CN1653199A - α-βTi-Al-V-Mo-Fe合金 - Google Patents
α-βTi-Al-V-Mo-Fe合金 Download PDFInfo
- Publication number
- CN1653199A CN1653199A CNA038103613A CN03810361A CN1653199A CN 1653199 A CN1653199 A CN 1653199A CN A038103613 A CNA038103613 A CN A038103613A CN 03810361 A CN03810361 A CN 03810361A CN 1653199 A CN1653199 A CN 1653199A
- Authority
- CN
- China
- Prior art keywords
- alloy
- oxygen
- alpha
- beta
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Heat Treatment Of Articles (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Catalysts (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Materials For Medical Uses (AREA)
Abstract
高强度的α-β合金,它主要包含Al:4.5-5.5%,V:3.0-5.0%,Mo:0.3-1.8%,Fe:0.2-1.2%,氧:0.12-0.25%,Ti:余量。所有其它偶存元素的含量应为每种元素小于0.1%,总量小于0.5%。该合金与Ti-6Al-4V相比,机械加工性能和抗冲击性能有了改进。
Description
发明背景
本发明涉及高强度的α-β合金,它具有在强度、机械加工性能和抗冲击性能方面改进的综合性能。
钛基合金用于需要高强度-重量比以及高温性能和耐腐蚀性的场合。这些合金可以描述为α相合金、β相合金或者α-β合金。α-β合金含有一种或多种α稳定化元素和一种或多种β稳定化元素。这些合金可通过热处理或者热机械加工来增加强度。具体来说,从α-β范围内或者高于β转变温度的高温迅速冷却下来可以增加这些合金的强度。这一过程被称作固溶处理,之后进行中等温度处理(被称作老化),得到所需的α相和转变的β相的混合物作为合金微结构的主要相。
这些合金适用于要求兼备高强度、良好的机械加工性能和抗冲击性能的场合。
因此,本发明的一个目的是提供一种具有所需综合性能的α-β钛基合金。
发明概述
α-β钛合金,包含:
Al:4.5-5.5重量%
V:3.0-5.0重量%(优选是3.7-4.7重量%)
Mo:0.3-1.8重量%
Fe:0.2-1.2重量%(优选是0.2-0.8重量%)
O:0.12-0.25重量%(优选是0.15-0.22重量%)
余量的钛以及偶存元素(incidental elements)和杂质,每种含量小于0.1重量%,且总含量小于0.5重量%。
本发明的合金含有铝作为主要元素,其含量应在本发明的组成限度范围内。若铝含量低于4.5%,就得不到足够的强度。若铝含量高于5.5%,则机械加工性能会变差。
在本发明的α-β钛合金中,钒是一种主要元素,作为β稳定剂。若钒含量小于3.0%,就得不到足够的强度。若钒含量高于5.0%,则合金中β稳定剂的含量太高,会导致机械加工性能变差。
铁作为一种有效且价廉的β稳定化元素而存在。通常,大约0.1%铁来自于在本发明合金制备过程中所用的海绵钛和其它循环物质。或者,铁可以以钢或钼铁母合金的形式加入,因为本发明合金具有钼作为一种主要元素。若铁含量高于约1.2%,会对机械加工性能产生不利影响。
钼是一种能稳定β相的有效元素,钼还能使微结构中的晶粒细化。若钼的含量小于0.3%,就得不到所需的效果。若钼的含量高于1.8%,则机械加工性能会变差。
在钛及其合金中,氧是一种增强元素。若氧含量小于0.12%,就得不到足够的强度。若氧含量高于0.25%,则会产生脆性且机械加工性能会变差。
详细说明和具体实施例
实施例1
以实验室规模用两次VAR(真空弧重熔)方法制备10块直径为8英寸的含Ti-6Al-4V锭料。这些锭料的化学组成如表1所示。在该表中,合金A、B、C和E是本发明合金。合金D和F至J是比较例合金。合金J是Ti-6AL-4V,即最通用的α-β合金。用α-β加工工艺将这些锭料锻造和轧制成3/4″方棒或3/4″厚的板材。将一部分材料于1300F轧后工厂退火(mill anneal)1小时,接着进行空气冷却以检查每种合金的基本特性。此外,对每根棒进行固溶处理和老化(STA),然后测定机械性能检查合金的淬透性。
