CN1639196A - 植物材料破碎成为易于水解的纤维素颗粒 - Google Patents

植物材料破碎成为易于水解的纤维素颗粒 Download PDF

Info

Publication number
CN1639196A
CN1639196A CNA018226175A CN01822617A CN1639196A CN 1639196 A CN1639196 A CN 1639196A CN A018226175 A CNA018226175 A CN A018226175A CN 01822617 A CN01822617 A CN 01822617A CN 1639196 A CN1639196 A CN 1639196A
Authority
CN
China
Prior art keywords
water
cellulose
particle
biomass
thickening material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018226175A
Other languages
English (en)
Other versions
CN100467491C (zh
Inventor
S·羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biomass Conversions LLC
Original Assignee
Biomass Conversions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biomass Conversions LLC filed Critical Biomass Conversions LLC
Publication of CN1639196A publication Critical patent/CN1639196A/zh
Application granted granted Critical
Publication of CN100467491C publication Critical patent/CN100467491C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0034Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter where the transmitter decides based on inferences, e.g. use of implicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

一种将纤维素生物质破碎成为易于水解的纤维素粉末的方法,所述方法包括逐渐使次晶态纤维素水合,同时一旦水合作用使相邻聚合物链间的氢键无效后,即应用机械力剥离纤维素聚合物链。实现这种破碎的一种优选方式是在一个容器内迅速搅拌纤维素生物质颗粒,形成颗粒的气态悬浮体。升高悬浮颗粒的温度并以细雾滴或蒸汽的形式逐渐加入水。纤维素颗粒很快被水合而没有明显的液态水存在。通过提高混合速率,同时停止加入水并将水蒸汽排入大气中,使所述颗粒定期脱水。最终产品是极细的纤维素粉末,这种粉末极易化学水解或被酶消化产生简单的糖。

Description

植物材料破碎成为易于水解的纤维素颗粒
发明背景
1. 发明领域
本发明涉及生物质,更具体地涉及使纤维素纤维破碎成为易于水解的状态的方法。
2. 相关技术描述
我们的世界由最近的恒星即太阳提供能量。除了由原子核裂变得到的能量外,人类应用的几乎所有其它能源最终都来自太阳。由流水得到的能量实际上是当水从海洋或其它水体中蒸发时所贮存的太阳能。风能是太阳加热大气的产物。化石燃料只是由已经死了很久的植物的光合作用所捕集的化学形式的太阳能。生物质燃料(例如木材)代表现在植物的光合作用的产物。
因此,生物所消耗的大量能量均来源于光合作用化学捕集的太阳能。事实上,光合植物在应用太阳能“固定”大气中的二氧化碳成为碳水化合物方面是非常有效的,以至于植物通常由这些碳水化合物构造它们的骨架(细胞壁)。这带来光合植物的一个矛盾的现象。部分光合作用产物在植物中可以作为糖和淀粉得到-而所述糖和淀粉为容易被植物细胞以及消耗植物作为食物源的动物代谢的碳水化合物。但大部分光合作用产物用于合成纤维素(β-1,4连接的萄葡糖聚合物),所述纤维素是不容易被植物或动物代谢的结构材料。所述纤维素生物质只能被特定的细菌和真菌慢慢分解和代谢。因此,植物中大量的纤维素质碳水化合物通常不能被动物新陈代谢所利用,虽然本质上它只是糖。
