子束前进至侦测器的开孔外部的侦测区。
大体而言,初级带电粒子束的入射到样本上的第二轴与样本在一位置相互作用,该位置不同于第一轴与样本之间相互作用的位置。
射束导引装置包含聚焦组件(包括一物镜结构),其界定一光轴,及一偏转组件,其可被操作用以产生偏转场,可影响初级及次级射束相对于聚焦组件的光轴的轨道。
在本发明的一个较佳实施例中,初级射束朝向射束导引装置前进的第一轴大致平行于聚焦组件的光轴。这可通过将初级射束沿着与聚焦组件的光轴重叠的第一轴或沿着与聚焦组件的光轴间隔开来的第一轴朝向射束导引装置导引来达成。在此例子中,至少两个偏转场被用来将主要射束及次级射束路径分隔开来并确保次级射束前进至侦测器的位于初级射束孔外部的区域。两个偏转场可以是透镜前,透镜前与透镜内,或透镜内与透镜后(以偏转器相对于物镜的方向为准)。为了要消除或至少大幅地降低聚焦及偏转的色差,相同的两个偏转场,或一或两个额外的偏转场也可被使用。
在本发明的另一实施例中,初级射束朝向射束导引装置前进的第一轴相对于聚焦组件的光轴偏斜。在此例子中,提供单一偏转场于射束导引装置中即足以成功地将初级及次级射束的路径分隔开来(即,防止次级射束穿过侦测器的初级射束孔)。
让初级射束以一特定的非零角度(偏斜模式)入射样本也可能是所想要的。又,此例子可以是,偏斜模式是要被选择性地施用到样本的被选定位置上,同时能够用法向模式来检查此位置及其它位置。为了要能够应用偏斜模式,初级射束以及次级射束的轨道会被至少两个偏转场所影响。
因此,依据本发明的另一个广义的方面,本发明提供一种使用在带电粒子束设备中的射束导引装置,带电粒子束设备界定沿着第一轴朝向导引装置前进的初级电粒子射束,且利用开设有开孔及形成有位于开孔外部的带电粒子侦测区的侦测器,侦测器被设置成可让第一轴通过侦测器开孔,射束导引装置包含:
--聚焦组件,其界定光轴且可被操作用以将初级带电粒子聚焦在样本上;及
--偏转组件,其可被操作用以影响初级电粒子束的轨道并沿着大致平行于第一轴且与一轴间隔开来的第二轴将初级带电粒子束导引到样本上,以促使次级带电粒子束前进至侦测器的位于开孔外部的侦测区。
依据本发明,一种用来检查样本的带电粒子束设备被提供,该设备包含:
--阳极管,其界定初级带电粒子束沿着大致平行于阳极管纵轴的第一轴行进的前进空间;
--侦测器,其上开设有开孔及形成有位于开孔外部的带电粒子侦测区,侦测器被设置成可让第一轴与侦测器开孔交会;及
--射束导引装置,其被设置在通过侦测器的开孔的初级带电粒子束的路径上,射束导引装置包含聚焦组件,其界定光轴且可被操作用以将初级带电粒子聚焦在样本上,及偏转组件,其可被操作用以影响初级电粒子束的轨道并沿着大致平行于第一轴且与第一轴间隔开来的第二轴将初级带电粒子束导引到样本上,及影响次级电粒子束的轨道,以促使次级带电粒子束前进至侦测器的位于开孔外部的侦测区。
依据本发明的一个较佳实施例,射束导引装置被设置成聚焦组件的光轴平行于阳极管的纵轴。偏转组件包含至少两个偏转器,其被设置且操作用以依序地影响初级电粒子束在沿着光轴的连续区域处的轨道,并依序地影响次级带电粒子束的轨道。
以上所述可通过让聚焦组件的光轴大致与阳极管的纵轴重叠来实施。换言之,初级射束大致上沿着聚焦组件的光轴进入到射束导引装置。在此情形下,当在法向模式时,初级射束打在样本上的位置是不同于光轴与样本的表面之间交会的位置。对于偏斜模式而言,初级射束以一特定的入射角度打击到样本上,用以让打击的位置点是光轴与样本交会的点或是初级射束在法向模式下的入射点。或者,聚焦组件的光轴可与阳极管的纵轴间隔开来。这可让初级射束的法向入射是大致沿着聚焦组件的光轴打到样本上。
依据本发明的另一实施例,阳极管的纵轴(界定第一轴)是相对于聚焦组件的光轴偏斜的。在此例子中,偏转组件可被操作用以让初级电粒子束沿着大致与聚焦组件的光轴重叠的第二轴前进至样本。
带电粒子束可以是电子束或被聚焦的离子束(FIB)。本发明可被使用在SEM或应用在样本,如半导体晶片上用以成像,测量,度量,检查,缺陷覆检等的类似工具上。例如,本发明可被用于CD测量,线轮廓测量,在微影成像处理之后实施的铜互联机检查/测量,自动缺陷分类等等上。
更明确言之,本发明可用来检查晶片,罩幕或光罩,与SEM系统一起使用,在下文中对本申请内容继续加以说明。
附图说明
为了理解本发明及本发明实际上如何被实施,非限制性的较佳实施例将参照附图加以说明,其中:
图1为SEM系统的示意图,其使用依据本发明实施例的带电粒子束设备;
图2A及2B示意地显示初级及次级射束在传统的射束导引装置的不同工作参数下通过射束导引装置,也显示有待本发明的射束导引装置解决的问题;
图3A及3B分别显示样本在图2A及2B的情形下获得的影像;
图4是在本发明的射束导引装置中前进的初级及次级射束;
图5A及5B显示以本发明的射束导引装置获得样本的影像;
图6示意地显示出本发明的射束导引装置的偏斜模式的操作;
图7A至7C分别显示依据本发明另一实施例的带电束设备的不同例子;及
图8A及8B为依据本发明的另一实施例的电粒子束设备的示意图,其中图8A为在法向模式下的射束前进情形,及图8B为在偏斜模式下的射束前进情形。
附图标记说明:
1  SEM系统                     2  晶片
4  电子束来源                  5  尖端(阴极)
6  孔洞                        7  阳极管
8  射束导引装置                9  侦测器
9A 开孔                        9B  侦测区
9a 初级射束孔                  10  聚焦组件
11 偏转组件                    12  物镜
12a,12b  极件                 14a,14b,14c  电极
14 静电镜片                    16  第一偏转器
18 第二偏转器                  106A,106B,106C  设备
108A  射束导引装置             116A,116B  偏转器
20  透镜内扫描偏转器           22  透镜后扫描偏转器
118A  偏转器                   108B  偏转器
118B  偏转器                   108C  射束导引装置
116C  透镜内偏转器             118C  透镜后偏转器
206  带电粒子束设备            208  射束导引装置
209  侦测器                    216,218  偏转器
具体实施方式