表2是轧后工厂退火之后合金的拉伸性能。合金A、B、C和E显示与Ti-6Al-4V相当的强度(UTS或0.2%PS)。A、B、C和E的延性(EI和RA)优于Ti-6Al-4V。表3示出试验用合金在STA之后的拉伸性能以及Ti-6Al-4V的拉伸性能。合金A、B和C的强度(UTS或0.2%PS)比Ti-6Al-4V的强度高出至少10ksi。STA之后的较高强度主要是因为加入Mo和/或Fe提高了淬透性。然而,若Mo和/或Fe的含量太高,则延性变低,如合金G、H和I所显示的那样。
表1 合金的化学组成(重量%,但H是ppm)
合金 | 合金 | Al | V | Mo | Fe | Si | O | 注 |
A | Ti-5A1-4V-1Mo-0.6Fe | 4.94 | 3.97 | 0.99 | 0.57 | 0.03 | 0.19 | 本发明 |
B | Ti-5Al-4V-0.5Mo-0.4Fe | 4.95 | 3.96 | 0.51 | 0.38 | 0.03 | 0.18 | 本发明 |
C | Ti-5Al-4V-0.5Mo-0.4Fe-0.08Si | 4.95 | 3.98 | 0.50 | 0.39 | 0.07 | 0.18 | 本发明 |
D | Ti-5Al-4V-0.5Mo-0.4Fe-0.35Si | 4.93 | 4.02 | 0.51 | 0.39 | 0.30 | 0.17 | 比较例 |
E | Ti-5Al-4V-1.5Mo-1Fe | 4.84 | 3.95 | 1.52 | .099 | 0.03 | 0.16 | 本发明 |
F | Ti-4Al-4V-1.5Mo-1Fe | 3.94 | 3.95 | 1.51 | 0.98 | 0.03 | 0.22 | 比较例 |
G | Ti-4Al-4V-2Mo-1.3Fe | 3.92 | 3.91 | 2.01 | 1.26 | 0.03 | 0.19 | 比较例 |
H | Ti-4Al-4Mo0.5Si | 3.95 | <.001 | 3.88 | 0.20 | 0.47 | 0.21 | 比较例 |
I | Ti-4Al-2Mo-1.3Fe-0.5Si | 3.90 | <.001 | 2.03 | 1.28 | 0.45 | 0.19 | 比较例 |
J | Ti-6Al-4V | 5.96 | 4.06 | 0.02 | 0.03 | 0.02 | 0.17 | 比较例 |
表2 轧后工厂退火的棒的拉伸件能
合金 | UTS(ksi) | 0.2%PS(ksi) | EI(%) | RA(%) |
A | 147.6 | 145.6 | 17 | 57.9 |
B | 144.2 | 142.1 | 17 | 53.7 |
C | 146.4 | 138.0 | 17 | 52.1 |
D | 151.8 | 143.9 | 13 | 42.0 |
E | 153.3 | 147.0 | 15 | 56.0 |
F | 152.6 | 144.5 | 17 | 56.1 |
G | 153.2 | 146.9 | 17 | 54.0 |
H | 154.9 | 146.6 | 15 | 41.6 |
I | 154.4 | 146.4 | 15 | 40.7 |
J | 146.7 | 134.2 | 15 | 44.3 |
表3 固溶处理和老化后的棒的拉伸性能
合金 | UTS(ksi) | 0.2%PS(ksi) | EI(%) | RA(%) |
A | 181.9 | 170.2 | 13 | 49.8 |
B | 170.0 | 159.7 | 13 | 51.3 |
C | 169.4 | 153.3 | 17 | 57.2 |
D | 180.4 | 165.3 | 13 | 48.6 |
E | 194.1 | 183.5 | 12 | 40.4 |
F | 189.5 | 172.8 | 12 | 40.5 |
G | 195.5 | 185.0 | 10 | 35.2 |
H | 203.4 | 186.8 | 10 | 32.1 |
I | 187.5 | 169.4 | 9 | 32.1 |
J | 159.0 | 144.5 | 15 | 53.3 |
EI=伸长率
RA=面积缩减率
UTS=最终拉伸强度
0.2%PS=0.2%弹限(屈服)强度
实施例2
将厚度为3/4″的经轧后工厂退火的板材加工至厚度为5/8″的板。在这些板上进行钻孔试验,评定合金的机械加工性能。将高速不锈钢钻头(AISI M42)用于本试验。以下是钻孔试验的条件。
-钻头直径:1/4″
-孔深:5/8″通孔
-进给:0.0075″/rev.