纤维素生物质似乎代表着人类对食物和燃料的不断需求中的一个问题。许多农业实践产生大量的纤维素生物质(例如麦秸或稻杆、玉米杆、玉米穗轴、谷壳或类似的“废物”)。虽然这种材料主要为碳水化合物,但其不能用作食物。虽然它们很容易燃烧,但因为现代内燃机和透平机不适于应用这种材料而不容易用作燃料。确实,这些生物质可以在炉子中燃料以产生热,而这些热可以为锅炉或其它热机提供动力,但这通常会造成空气污染并且效率不高。其结果是这种生物质经常不能作为食物也不能作为燃料处理,而只是简单的当做废品处理,其或多或少需要昂贵的处理。
可以肯定的是纤维素可以通过厌氧性微生物消化有限地转化为燃料气体如甲烷。但这些消化者相对复杂并且未被广泛采用。另外还可能应用酶如纤维素酶使纤维素转化为简单的糖。然后这些糖被分离或被发酵成乙醇,而乙醇对现有的内燃机和透平机来说是非常好的燃料。不幸的是,酶在完整的纤维素材料上只能缓慢地起作用。另外还可能应用化学方法(强酸或强碱条件下)直接将纤维素水解成为简单的糖。虽然这种水解是一种热力学上有利的反应,但完整纤维素的机械结构在很大程度上限制了这种水解的效率。
植物细胞通常被复杂的碳水化合物细胞壁所包围。所述细胞壁在很大程度上由β-1,4连接的萄葡糖聚合物即纤维素组成。所述细胞壁的纤维素分子通常以线性粘结的次晶态(类似晶体的)结构排列,这种结构有时称为微纤维。纤维素的次晶态区域通过其它的碳水化合物聚合物连接在一起,并且可能被一些蛋白质连接在一起。这些“半纤维素”材料的精确结构和键目前是未知的,并且是许多科学研究的目的。通常这些非纤维素的碳水化合物比次晶态纤维素在结构上更灵活,并且能够为细胞壁的破碎提供更容易的“攻击点”。纤维素和非纤维素材料按通常称为原纤维的更大的结构进行排列。通常还包括称为“木质素”的羟基苯基丙烷聚合物。木质素增加了强度和对微生物攻击的耐受力。原纤维通常以螺旋状或其它方式排列以及排列成层从而形成实际的细胞壁。相邻细胞的细胞壁通过特殊的果胶碳水化合物基质(中间薄层)相互之间“胶合”,从而形成粘结的多细胞结构。
木材或其它生物质的精确组成按照其来源而变化。主要由导水细胞和结构纤维细胞组成的木材具有相当高的木质素含量(20-35%)。草本植物材料通常木质素的含量稍低(10-20%),甘蔗渣(甘蔗细胞壁)含约21%木质素。以干重为基准,裸子植物木材平均含有约50%纤维素和35%木质素。剩余材料主要为“半纤维素”的碳水化合物。表1给出了一些常见植物材料的纤维素和木质素组成。
植物材料     纤维素百分含量 木质素百分含量
绵花纤维     95-99 <1
苎麻     80-90 ~5
竹子     40-50 ~20
木材松树枫树桦树橡树     40-50 20-353422.921.620
在次晶态阵列中,相邻的纤维素聚合物链基本上是平行的且通过氢键保持接近晶体的结构。这种结构对木制品强大的抗拉强度起主要作用。这种结构耐受水和酶的渗透,并在很大程度上减慢了纤维素消化酶的作用。酶不能直接攻击易被破坏的配糖键。相反,它们被迫在表面纤维素链处“咀嚼”,并且只能慢慢渗透入次晶态阵列内。
因此,仍需要将纤维素生物质有效转化为食品或燃料的方法。已经公知的是,提高许多物理或化学过程速率的一种方法是增大所处理材料的表面积。所有人都知道如果把硬糖嚼成小块时其可以更迅速地在人的嘴里溶解。并不是所有人都认识到这种情况的发生是因为咀嚼过程在很大程度上增大了糖果的表面积,然后使其被水溶解。类似地,已知使纤维素生物质破碎成为小片会加速其化学溶解。例如,在造纸过程中,在化学混合物中对其进行“蒸煮”之前,将制浆木材破碎成为木片,从而确保对浆的煮解。将木材破碎成为木屑或木“粉”比起大块木材来更容易被纤维消化酶攻击。但即使是可能达到的最细的木“粉”,对酶的消化作用也具有相当的耐受能力。这可能是因为将木材破碎成“粉”的机械过程对次晶态区域具有很小的作用或基本没有作用。因此,即使材料已经尽可能地进行了机械处理,大部分纤维素仍是不可接近的。
发明概述