参照图1,其显示出SEM系统1的初级构件待检的晶片2。系统1典型地包含电子束源4,其具有小尖端5(俗称为“电子枪”),及带电粒子束设备6。设备6包含阳极管7,其界定初级射束漂移空间,射束导引装置8,及侦测器9,其位于射束导引装置8的上游(相对于初级射束朝向晶片2前进的方向而言)。设备6也典型地包含射束间隔机构,数个孔洞(包括用来界定初级射束直径的最终孔洞,及对准线圈),及共点器(stimator)结构。这些组件并不是构成本发明的组件,所以它们的结构及操作将不在本文中详细说明。
阳极管7的纵轴界定初级射束朝向射束导引装置8前进的第一轴OA’。侦测器9为板状或圆盘状,其被形成有中心开孔9A且具有位于开孔9A外部的侦测区9B。侦测器9为俗称的“立柱内侦测器”,其被设置成阳极管7的纵轴会通过中心开孔,中心开孔因而作为初级射束孔9a。射束导引装置8是由聚焦组件10及偏转组件11所组成。用来以初级射束对晶片作二维扫描的额外扫描线圈(未示出)可以传统的方式被提供在聚焦组件的附近。
在此例子中,射束导引装置8使用揭示在美国专利申请案第09/479,664号中的聚焦组件。然而,应被了解的是,任何适当的聚焦组件设计都可被使用。
因此,在此例子中,聚焦组件10是由物镜12(其典型地是由两极性件12A及12B所形成的磁性透镜),及由数个电极(如,三个电极14a,14b,14c)所形成的减速静电浸没透镜14。阳极管7的下端作为第一电极14a之用,晶片的表面作为第二电极14c之用,及第三电极14b位于电极14a,14c之间且用来调节被产生在晶片附近的电场。任何其它适当的静电浸没透镜设计都可被使用。透镜12及14一起构成物镜结构并界定聚焦组件10的光轴OA。在此例子中,轴OA及OA’大致重叠。
静电透镜14的作用是可将最靠近晶片2附近的电子减速。这与下面所述有关:在SEM中,为了要将初级电子束的“光点”尺寸减小到纳米尺度(即,提高影像分辨率),高度加速的初级电子束通过使用数十千伏的加速电压来产生。然而,为了要避免伤及光阻结构及集成电路,及在介电样本的例子中为了避免不想要的样本被高能量的初级电子束所充电,减速场被提供在被偏转的被聚焦的初级电子束的路径上,以降低聚焦及偏转的色差。初级电子束的着路能量是由阴极与样本之间的电位差来界定的。为了要达到合意的电子加速,介于阴极5与阳极7之间的适当电位差应被提供。例如,阴极电压可以是约(-1)kV及阳极电压可以是约(+8)kV。因此,电子在它们朝向磁性透镜12的路上即被加速,其具有9keV的速度。为了要产生减速场,被施加到静电透镜14的第二电极14c(晶片的表面)上的电压典型地小于施加到阳极7上的电压。例如,晶片被接地(V2=0),及电极被偏压,亦即,(-1)kV;(+8)kV及(+3)kV可分别被施加到阴极5,阳极7及第三电极14b上。
应被了解的是,提供任何静电透镜作为实际的实体组件是可有可无的。同样的电子减速效果(即,减速场的产生)可通过施加适当的电压至阳极或晶片上,或至阳极,极件及晶片上来达成。以下为两个可能的电子参数例子:
(1)晶片被偏压至(-5)kV,阳极电压等于零及阴极电压为(-6)kV;
(2)晶片被偏压至(-3)kV,极件的电压等于零,及阳极与阴极的电压分别为(+5)kV及(-4)kV。
被减速的初级电子束打击到晶片的表面上的扫描区域内,并撞击出次级电子。由静电透镜14所产生的用来减速初级电子的电场作为用于次级电子的加速电场,以让次级电子往远离样本表面的方向前进(即,朝向侦测器)。
偏转组件11是由两个偏转器16及18组成,它们在此例子中分别被称为相对于初级电子束朝向晶片前进方向的透镜内及透镜后偏转器。应被了解的是,这些用词对应于偏转器相对于物镜12的极件的位置,而这两个偏转器都位于整个透镜结构10的聚焦场内。第一偏转器16被安装在介于极件12A及12B之间的磁性透镜间隙内,第二偏转器18是被安装在由透镜14所产生的静电场内。第二偏转器18可以是磁性的(如在此例子中者),或是静电的,如以聚光板的形式。偏转器16及18一起操作用以让初级电子束沿着第二轴入射到样本上并让次级电子束前进到位于初级电子束孔洞9a外部的区域9b内的侦测器区处,这将于下文中详细说明。应被了解的是,相同的或额外的偏转器可为了扫描的目的而被使用。
现参照图2A-2B及3A-3B,其中显示有待本发明解决的问题,即,用“立柱内(in-column)侦测器”来提供次级电子束的有效侦测,次级电子束是初级电子束与样本之间相互作用而产生的。如上文所述,为了要达到此目的,次级电子束应被导向位于初级电子束孔洞9a外部的区域9b内的侦测器区,以防止次级电子束在初级射束孔中损失掉。
在图2A及2B的例子中,在通到射束导引装置的初级电电子束路径上没有偏转场被提供。初级电子束Bp沿着第一轴OA’(大致沿着阳极管7的纵轴)前进通过阳极管7,通过侦测器9的开孔9a(初级射束孔),然后沿着与第一轴OA’大致重叠的聚焦组件的光轴OA打到晶片2上。在这两个例子中,阳极管7的下端(图1中的静电透镜的电极14A)的电压Vanode被保持在等于8kV的电压。
在图2A的例子中,没有电压被供应到静电透镜的杯形电极(图1中的14B),即,Vcup=0V。在此例子中,被静电透镜产生在晶片附近的电场是低梯度的电场。因此,静电透镜如次级电子Bs的短焦聚透镜般作用。结果为,次级电子横跨在晶片2附近的光轴OA,且被导引到侦测器9在初级射束孔9a相对侧的区域9b上。图3A显示在此操作条件(Vcup=0V,法向入射)及以0.2微米的观看场或光栅尺寸下所得到的影像。如图所示,被初级电子照射的整个晶片区域都可被观察。
图2B及3B显示法向入射的初级电子束Bp及高深宽比(HAR)模式的情形,其在图1的结构中典型地可通过施加约3kV的Vcup到电极14B上来达成。在此例子中,在晶片附近的电场为高梯度电场,因此次级电子Bs从初级电子束与晶片相互作用的位置点L1大致沿着光轴OA前进且在初级射束孔9a中损失掉。结果为,一黑点盖住晶片(光栅)的被成像的区域的中央区。
现参照图4,在HAR模式(Vcup=3V)操作下的光束前进通过图1的射束导引装置8的情形被示意地示出。初级电子束沿着第一轴OA’前进通过阳极管7,通过侦测器9的初级射束孔9a,进入到射束导引装置8中。在本发明的较佳实施例中,第一轴OA’大致平行于聚焦组件的光轴OA,且在此例子中,大致与光轴相重叠。在射束导引装置中初级电子束Bp被第一偏转器16的第一偏转场偏转至偏离光轴OA的方向上(与光轴夹了几度,最好是1-3度),然后被第二偏转器18的第二偏转场偏转用以沿着第二轴OA”前进,第二轴平行于初级电子束前进的第一轴OA’且与其相间隔开来。第二轴OA”与晶片表面交会于L1的位置,其与第一轴OA’和晶片表面之间的交会点L2相间隔开来。
次级电子束Bs从位置点沿着第二轴OA”(大体上沿着平行于聚焦组件的光轴的轴)往回前进直到它进入到第二偏转器18的偏转场为止,偏转场会将次级电子束Bs偏转偏离第二轴OA”。第一偏转器16的偏转场然后将次级电子束Bs偏转至(与第一偏转场相比较)相反方向上,以确保次级电子束沿着轴OA”前进至侦测器的区域9b处。在此实施例中,轴OA”平行于光轴OA(以及第一轴OA”)。然而,应被了解的是,这并不是必要条件。