-转速:500RPM
-冷却剂:水溶性冷却剂
当钻头由于其尖端磨损而不能再钻孔时确定钻头寿命。钻孔试验的结果示于表4。表4中的相对钻孔指数是两至三次试验的平均值。当相对指数开始大于约4.0时终止该钻孔试验。钻孔试验表明,本发明合金与Ti-6AL-4V和其它在本发明合金化学组成以外的合金相比,其机械加工性能要优越许多。合金F的机械加工性能差是因为氧含量高的缘故。
表4 钻孔试验的结果
合金 | 合金类型 | 相对钻孔指数 | 注 |
A | Ti-5Al-4V-1Mo-0.6Fe-0.19氧 | >4.3 | 本发明 |
B | Ti-5Al-4V-0.5Mo-0.4Fe-0.18氧 | >4.2 | 本发明 |
D | Ti-5Al-4V-0.5Mo-0.4Fe-0.35Si-0.17氧 | >4.3 | 本发明 |
E | Ti-5Al-4V-1.5Mo-1Fe-0.16氧 | >4.0 | 本发明 |
F | Ti-4Al-4V-1.5Mo-1Fe-0.22氧 | 0.2 | 比较例 |
G | Ti-4Al-2Mo-1.3Fe-0.19氧 | 1.5 | 比较例 |
H | Ti-4Al-4Mo-0.5Si-0.21氧 | 1.8 | 比较例 |
I | Ti-4Al-2Mo-1.3Fe-0.5Si-0.19氧 | 0.2 | 比较例 |
J | Ti-6Al-4V-0.17氧 | 1.0 | 比较例 |
实施例3
由直径为8英寸的实验室锭料用α-β加工工艺制成厚度约0.43″的板。该板进行轧后工厂退火,然后酸浸。将50口径的FSP(破片模拟弹)用作弹射体。测量每块板的V50,即得到50%完全穿透机率的弹射体速度,将该V50与说明书进行比较。结果示于表5。表中的ΔV50表示V50的测量值和说明书值之间的差值。因此,正值表明比说明书优越。如表中所示,K合金的抗冲击性能比Ti-6Al-4V优越。
表5 抗冲击性能的结果
合金 | Al | V | Mo | Fe | O | ΔV50(FSP) | 注 |
K | 4.94 | 4.09 | 0.538 | 0.371 | 0.171 | 237 | 本发明 |
Ti-6Al-4V | -323 | 比较例 |
本领域技术人员在阅读了本说明书并实施了本说明书揭示的本发明后,显然能得出本发明的其它实施方案。本说明书和实施例只能被认为是示例性的,本发明真正的范围和精神记述于权利要求书。
Claims (13)
1.α-β钛基合金,包含以重量百分数计的:
4.5-5.5铝;
3.0-5.0钒;
0.3-1.8钼;
0.2-1.2铁;
0.12-0.25氧;和
余量的钛以及偶存元素和杂质,所述偶存元素每种含量小于0.1,总量小于0.5。
2.如权利要求1所述的合金,它包含3.7-4.7钒。
3.如权利要求1所述的合金,它包含0.2-0.8铁。
4.如权利要求1所述的合金,它包含0.15-0.22氧。
5.α-β钛基合金,包含以重量百分数计的:
4.5-5.5铝;
3.7-4.7钒;
0.3-1.8钼;
0.2-1.2铁;
0.12-0.25氧;和
余量的钛以及偶存元素和杂质,所述偶存元素每种含量小于0.1,总量小于0.5。
6.如权利要求5所述的合金,它包含0.2-0.8铁。
7.如权利要求6所述的合金,它包含0.15-0.22氧。
8.α-β钛基合金,包含以重量百分数计的:
4.5-5.5铝;
3.0-5.0钒;
0.3-1.8钼;
0.2-0.8铁;
0.12-0.25氧;和
余量的钛以及偶存元素和杂质,所述偶存元素每种含量小于0.1,总量小于0.5。
9.如权利要求8所述的合金,它包含3.7-4.7钒。
10.如权利要求9所述的合金,它包含0.15-0.22氧。
11.α-β钛基合金,包含以重量百分数计的:
4.5-5.5铝;
3.0-5.0钒;
0.3-1.8钼;
0.2-1.2铁;
0.15-0.22氧;和
余量的钛以及偶存元素和杂质,所述偶存元素每种含量小于0.1,总量小于0.5。
12.如权利要求11所述的合金,它包含3.7-4.7钒。
13.如权利要求12所述的合金,它包含0.2-0.8铁。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/140,884 US6786985B2 (en) | 2002-05-09 | 2002-05-09 | Alpha-beta Ti-Ai-V-Mo-Fe alloy |
US10/140,884 | 2002-05-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1653199A true CN1653199A (zh) | 2005-08-10 |
CN1297675C CN1297675C (zh) | 2007-01-31 |
Family
ID=29399514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB038103613A Expired - Lifetime CN1297675C (zh) | 2002-05-09 | 2003-04-30 | α-βTi-Al-V-Mo-Fe合金 |
Country Status (16)
Country | Link |
---|---|
US (1) | US6786985B2 (zh) |
EP (1) | EP1504131B1 (zh) |
JP (1) | JP4454492B2 (zh) |
CN (1) | CN1297675C (zh) |
AT (1) | ATE367455T1 (zh) |