本发明是一种将纤维素生物质破碎成为易于水解的纤维素粉末的方法。从本质上讲,所述方法包括逐渐水合次晶态纤维素,同时一旦水合作用使相邻聚合物链间的氢键无效后,即应用机械力剥离纤维素聚合物链。实现这种破碎的一种优选方式是在一个容器内迅速搅拌纤维素生物质颗粒,形成颗粒的气态悬浮体。升高悬浮颗粒的温度并以细雾滴或蒸汽的形式逐渐加入水。纤维素颗粒很快被水合而没有明显的液态水存在。通过提高混合速率,同时停止加入水并将水蒸汽排入大气中,使所述颗粒定期脱水。最终产品是极细的纤维素粉末,这种粉末极易化学水解或被酶消化产生简单的糖。
附图的简要描述
图1给出了本发明采用纤维素材料并产生破碎材料的整个系统的示意图。
图2给出了用于将纤维素材料处理成为适用于本发明的形式的搅拌器的剖视图。
图3给出了图2的搅拌器沿图2中箭头3所定义的平面的剖面。
图4为图2的搅拌器的俯视图,该图给出了支撑破碎重量的轴。
图5给出了与用于纯化破碎纤维素材料的精馏器组合的本发明的破碎器的局剖图。
图6为图5中的破碎器沿箭头6所定义的平面的剖面图。
图7为图5中的破碎器沿箭头7所定义的平面的剖面图,该图给出了破碎器桨叶的俯视图。
图8为图5中的破碎器的分解图。
图9A和图9B给出了图8中9A和9B标记的区域的放大细节图。
图10给出了放大倍数为2,000X时破碎后材料的扫描电子显微照片。
图11给出了放大倍数为600X时部分破碎的纤维素材料的扫描电子显微照片,其中所述材料由于加入了过量的水而形成了“微球”。
图12的图线对比了完全破碎的纤维素材料的酶消化与部分消化的纤维素材料。
优选实施方案的详细描述
下列描述的目的是使本领域的熟练技术人员能够制造和利用本发明,同时描述了发明人实施其发明时的最佳方式。但对本领域的熟练技术人员来说,进行各种改变是很明显的,因为在这里已经对本发明的基本原理进行了具体定义,从而提供一种基本为机械的方法来预消化生物质,使其极易于进行酶或其它形式的水解。
本发明人意外地发现了用于将生物质破碎成为易于进行酶或其它水解的小颗粒的方法。正如上面所暗示的,考虑生物质纤维材料的组织结构的不同浓度是有帮助的。各植物细胞均被纤维壁包封,并且相邻的细胞壁胶合在一起形成宏观结构如木材。通常如果宏观结构用锯或在球磨机中用重击力进行机械攻击,各细胞会沿细胞间的接合点被分离。在某些情况下,各细胞壁会断裂或撕裂,但壁的亚结构基本不受影响。
如果植物材料经受如造纸过程中的化学消化,各细胞将分开(浸软),并且一些壁组分如木质素被改变或提取。通常壁的碳水化合物不会改变,直到应用足够的酸或碱来提取“半纤维素”组分。除了极强的化学侵蚀外,纤维素本身对所有其它侵蚀均具有耐受性。
因此,细胞壁内纤维素的层状和缠绕排列很难被机械破碎改变,并能耐受多种化学侵蚀。简单的机械力不足以破碎大部分的氢键,这些氢键使次晶态纤维素具有不寻常的性质。单个氢“键”并不是特别强的。实际上它很弱。但形成纤维素的平行聚合物链直线排列,从而使大量的氢键相互结合,致使进行破碎时需要很大的力。
尽管同时破碎存在于纤维素次晶态阵列中的大量氢键是非常困难的,但本发明人已经发现了逐渐打断这些键的新方法。本发明方法产生纤维素材料的颗粒,其中如果不是所有的话,也有许多次晶态氢键已经被打断。这将产生一种颗粒状的纤维素材料,而所述材料易于通过酶或化学方法水解(如用酸或碱水解)成为葡萄糖。下面给出的实验结果清楚地证实了实施本发明所需要的步骤。发明人相信有可能从所给出的数据来推断本方法的根本机理。但所要保护的发明是一种方法。作为本发明的基础的物理和化学事件的解释只是基于实验结果的合理假设。而这种假设总是经受改变和修正的。
据信本发明通常组合应用力和溶剂化作用使纤维素的植物细胞壁“机械”破碎成为易于水解的颗粒。虽然纤维素聚合物不溶于水,但其是高度亲水的。虽然在正常条件下仅加入水并不能破坏纤维素次晶态区域内的氢键,但这些材料很容易吸收并结合大量水。尽管如此,如果水分子确实能够插入相邻纤维素链之间,则相邻纤维素链间的氢键将会被纤维素链和水分子间的氢键所代替。这将完全破坏纤维素的次晶态性质。
机械重击或搅拌可以与合适的水合或溶剂化条件组合,从而破坏纤维素的次晶态区域。通常认为重击或搅拌的机械力会产生非常少的或根本不会使共价键断裂。这是因为机械力通常不能提供足够的能量达到破坏共价键的最低点。在有机聚合物如纤维素的情况下,机械力将相邻的聚合物链拉开,但实际上并没有使链断开。因为次晶态阵列是机械阻力区,可以预期有效的重击过程使细胞壁破碎成为细小的颗粒,其中每个颗粒代表一个次晶态阵列。事实上,通常的机械处理仅能将细胞壁破碎成为纤维,所述纤维代表大量相连的次晶态阵列。