图5A及5B显示用上述的图4所得到的实验结果,其中0.05A及0.07A的电流被提供给偏转器16及18,且初级射束孔9a的直径为1mm。在这两个实验中,FOV的轴分别为820微米及2微米。如图所示,即使是用较高的FOV直(图5A),黑点(初级射束孔)还是会被偏移离开照射区的中央区域,及通过降低FOV值(图5B),整个被照射的区域就可被看见。
图6显示图1中的射束导引装置8在偏斜模式下的操作。这是通过分别提高经过偏转器16及18的电流(与在法向模式中所使用的电流相较而言)至0.7A及0.6A来达成。如图所示,初级电子束Bp依序地受到偏转器16及18的偏转场的影响,使得初级电子束沿着与光轴OA成一特定角度θ(如,15度角)的轴OA”入射到晶片2的位置L1上。次级电子束Bs一开始是从位置L1沿着平行于聚焦组件的光轴OA的轴前进,然后依序地被偏转器18及16的偏转场偏转而沿着朝向侦测器的区域9b的轴OA”前进。
如上文所示,偏斜模式可检查被图案化的表面(即,被形成有多条沟槽的表面)并实施俗称的“侧壁成像”操作用以侦测位于沟槽侧上的颗粒,和/或沟槽尺度的测量。即使是初级电子束以小的入射角度(3度-6度)入射到晶片的表面上对于上述目的而言都已足够。在大多数的情形中,最好是选择性地实施此“偏斜”模式。这表示当晶片的连续区域持续地以法向模式进行检查,在一特定的位置(即一特定的区域)处系统应被切换至“偏斜”模式。
参照图7A-7C,本发明的另一实施例的三个例子分别被示出。为了便于了解,相同的标号被用来标示在图1的带电粒子束设备1中及在图7A-7C中的设备106A,106B及106C中相同的构件。在这些例子中,与图1的例子不同的是,阳极管7的纵轴OA’(即,初级电子束朝向射束导引装置8前进的第一轴)及聚焦组件的光轴OA以彼此平行且间隔开来的方式对齐并分别与晶片的表面交会在L2及L1的位置点。
射束导引装置108A(图7A)运用双透镜前(pre-lens)偏转,其使用间隔开来的方式沿着物镜平面12的光轴OA上游设置的偏转器116A及118B。非必要地,额外的透镜前及透镜后(post-lens)扫描偏转器20及22可被提供用以独立于偏转器116A及118A外操作,用以在初级电子束入射到光轴上之下提供偏斜模式。在此例子中,偏转器20及22的操作并没有被示出。因此,沿着第一轴OA’前进的初级电子束Bp通过侦测器9的初级射束孔9A,并进入到偏转器116A的偏转场,其可将初级电子束Bp朝向光轴OA偏转。初级电子束然后被偏转器118A的偏转场偏转到相反方向上,用以让电子束能够沿着大致与光轴OA重叠的轴OA”朝向晶片2前进。因此,主要电子束Bp可打到晶片的L1位置上,并撞出次级电子束Bs,其沿着平行于光轴OA从晶片往回前进。偏转器118A及116A的相同偏转场依序地影响次级电子束Bs的轨道,让它沿着轴OA”前进到达侦测器的区域9B。
图7B的射束导引装置108B运用了由透镜前偏转及透镜中(in-lens)偏转所构成的双偏转—即偏转器116B及118B。额外的透镜后偏转器22可被非必要地提供,用以与偏转器118B一起操作提供所想要的偏斜模式。前进通过装置108B的初级及次级电子束以一种自我说明的方式被示于图中。位于初级射束孔9A外的侦测器区域9B对次级电子束Bs的侦测也被提供于图中。
图7C显示射束导引装置108C,其中两个偏转器—透镜内偏转器116C及透镜后偏转器118C被用来影响初级及次级电子束的轨道。如上文所述,当使用图1的聚焦组件时(磁性物境12及静电透镜14),透镜后及透镜中偏转器两者皆被设置在整个聚焦组件的聚焦场内。在图7C中,以法向操作模式进行的初级及次级电子束前进情形以实线示出,而偏斜模式则以虚线示出。从法向模式切换至偏斜模式是通过适当地改变偏转器的电子参数(增加通过偏转器线圈的电流)来达成的。应被了解的是,偏斜模式亦可由上文所描述的例子来获得。
因此,在上面图7A-7C的例子中,与图4的例子相类似地,初级电子束BP沿着平行于光轴OA的轴OA”(在图7A-7C中大致沿着光轴,在图4中沿着与光轴间隔开来的轴)打击到晶片2上。次级电子束Bs可以永远都被导引到位于初级射束孔9a的外部的侦测器区域9b上。
参照图8A及8B,其显示出依据本发明另一实施例的带电粒子束设备206。在此处,阳极管(第一轴OA’)以及侦测器209的中心轴与射束导引装置208的聚焦组件的光轴OA成一角度,如1-2度的角度。射束导引装置208的偏转器216及218可以是两个透镜前偏转器,透镜前及透镜中偏转器,或透镜中及透镜后偏转器。图8A显示法向模式下电子束的前进情形,及图8B显示在偏斜模式下的电子束前进情形。
如图8A所示,初级电子束Bp沿着通过侦测器9的初级射束孔9a的第一轴OA’前进朝向射束导引装置208,且只被偏转器216的偏转场偏转用以沿着与第一轴OA’成一角度的第二轴OA1”(其大致与光轴OA重叠)打击到晶片2上。轴OA”与晶片表面交会在L1的位置,其与第一轴OA’/晶片表面的交会位置L2是间隔开来的。次级电子束Bs沿着光轴往回前进且只被同一偏转器216偏转用以朝向位于初级射束孔9a外部的侦测器区域9b前进。
如图8B所示的,初级电子束Bp沿着通过侦测器的初级射束孔9A的第一轴OA’前进,然后依序被偏转器216及218偏转于相反方向上。其结果为初级电子束沿着第二轴OA’入射到晶片的位置L1处。从位置L1处被撞击出来的次级电子束Bs沿着平行于光轴OA的轴往回前进并依序被偏转器218及216偏转,以沿着OA’”前进至位于初级射束孔外部的侦测区9b处。
应被了解的是,在图8A及8B的结构中,当在法线模式下操作时,提供第二偏转器对于本发明的目的而言是非必要的,亦即,对于将初级与次级电子束间隔开及将次级电子束导引至侦测区9b而言是非必要的。然而,为了能够用“偏斜“模式来操作,提供至少两个偏转器是较好的。
同样应被了解的是,利用偏斜入射电子束来实施成功的“侧壁成像”可在没有使用拔取(extraction)电场(或“附加电压”)时,亦即当Vanode≈Vpole/piece≈Vwafer的条件发生时,被达成。在此例子中,虽然提供第二偏转器可能无法充分地影响偏转的色差,但适当地操作此偏转器可提供入射电子束的成功偏斜,亦即,能够在“法向”及“偏斜”两模式下检查晶片上相同的位置。而提供此牵引场(extraction field)典型地可改善成像。
本行业技术人员可以很轻易地了解到不同的修改及变化可在不偏离由本发明的权利要求界定的范围之下应用到上文中所描述的实施例上。依据本发明加以建构及操作的射束导引装置及带电粒子束设备可被使用在任何检查,度量,缺陷覆检或类似的工具上。