AU (1) | AU2003222645B8 (zh) |
CA (1) | CA2485122C (zh) |
CY (1) | CY1106795T1 (zh) |
DE (1) | DE60315015T2 (zh) |
DK (1) | DK1504131T3 (zh) |
ES (1) | ES2292955T3 (zh) |
IL (1) | IL164575A (zh) |
MX (1) | MXPA04010945A (zh) |
PT (1) | PT1504131E (zh) |
RU (1) | RU2277134C2 (zh) |
WO (1) | WO2003095690A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105088012A (zh) * | 2015-09-14 | 2015-11-25 | 沈阳泰恒通用技术有限公司 | 应用内燃机车上的钛合金活塞连杆组及工艺方法 |
CN105316525A (zh) * | 2014-07-10 | 2016-02-10 | 波音公司 | 用于紧固件应用的钛合金 |
CN107747003A (zh) * | 2017-11-17 | 2018-03-02 | 尹海鹏 | 一种高强度钛合金钻杆及其制备方法 |
CN112823216A (zh) * | 2018-08-31 | 2021-05-18 | 波音公司 | 增材制造用高强度钛合金 |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040221929A1 (en) | 2003-05-09 | 2004-11-11 | Hebda John J. | Processing of titanium-aluminum-vanadium alloys and products made thereby |
US7837812B2 (en) | 2004-05-21 | 2010-11-23 | Ati Properties, Inc. | Metastable beta-titanium alloys and methods of processing the same by direct aging |
RU2269584C1 (ru) * | 2004-07-30 | 2006-02-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Сплав на основе титана |
US20060045789A1 (en) * | 2004-09-02 | 2006-03-02 | Coastcast Corporation | High strength low cost titanium and method for making same |
RU2283889C1 (ru) | 2005-05-16 | 2006-09-20 | ОАО "Корпорация ВСМПО-АВИСМА" | Сплав на основе титана |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US11780003B2 (en) | 2010-04-30 | 2023-10-10 | Questek Innovations Llc | Titanium alloys |
CN102939398A (zh) | 2010-04-30 | 2013-02-20 | 奎斯泰克创新公司 | 钛合金 |
US9255316B2 (en) | 2010-07-19 | 2016-02-09 | Ati Properties, Inc. | Processing of α+β titanium alloys |
US8499605B2 (en) | 2010-07-28 | 2013-08-06 | Ati Properties, Inc. | Hot stretch straightening of high strength α/β processed titanium |
US9631261B2 (en) * | 2010-08-05 | 2017-04-25 | Titanium Metals Corporation | Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties |
US9206497B2 (en) | 2010-09-15 | 2015-12-08 | Ati Properties, Inc. | Methods for processing titanium alloys |
US8613818B2 (en) | 2010-09-15 | 2013-12-24 | Ati Properties, Inc. | Processing routes for titanium and titanium alloys |
US10513755B2 (en) * | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
RU2463365C2 (ru) * | 2010-09-27 | 2012-10-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ПСЕВДО β-ТИТАНОВОГО СПЛАВА, СОДЕРЖАЩЕГО (4,0-6,0)% Аl, (4,5-6,0)% Мo, (4,5-6,0)% V, (2,0-3,6)% Cr, (0,2-0,5)% Fe, (0,1-2,0)% Zr |