Claims (59)

1.一种方法,包含:
(a)导引初级带电粒子束使之沿着第一轴通过侦测器上的开孔,所述侦测器具有位于开孔外部的带电粒子侦测区;
(b)让初级带电粒子束通过偏转组件,该偏转组件具有一磁性物镜聚焦组件以及多个偏转器,所述偏转器被操作用以沿着聚焦组件的光轴在分隔开的位置处向初级带电粒子束施加偏转场,相对于初级带电粒子束的前进方向而言,至少一个偏转器是设在磁性物镜的上游,另一偏转器则是设在磁性物镜的下游,从而影响初级带电粒子束的轨道,使其从沿着第一轴前进到沿着大致平行于第一轴且与第一轴分隔开来的第二轴,朝着样本前进,以使由初级带电粒子束与样本交互作用而产生的次级带电粒子束前进到侦测器的位于开孔外部的侦测区。
2.如权利要求1所述的方法,其中影响步骤包含让初级带电粒子束通过两偏转场,其可将初级带电粒子束从其沿着第一轴的前进偏转成初级带电粒子束沿着第二轴前进,所述两个偏转场将次级带电粒子束偏转,以使次级带电粒子束前进至侦测器位于开孔外部的侦测区。
3.如权利要求1所述的方法,其中聚焦组件的光轴平行于第一轴。
4.如权利要求3所述的方法,其中第一轴大致平行于聚焦组件的光轴且与光轴间隔开来。
5.如权利要求4所述的方法,其中第二轴大致与聚焦组件的光轴相重叠。
6.如权利要求3所述的方法,其中第一轴大致与聚焦组件的光轴相重叠。
7.如权利要求6所述的方法,其中第二轴平行于聚焦组件的光轴且与光轴间隔开来。
8.一种方法,包含:
导引初级带电粒子束沿着第一轴通过侦测器上的开孔并朝向射束导引装置,侦测器具有位于开孔外部的带电粒子侦测区;
让初级带电粒子束通过射束导引装置,射束导引装置包括聚焦组件及偏转组件,聚焦组件界定与第一轴成非零角度的光轴,偏转组件被操作用以将沿着第一轴前进的初级带电粒子束偏转成沿着大致平行于聚焦组件的光轴的第二轴朝着样本前进的初级带电粒子束,及被操作用以影响由初级带电粒子束与样本交互作用而产生的次级带电粒子束的轨道用以让次级带电粒子束前进至位于侦测器开孔外部的侦测区。
9.如权利要求8所述的方法,其中偏转组件被操作用以通过在沿着聚焦组件光轴上分别产生两个偏转场于两个连续区域中的方式来偏转初级带电粒子束,所述两个偏转场影响次级带电粒子束的轨道用以使次级带电粒子束前进至位于侦测器开孔外部的侦测区。
10.一种用于带电粒子束设备中的射束导引装置,所述带电粒子束设备界定沿着第一轴朝向导引装置前进的初级带电粒子束,且利用开设有开孔及形成有位于开孔外部的带电粒子侦测区的侦测器,侦测器被设置成可让第一轴通过侦测器开孔,所述射束导引装置包含:
聚焦组件,其界定一光轴,且可被操作用以通过至少部分使用磁性物镜将初级带电粒子束聚焦在样本上;及
偏转组件,其具有沿着聚焦组件的光轴在两个分隔开的位置处容置的两个偏转器,相对于初级带电粒子束朝着样本的前进方向而言,一个偏转器是设在磁性物镜的上游,另一偏转器则是设在磁性物镜的下游,偏转组件可被操作用以通过向初级带电粒子束和次级带电粒子束施加两个偏转场来影响初级带电粒子束的轨道,使其沿着大致平行于第一轴且与第一轴间隔开来的第二轴前进而将初级带电粒子束导引到样本上,以促使次级带电粒子束前进至位于侦测器开孔外部的侦测区。
11.如权利要求10所述的装置,其中光轴大致平行于初级带电粒子束前进的第一轴。
12.如权利要求11所述的装置,其中光轴大致与第一轴相重叠,及第二轴与该光轴相间隔开。
13.如权利要求10所述的装置,其中光轴与第一轴相间隔开。
14.如权利要求13所述的装置,其中第二轴大致与聚焦组件的光轴相重叠。
15.如权利要求10所述的装置,其中聚焦组件还包含静电浸没透镜,其被设置在磁性物镜相对于初级带电粒子朝向样本前进的方向的下游处。
16.一种用于带电粒子束设备中的射束导引装置,带电粒子束设备界定沿着第一轴朝向导引装置前进的初级带电粒子射束,且利用开设有开孔及形成有位于开孔的外部的带电粒子侦测区的侦测器,侦测器被设置成可让第一轴通过侦测器开孔,所述射束导引装置包含:
聚焦组件,其界定与第一轴成非零角度的光轴且可被操作用以将初级带电粒子聚焦在样本上;及
偏转组件,其可被操作以影响初级带电粒子束的轨道并沿着大致平行于聚焦组件的光轴的第二轴将初级带电粒子束导引到样本上,并导引由初级带电粒子束与样本交互作用而产生的次级带电粒子束前进至位于侦测器开孔外部的侦测区。
17.一种用来检查样本的带电粒子束设备,其包含:
阳极管,其界定由粒子源所产生的沿着大致平行于阳极管纵轴的第一轴行进的初级带电粒子束的前进空间;
侦测器,其上开设有开孔及具有位于开孔外部的带电粒子侦测区,所述侦测器被设置成可容许第一轴与侦测器开孔交会;及
射束导引装置,其被设置在通过侦测器开孔的初级带电粒子束的路径上,射束导引装置包含聚焦组件,其界定光轴且可被操作用以通过至少部分使用磁性物镜将初级带电粒子聚焦在样本上,及一偏转组件,其具有沿着聚焦组件的光轴在两个分隔开的位置处容置的两个偏转器,相对于初级带电粒子束朝着样本的前进方向而言,一个偏转器是设在磁性物镜的上游,另一偏转器则是设在磁性物镜的下游,偏转组件可被操作用以通过向初级带电粒子束和由初级带电粒子束与样本交互作用而产生的次级带电粒子束施加两个偏转场来影响初级带电粒子束的轨道来造成初级带电粒子束沿着大致平行于第一轴且与第一轴间隔开来的第二轴前进至样本,以及影响次级带电粒子束的轨道,以促使次级带电粒子束前进至位于侦测器开孔外部的侦测区。
18.如权利要求17所述的设备,其中第一轴大致平行于聚焦组件的光轴。
19.如权利要求18所述的设备,其中光轴大致与第一轴相重叠,及第二轴与光轴相间隔开。
20.如权利要求17所述的设备,其中光轴与第一轴相间隔开。
21.如权利要求20所述的设备,其中第二轴大致与聚焦组件的光轴相重叠。
22.如权利要求17所述的设备,其中聚焦组件还包含静电浸没透镜,其被设置在磁性物镜相对于初级带电粒子朝向样本前进的方向的下游处。
23.一种用来检查样本的带电粒子束设备,其包含:
阳极管,其界定由粒子源所产生的沿着大致平行于阳极管纵轴的第一轴行进的初级带电粒子束的前进空间;
侦测器,其上开设有开孔及具有位于开孔外部的带电粒子侦测区,侦测器被设置成可容许第一轴与侦测器开孔交会;及
射束导引装置,其被设置在通过侦测器开孔的该初级带电粒子束的路径上,射束导引装置包含聚焦组件,其界定与第一轴成非零角度的光轴且可被操作用以将初级带电粒子束聚焦在样本上,及偏转组件,其可被操作用以影响初级带电粒子束的轨道来使初级带电粒子束沿着大致平行于聚焦组件光轴的第二轴前进至样本,及影响由初级带电粒子束与样本交互作用而产生的次级带电粒子束的轨道,以促使次级带电粒子束前进至位于侦测器开孔外部的侦测区。
24.一种方法,包含:
(a)导引初级带电粒子束使之沿着第一轴通过侦测器上的开孔,所述侦测器具有位于开孔外部的带电粒子侦测区;
(b)让初级带电粒子束通过偏转组件,该偏转组件具有一磁性物镜聚焦组件以及多个偏转器,所述偏转器被操作用以沿着聚焦组件的光轴在分隔开的位置处向初级带电粒子束施加偏转场,相对于初级带电粒子束的前进方向而言,至少一个偏转器是设在磁性物镜的上游,另一偏转器则是设在与磁性物镜相邻,从而影响初级带电粒子束的轨道,使其从沿着第一轴前进到沿着大致平行于第一轴且与第一轴分隔开来的第二轴,朝着样本前进,以使由初级带电粒子束与样本交互作用而产生的次级带电粒子束前进到侦测器的位于开孔外部的侦测区。
25.如权利要求24所述的方法,其中影响步骤包含让初级带电粒子束通过两偏转场,其可将初级带电粒子束从其沿着第一轴的前进偏转成初级带电粒子束沿着第二轴前进,所述两个偏转场将次级带电粒子束偏转,以使次级带电粒子束前进至侦测器位于开孔外部的侦测区。
26.如权利要求24所述的方法,其中聚焦组件的光轴平行于第一轴。
27.如权利要求26所述的方法,其中第一轴大致平行于聚焦组件的光轴且与光轴间隔开来。
28.如权利要求27所述的方法,其中第二轴大致与聚焦组件的光轴相重叠。
29.如权利要求26所述的方法,其中第一轴大致与聚焦组件的光轴相重叠。
30.如权利要求29所述的方法,其中第二轴平行于聚焦组件的光轴且与光轴间隔开来。
31.一种方法,包括:
(a)导引初级带电粒子束使之沿着第一轴通过侦测器上的开孔,所述侦测器具有位于开孔外部的带电粒子侦测区;
(b)让初级带电粒子束通过偏转组件,该偏转组件具有一磁性物镜聚焦组件以及多个偏转器,所述偏转器被操作用以沿着聚焦组件的光轴在分隔开的位置处向初级带电粒子束施加偏转场,相对于初级带电粒子束的前进方向而言,至少一个偏转器是设在磁性物镜的下游,另一偏转器则是设在与磁性物镜相邻,从而影响初级带电粒子束的轨道,使其从沿着第一轴前进到沿着大致平行于第一轴且与第一轴分隔开来的第二轴,朝着样本前进,以使由初级带电粒子束与样本交互作用而产生的次级带电粒子束前进到侦测器的位于开孔外部的侦测区。
32.如权利要求31所述的方法,其中影响步骤包含让初级带电粒子束通过两偏转场,其可将初级带电粒子束从其沿着第一轴的前进偏转成初级带电粒子束沿着第二轴前进,所述两个偏转场将次级带电粒子束偏转,以使次级带电粒子束前进至侦测器位于开孔外部的侦测区。
33.如权利要求31所述的方法,其中聚焦组件的光轴平行于第一轴。
34.如权利要求33所述的方法,其中第一轴大致平行于聚焦组件的光轴且与光轴间隔开来。
35.如权利要求34所述的方法,其中第二轴大致与聚焦组件的光轴相重叠。
36.如权利要求33所述的方法,其中第一轴大致与聚焦组件的光轴相重叠。
37.如权利要求36所述的方法,其中第二轴平行于聚焦组件的光轴且与光轴间隔开来。
38.一种用于带电粒子束设备中的射束导引装置,所述带电粒子束设备界定沿着第一轴朝向射束导引装置前进的初级带电粒子束,且利用开设有开孔及形成有位于开孔外部的带电粒子侦测区的侦测器,侦测器被设置成可让第一轴通过侦测器开孔,所述射束导引装置包含:
聚焦组件,其界定一光轴,且可被操作用以通过至少部分使用磁性物镜将初级带电粒子束聚焦在样本上;及
偏转组件,其具有沿着聚焦组件的光轴在两个分隔开的位置处容置的两个偏转器,相对于初级带电粒子束朝着样本的前进方向而言,一个偏转器是设在磁性物镜的上游,另一偏转器则是设在与磁性物镜相邻,偏转组件可被操作用以通过向初级带电粒子束和次级带电粒子束施加两个偏转场来影响初级带电粒子束的轨道,使其沿着大致平行于第一轴且与第一轴间隔开来的第二轴前进而将初级带电粒子束导引到样本上,以促使次级带电粒子束前进至位于侦测器开孔外部的侦测区。
39.如权利要求38所述的装置,其中光轴大致平行于初级带电粒子束前进的第一轴。
40.如权利要求39所述的装置,其中光轴大致与第一轴相重叠,及第二轴与该光轴相间隔开。
41.如权利要求38所述的装置,其中光轴与第一轴相间隔开。
42.如权利要求41所述的装置,其中第二轴大致与聚焦组件的光轴相重叠。