US8652400B2 (en) | 2011-06-01 | 2014-02-18 | Ati Properties, Inc. | Thermo-mechanical processing of nickel-base alloys |
WO2012174501A1 (en) | 2011-06-17 | 2012-12-20 | Titanium Metals Corporation | Method for the manufacture of alpha-beta ti-al-v-mo-fe alloy sheets |
US10119178B2 (en) | 2012-01-12 | 2018-11-06 | Titanium Metals Corporation | Titanium alloy with improved properties |
US9957836B2 (en) | 2012-07-19 | 2018-05-01 | Rti International Metals, Inc. | Titanium alloy having good oxidation resistance and high strength at elevated temperatures |
JP5477519B1 (ja) * | 2012-08-15 | 2014-04-23 | 新日鐵住金株式会社 | 強度および靭性に優れた省資源型チタン合金部材およびその製造方法 |
US9050647B2 (en) | 2013-03-15 | 2015-06-09 | Ati Properties, Inc. | Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US9192981B2 (en) | 2013-03-11 | 2015-11-24 | Ati Properties, Inc. | Thermomechanical processing of high strength non-magnetic corrosion resistant material |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
CN104711452B (zh) * | 2013-12-17 | 2016-08-17 | 北京有色金属研究总院 | 一种高强高韧近Beta型钛合金材料及其制备与棒材加工方法 |
CA2947981C (en) | 2014-05-15 | 2021-10-26 | General Electric Company | Titanium alloys and their methods of production |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
CN104942283B (zh) * | 2015-07-27 | 2017-07-14 | 长沙瑞泰医学科技有限公司 | 钛合金粉末及其配制方法和应用 |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
US10000826B2 (en) * | 2016-03-10 | 2018-06-19 | Titanium Metals Corporation | Alpha-beta titanium alloy having improved elevated temperature properties and superplasticity |
JP7503486B2 (ja) | 2020-12-11 | 2024-06-20 | 株式会社豊田中央研究所 | 非磁性部材およびその製造方法 |
US20220186342A1 (en) * | 2020-12-11 | 2022-06-16 | Kabushiki Kaisha Toyota Jidoshokki | Non-magnetic member and method for producing the non-magnetic member |
CN113234960A (zh) * | 2021-05-08 | 2021-08-10 | 陕西工业职业技术学院 | 一种合金的制备方法 |
CN113981272B (zh) * | 2021-09-28 | 2022-08-19 | 北京科技大学 | Ti-6Al-4V-xFe-yMo钛合金及制备方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0199198A1 (en) | 1985-04-12 | 1986-10-29 | Daido Tokushuko Kabushiki Kaisha | Free-cutting ti alloy |
US5362441A (en) | 1989-07-10 | 1994-11-08 | Nkk Corporation | Ti-Al-V-Mo-O alloys with an iron group element |
DE69024418T2 (de) * | 1989-07-10 | 1996-05-15 | Nippon Kokan Kk | Legierung auf Titan-Basis und Verfahren zu deren Superplastischer Formgebung |