43.如权利要求38所述的装置,其中聚焦组件还包含静电浸没透镜,其被设置在磁性物镜相对于初级带电粒子朝向样本前进的方向的下游处。
44.一种用于带电粒子束设备中的射束导引装置,所述带电粒子束设备界定沿着第一轴朝向射束导引装置前进的初级带电粒子束,且利用开设有开孔及形成有位于开孔外部的带电粒子侦测区的侦测器,侦测器被设置成可让第一轴通过侦测器开孔,所述射束导引装置包含:
聚焦组件,其界定一光轴,且可被操作用以通过至少部分使用磁性物镜将初级带电粒子束聚焦在样本上;及
偏转组件,其具有沿着聚焦组件的光轴在两个分隔开的位置处容置的两个偏转器,相对于初级带电粒子束朝着样本的前进方向而言,一个偏转器是设在磁性物镜的下游,另一偏转器则是设在与磁性物镜相邻,偏转组件可被操作用以通过向初级带电粒子束和次级带电粒子束施加两个偏转场来影响初级带电粒子束的轨道,使其沿着大致平行于第一轴且与第一轴间隔开来的第二轴前进而将初级带电粒子束导引到样本上,以促使次级带电粒子束前进至位于侦测器开孔外部的侦测区。
45.如权利要求44所述的装置,其中光轴大致平行于初级带电粒子束前进的第一轴。
46.如权利要求45所述的装置,其中光轴大致与第一轴相重叠,及第二轴与该光轴相间隔开。
47.如权利要求44所述的装置,其中光轴与第一轴相间隔开。
48.如权利要求47所述的装置,其中第二轴大致与聚焦组件的光轴相重叠。
49.如权利要求44所述的装置,其中聚焦组件还包含静电浸没透镜,其被设置在磁性物镜相对于初级带电粒子朝向样本前进的方向的下游处。
50.一种用来检查样本的带电粒子束设备,其包含:
阳极管,其界定由粒子源所产生的沿着大致平行于阳极管纵轴的第一轴行进的初级带电粒子束的前进空间;
侦测器,其上开设有开孔及具有位于开孔外部的带电粒子侦测区,侦测器被设置成可容许第一轴与侦测器开孔交会;及
射束导引装置,其被设置在通过侦测器开孔的该初级带电粒子束的路径上,射束导引装置包含聚焦组件及偏转组件,聚焦组件界定光轴且可被操作用以通过至少部分使用磁性物镜将初级带电粒子束聚焦在样本上,偏转组件具有沿着聚焦组件的光轴在两个分隔开的位置处容置的两个偏转器,相对于初级带电粒子束朝着样本的前进方向而言,一个偏转器是设在磁性物镜的上游,另一偏转器则是设在与磁性物镜相邻,偏转组件可被操作用以通过向初级带电粒子束和由初级带电粒子束与样本交互作用而产生的次级带电粒子束施加两个偏转场,影响初级带电粒子束的轨道来使初级带电粒子束沿着大致平行于第一轴且与第一轴间隔开来的第二轴前进至样本,及影响次级带电粒子束的轨道,以促使次级带电粒子束前进至位于侦测器开孔外部的侦测区。
51.如权利要求50所述的设备,其中第一轴大致平行于聚焦组件的光轴。
52.如权利要求51所述的设备,其中光轴大致与第一轴相重叠,及第二轴与光轴相间隔开。
53.如权利要求50所述的设备,其中光轴与第一轴相间隔开。
54.如权利要求53所述的设备,其中第二轴大致与聚焦组件的光轴相重叠。
55.一种用来检查样本的带电粒子束设备,其包含:
阳极管,其界定由粒子源所产生的沿着大致平行于阳极管纵轴的第一轴行进的初级带电粒子束的前进空间;
侦测器,其上开设有开孔及具有位于开孔外部的带电粒子侦测区,侦测器被设置成可容许第一轴与侦测器开孔交会;及
射束导引装置,其被设置在通过侦测器开孔的该初级带电粒子束的路径上,射束导引装置包含聚焦组件及偏转组件,聚焦组件界定光轴且可被操作用以通过至少部分使用磁性物镜将初级带电粒子束聚焦在样本上,偏转组件具有沿着聚焦组件的光轴在两个分隔开的位置处容置的两个偏转器,相对于初级带电粒子束朝着样本的前进方向而言,一个偏转器是设在磁性物镜的下游,另一偏转器则是设在与磁性物镜相邻,偏转组件可被操作用以通过向初级带电粒子束和由初级带电粒子束与样本交互作用而产生的次级带电粒子束施加两个偏转场,影响初级带电粒子束的轨道来使初级带电粒子束沿着大致平行于第一轴且与第一轴间隔开来的第二轴前进至样本,及影响次级带电粒子束的轨道,以促使次级带电粒子束前进至位于侦测器开孔外部的侦测区。
56.如权利要求55所述的设备,其中第一轴大致平行于聚焦组件的光轴。
57.如权利要求56所述的设备,其中光轴大致与第一轴相重叠,及第二轴与光轴相间隔开。
58.如权利要求55所述的设备,其中光轴与第一轴相间隔开。
59.如权利要求58所述的设备,其中第二轴大致与聚焦组件的光轴相重叠。
CN038162245A 2002-05-13 2003-05-12 带电粒子束装置和侦测样本的方法 Expired - Fee Related CN1666101B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/146,218 2002-05-13
US10/146,218 US6674075B2 (en) 2002-05-13 2002-05-13 Charged particle beam apparatus and method for inspecting samples
PCT/US2003/015018 WO2003095997A2 (en) 2002-05-13 2003-05-12 Method and apparatus for separating primary and secondary charged particle beams

Publications (2)

Publication Number Publication Date
CN1666101A CN1666101A (zh) 2005-09-07
CN1666101B true CN1666101B (zh) 2010-08-11

Family

ID=29400466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038162245A Expired - Fee Related CN1666101B (zh) 2002-05-13 2003-05-12 带电粒子束装置和侦测样本的方法

Country Status (6)

Country Link
US (1) US6674075B2 (zh)
JP (1) JP4384027B2 (zh)
KR (1) KR101046965B1 (zh)
CN (1) CN1666101B (zh)
AU (1) AU2003235507A1 (zh)
WO (1) WO2003095997A2 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768117B1 (en) * 2000-07-25 2004-07-27 Applied Materials, Inc. Immersion lens with magnetic shield for charged particle beam system
GB2374723B (en) * 2001-04-20 2005-04-20 Leo Electron Microscopy Ltd Scanning electron microscope
US6825475B2 (en) * 2002-09-19 2004-11-30 Applied Materials Israel, Ltd. Deflection method and system for use in a charged particle beam column
US7528614B2 (en) 2004-12-22 2009-05-05 Applied Materials, Inc. Apparatus and method for voltage contrast analysis of a wafer using a tilted pre-charging beam
JP2005038976A (ja) * 2003-07-18 2005-02-10 Hitachi High-Technologies Corp 最適エッチングパラメタ自動設定システムおよびエッチング出来ばえ評価システム
JP4073839B2 (ja) * 2003-07-22 2008-04-09 株式会社神戸製鋼所 分析装置用磁場発生装置
KR101041661B1 (ko) * 2003-07-30 2011-06-14 어플라이드 머티리얼즈 이스라엘 리미티드 다중 검출기들을 갖는 스캐닝 전자 현미경 및 다중 검출기기반 이미징을 위한 방법
US7842933B2 (en) * 2003-10-22 2010-11-30 Applied Materials Israel, Ltd. System and method for measuring overlay errors
JP4316394B2 (ja) * 2004-01-21 2009-08-19 株式会社東芝 荷電ビーム装置
US7317606B2 (en) * 2004-12-10 2008-01-08 Applied Materials, Israel, Ltd. Particle trap for electrostatic chuck
US7233008B1 (en) * 2005-03-14 2007-06-19 Applied Materials, Israel, Ltd. Multiple electrode lens arrangement and a method for inspecting an object
US7462828B2 (en) * 2005-04-28 2008-12-09 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
EP1916695B1 (en) 2006-10-25 2018-12-05 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam apparatus and method for operating it
DE102008041813B4 (de) * 2008-09-04 2013-06-20 Carl Zeiss Microscopy Gmbh Verfahren zur Tiefenanalyse einer organischen Probe
CN101929965B (zh) * 2008-09-04 2012-09-05 汉民微测科技股份有限公司 带电粒子检测装置及检测方法
TWI472751B (zh) * 2011-05-03 2015-02-11 Hermes Microvision Inc 用於檢查與複檢光罩/晶圓缺陷的帶電粒子系統
US9046475B2 (en) 2011-05-19 2015-06-02 Applied Materials Israel, Ltd. High electron energy based overlay error measurement methods and systems
CN102507974A (zh) * 2011-10-26 2012-06-20 北京航空航天大学 一种粒子图像测速用电子标靶及其使用方法
JP5852474B2 (ja) * 2012-03-01 2016-02-03 株式会社日立ハイテクノロジーズ 荷電粒子線装置
EP2654068B1 (en) * 2012-04-16 2017-05-17 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Switchable multi perspective detector, optics therefore and method of operating thereof
EP2654069B1 (en) * 2012-04-16 2016-02-24 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Multi channel detector, optics therefore and method of operating thereof
CN107533943B (zh) * 2015-05-08 2019-12-10 科磊股份有限公司 用于电子束系统中像差校正的方法及系统
JP2018174016A (ja) * 2015-07-29 2018-11-08 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US11532760B2 (en) 2017-05-22 2022-12-20 Howmedica Osteonics Corp. Device for in-situ fabrication process monitoring and feedback control of an electron beam additive manufacturing process
US10245448B2 (en) * 2017-07-21 2019-04-02 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
WO2019100600A1 (en) * 2017-11-21 2019-05-31 Focus-Ebeam Technology (Beijing) Co., Ltd. Low voltage scanning electron microscope and method for specimen observation
US11117195B2 (en) 2018-07-19 2021-09-14 The University Of Liverpool System and process for in-process electron beam profile and location analyses
US10866197B2 (en) * 2018-09-20 2020-12-15 KLA Corp. Dispositioning defects detected on extreme ultraviolet photomasks
CZ309537B6 (cs) * 2020-04-23 2023-03-29 Tescan Brno, S.R.O. Způsob zobrazení vzorku
CN114171361A (zh) * 2020-09-11 2022-03-11 聚束科技(北京)有限公司 一种电子显微镜
US20240021404A1 (en) * 2020-12-10 2024-01-18 Asml Netherlands B.V. Charged-particle beam apparatus with beam-tilt and methods thereof
CN113471041B (zh) * 2021-07-01 2024-03-08 中科晶源微电子技术(北京)有限公司 扫描电子显微镜装置和电子束检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896036A (en) * 1987-02-02 1990-01-23 Siemens Aktiengesellschaft Detector objective for scanning microscopes
WO1999046797A1 (de) * 1998-03-10 1999-09-16 Erik Essers Rasterelektronenmikroskop
US6194729B1 (en) * 1997-07-25 2001-02-27 Leo Elektronenmikroskopie Gmbh Particle beam apparatus
WO2002037523A2 (en) * 2000-10-31 2002-05-10 Koninklijke Philips Electronics N.V. Sem provided with an adjustable voltage of the final electrode in the electrostatic objective