JPH0823053B2 (ja) * | 1989-07-10 | 1996-03-06 | 日本鋼管株式会社 | 加工性に優れた高強度チタン合金およびその合金材の製造方法ならびにその超塑性加工法 |
US5244517A (en) | 1990-03-20 | 1993-09-14 | Daido Tokushuko Kabushiki Kaisha | Manufacturing titanium alloy component by beta forming |
DE69107758T2 (de) | 1990-10-01 | 1995-10-12 | Sumitomo Metal Ind | Verfahren zur Verbesserung der Zerspanbarkeit von Titan und Titanlegierungen, und Titanlegierungen mit guter Zerspanbarkeit. |
JP2797913B2 (ja) | 1993-08-11 | 1998-09-17 | 住友金属工業株式会社 | 冷間加工性および溶接性に優れた高耐食性チタン合金 |
JP3083225B2 (ja) | 1993-12-01 | 2000-09-04 | オリエント時計株式会社 | チタン合金製装飾品の製造方法、および時計外装部品 |
JPH07179962A (ja) * | 1993-12-24 | 1995-07-18 | Nkk Corp | 連続繊維強化チタン基複合材料及びその製造方法 |
JPH07274238A (ja) * | 1994-03-29 | 1995-10-20 | Matsushita Electric Ind Co Ltd | データ伝送装置 |
JP3114503B2 (ja) * | 1994-07-14 | 2000-12-04 | 日本鋼管株式会社 | 局部的に耐磨耗性に優れた(α+β)型チタン合金の製造方法 |
US5759484A (en) | 1994-11-29 | 1998-06-02 | Director General Of The Technical Research And Developent Institute, Japan Defense Agency | High strength and high ductility titanium alloy |
US5980655A (en) | 1997-04-10 | 1999-11-09 | Oremet-Wah Chang | Titanium-aluminum-vanadium alloys and products made therefrom |
JPH10306335A (ja) * | 1997-04-30 | 1998-11-17 | Nkk Corp | (α+β)型チタン合金棒線材およびその製造方法 |
EP0969109B1 (en) | 1998-05-26 | 2006-10-11 | Kabushiki Kaisha Kobe Seiko Sho | Titanium alloy and process for production |
-
2002
- 2002-05-09 US US10/140,884 patent/US6786985B2/en not_active Expired - Lifetime
-
2003
- 2003-04-30 CA CA002485122A patent/CA2485122C/en not_active Expired - Lifetime
- 2003-04-30 PT PT03719840T patent/PT1504131E/pt unknown
- 2003-04-30 AT AT03719840T patent/ATE367455T1/de active
- 2003-04-30 DK DK03719840T patent/DK1504131T3/da active
- 2003-04-30 RU RU2004132826/02A patent/RU2277134C2/ru active
- 2003-04-30 AU AU2003222645A patent/AU2003222645B8/en not_active Ceased
- 2003-04-30 JP JP2004503679A patent/JP4454492B2/ja not_active Expired - Lifetime
- 2003-04-30 CN CNB038103613A patent/CN1297675C/zh not_active Expired - Lifetime
- 2003-04-30 DE DE60315015T patent/DE60315015T2/de not_active Expired - Lifetime
- 2003-04-30 WO PCT/US2003/012117 patent/WO2003095690A1/en active IP Right Grant
- 2003-04-30 ES ES03719840T patent/ES2292955T3/es not_active Expired - Lifetime
- 2003-04-30 EP EP03719840A patent/EP1504131B1/en not_active Expired - Lifetime
- 2003-04-30 MX MXPA04010945A patent/MXPA04010945A/es active IP Right Grant