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145947A (ja) * 1988-11-26 1990-06-05 Shimadzu Corp イオン散乱分光装置
EP0769799B1 (en) * 1995-10-19 2010-02-17 Hitachi, Ltd. Scanning electron microscope
US6184526B1 (en) * 1997-01-08 2001-02-06 Nikon Corporation Apparatus and method for inspecting predetermined region on surface of specimen using electron beam
JPH10214586A (ja) 1997-01-30 1998-08-11 Horon:Kk 走査型電子顕微鏡
JP3434165B2 (ja) * 1997-04-18 2003-08-04 株式会社日立製作所 走査電子顕微鏡
JPH1131470A (ja) * 1997-07-08 1999-02-02 Nikon Corp 電子光学系
JP3356270B2 (ja) * 1997-11-27 2002-12-16 株式会社日立製作所 走査電子顕微鏡
US6365897B1 (en) * 1997-12-18 2002-04-02 Nikon Corporation Electron beam type inspection device and method of making same
US6642520B2 (en) * 1999-04-13 2003-11-04 Kabushiki Kaisha Topcon Scanning electron microscope
JP3916464B2 (ja) * 1999-12-14 2007-05-16 アプライド マテリアルズ インコーポレイテッド 試料検査のための方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896036A (en) * 1987-02-02 1990-01-23 Siemens Aktiengesellschaft Detector objective for scanning microscopes
US6194729B1 (en) * 1997-07-25 2001-02-27 Leo Elektronenmikroskopie Gmbh Particle beam apparatus
WO1999046797A1 (de) * 1998-03-10 1999-09-16 Erik Essers Rasterelektronenmikroskop
WO2002037523A2 (en) * 2000-10-31 2002-05-10 Koninklijke Philips Electronics N.V. Sem provided with an adjustable voltage of the final electrode in the electrostatic objective

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP-平2-145947(A) 1990.06.05
JP-特开平10-214586(A) 1998.08.11
同上.

Also Published As

Publication number Publication date
AU2003235507A8 (en) 2003-11-11
WO2003095997A3 (en) 2004-03-18
WO2003095997A2 (en) 2003-11-20
US20030209667A1 (en) 2003-11-13
JP4384027B2 (ja) 2009-12-16
CN1666101A (zh) 2005-09-07
US6674075B2 (en) 2004-01-06
KR101046965B1 (ko) 2011-07-06
JP2005525679A (ja) 2005-08-25
KR20050010802A (ko) 2005-01-28
AU2003235507A1 (en) 2003-11-11

Similar Documents

Publication Publication Date Title
CN1666101B (zh) 带电粒子束装置和侦测样本的方法
KR102179897B1 (ko) 시료를 검사하기 위한 방법 및 하전 입자 다중-빔 디바이스
US7960697B2 (en) Electron beam apparatus
US9953805B2 (en) System for imaging a secondary charged particle beam with adaptive secondary charged particle optics
US8378299B2 (en) Twin beam charged particle column and method of operating thereof
US6825475B2 (en) Deflection method and system for use in a charged particle beam column
US7067807B2 (en) Charged particle beam column and method of its operation
EP2801997B1 (en) Electron beam wafer inspection system and method for operation thereof
KR102207766B1 (ko) 이차 전자 광학계 & 검출 디바이스
US9443696B2 (en) Electron beam imaging with dual Wien-filter monochromator
TWI523064B (zh) 可切換式多視角偵測器與用於其之光學器件及其操作方法
US7034297B2 (en) Method and system for use in the monitoring of samples with a charged particle beam
US7223974B2 (en) Charged particle beam column and method for directing a charged particle beam
US6897442B2 (en) Objective lens arrangement for use in a charged particle beam column
EP2219204B1 (en) Arrangement and method for the contrast improvement in a charged particle beam device for inspecting a specimen
US7170068B2 (en) Method and system for discharging a sample

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: American California

Co-patentee after: Applied Materials Inc.

Patentee after: Applied Materials Inc.

Address before: American California

Co-patentee before: Applied Materials Inc.

Patentee before: Applied Materials Inc.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100811

Termination date: 20130512