-
2004
- 2004-10-14 IL IL164575A patent/IL164575A/en not_active IP Right Cessation
-
2007
- 2007-08-07 CY CY20071101055T patent/CY1106795T1/el unknown
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105316525A (zh) * | 2014-07-10 | 2016-02-10 | 波音公司 | 用于紧固件应用的钛合金 |
US9956629B2 (en) | 2014-07-10 | 2018-05-01 | The Boeing Company | Titanium alloy for fastener applications |
CN105088012A (zh) * | 2015-09-14 | 2015-11-25 | 沈阳泰恒通用技术有限公司 | 应用内燃机车上的钛合金活塞连杆组及工艺方法 |
CN107747003A (zh) * | 2017-11-17 | 2018-03-02 | 尹海鹏 | 一种高强度钛合金钻杆及其制备方法 |
CN112823216A (zh) * | 2018-08-31 | 2021-05-18 | 波音公司 | 增材制造用高强度钛合金 |
US11920217B2 (en) | 2018-08-31 | 2024-03-05 | The Boeing Company | High-strength titanium alloy for additive manufacturing |
Also Published As
Publication number | Publication date |
---|---|
JP4454492B2 (ja) | 2010-04-21 |
RU2004132826A (ru) | 2005-05-27 |
IL164575A0 (en) | 2005-12-18 |
CY1106795T1 (el) | 2012-05-23 |
MXPA04010945A (es) | 2005-12-02 |
ES2292955T3 (es) | 2008-03-16 |
PT1504131E (pt) | 2007-08-06 |
AU2003222645B2 (en) | 2006-03-16 |
RU2277134C2 (ru) | 2006-05-27 |
DK1504131T3 (da) | 2007-08-13 |
CA2485122C (en) | 2008-07-15 |
DE60315015T2 (de) | 2008-04-10 |
AU2003222645B8 (en) | 2009-06-18 |
DE60315015D1 (de) | 2007-08-30 |
JP2005524774A (ja) | 2005-08-18 |
ATE367455T1 (de) | 2007-08-15 |
US6786985B2 (en) | 2004-09-07 |
EP1504131A1 (en) | 2005-02-09 |
IL164575A (en) | 2009-02-11 |
CN1297675C (zh) | 2007-01-31 |
WO2003095690A1 (en) | 2003-11-20 |
US20030211003A1 (en) | 2003-11-13 |
CA2485122A1 (en) | 2003-11-20 |
AU2003222645A1 (en) | 2003-11-11 |
EP1504131B1 (en) | 2007-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1297675C (zh) | α-βTi-Al-V-Mo-Fe合金 | |
US20190169712A1 (en) | Titanium alloy with improved properties | |
US11286544B2 (en) | Calcium-bearing magnesium and rare earth element alloy and method for manufacturing the same | |
RU2616676C2 (ru) | Альфа/бета титановый сплав с высокой прочностью и пластичностью | |
EP0408313B1 (en) | Titanium base alloy and method of superplastic forming thereof | |
US10837092B2 (en) | High-strength alpha-beta titanium alloy | |
CN107227418A (zh) | 具有良好防弹和机械特性的低成本α‑β钛合金 | |
JPH05117791A (ja) | 高強度高靱性で冷間加工可能なチタン合金 | |
US11708630B2 (en) | Titanium alloy with moderate strength and high ductility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20070131 |
|
CX01 | Expiry of patent term |