但当机械破碎与适量的水合或溶剂化作用组合时,有可能将细胞壁破碎成为细小的颗粒,其中的次晶态阵列实际上已被破坏。如果仅仅向处理过程中加入过量水则这种破坏不会发生。如果加入大量水,正如纸浆处理过程中一样,水合的纤维素材料仅发生“动摇”但仍保持为碎片形式,所述碎片由一个细胞或者几个细胞相邻细胞的部分组成。也就是说,过量水起润滑作用且阻止机械力有效施加到纤维素材料上。如果纤维素材料相对干燥,则机械处理可以破碎纤维素材料成为代表细胞壁部分的碎片。
此处有利的是在机械处理之前使材料部分水合从而使其软化。但如果材料保持足够干燥阻止了液体水的润滑作用,则次晶态阵列将保持完整。另外也可以尽可能对“干燥”纤维素材料进行机械处理,其中加入更多的水试图使次晶态阵列溶剂化。但不幸的是,向机械搅拌的细胞壁碎片中加入液体水会使碎片粘在一起并形成宏观的“球”(例如直径为一至几毫米)。这种结构有效地阻止了纤维素材料的进一步机械破碎,这是因为大部分纤维素被限制在“球”内并且机械剪切力仅造成球间或碎片间的滑动(例如滚动)并且使球变形。
所需要的是一种方法,所述方法能够有效地将机械剪切力传递给各次晶态阵列,同时阵列的表面充分水合使氢键减弱但不足以形成“球”或水的润滑,而这种“球”或水的润滑将阻止机械力的传递。在这些条件下,次晶态阵列逐渐被剥离,就象剥洋葱皮那样。虽然据信本方法的有效机械力可以通过多种球磨机或其它碾磨或粉碎装置产生,但通过这里称为“破碎机”的旋转桨叶式研磨机可以达到好的结果。
虽然通过破碎机可以处理任何适度小的纤维素碎片,但本发明人已经发现通过预处理纤维素材料可以在很大程度上加速处理过程,从而使破碎机仅处理非常小的纤维素颗粒。图1是用于本发明的三种机械设备的示意图。虽然用于预处理纤维素材料的其它设备明显加速了破碎机30的工作,但本发明的真正关键是破碎机30。在图1中,各个设备按连接成的有效的处理过程给出。但在实际操作中,各种设备可以是分开的,并且纤维素可以从一个单元运送到另一个单元。第一个设备是刨床52。这个单元应用转动刀片将纤维素材料块64削成刨花68。这一设备操作将木块或其它植物材料块削成只有几分之一毫米厚的刨花。图示设备的操作特别象木匠应用刨子为了建造目的刨木块。对于处理“硬”植物材料如木材来说,刨床52非常重要。而一些较软的植物材料不用刨床53即可充分处理。
然后用搅拌器44处理薄的纤维素刨花。搅拌器的任务是将刨花68破碎成为细小的碎片66,所述碎片66的尺寸与锯末类似。实际上,当可以得到锯末时,就可以直接应用,并且刨床52和搅拌器44可以略去。图2-4更详细地描述了搅拌器44。在搅拌器44中,利用马达34在几百RPM下转动轴46。在图4所示的实施方案中有两个轴46。每个轴支持通过链条48与之相连的多个配重50。配重50含有多个螺旋环(所示的为两个螺旋环),并且相邻轴46的螺旋环沿轴长度方向分隔,从而一个轴46的配重50不与相邻轴46的配重50相撞。相反,配重50和链48撞击刨花68并使之悬浮,最终将它们破碎成为纤维素末66。这一过程相当快,刨花破碎成为末的持续时间的数量级为几小时或更少。在预处理过程及实际的破碎过程中,植物材料的水含量是很重要的。过湿的材料在用搅拌器44处理之前通常最好经过干燥。然后如下文所述向最后一步中加入水。
当末66形成后,其在破碎机30中被完全破碎,而破碎机是实施本发明方法的优选设备。在图1中,末66通过位于漏斗32侧壁的接口37进入破碎机。正如下文将要说明的,这里所描述的破碎机30具有一个任选部件54(图5)。但在无任选部件的实施方案中简单地将末装入漏斗32的顶部是完全可以接受的。图5给出了设备30的外部透视图,其中描述了漏斗32和封闭漏斗的盖42。
在图5的设备30中多个反向旋转轴36(这里为两个)上带有在相互分隔的刚性桨叶38,这些桨叶相互分开从页在旋转过程中相对紧密接触(约1cm的缝隙)。图7给出了平行于轴36的设备的纵向切面,而所述轴36支持桨叶38。轴36水平取向并且接近漏斗状容器32的底部设置。轴36靠马达34(图中只画出了一个)反向旋转。漏斗32内的纤维素末落到轴36和桨叶38上,被搅动并通过与运动的桨叶38紧密相对而保持悬浮状态。考虑到桨叶末端40之间相当大的间隙(几毫米),机械装置的主要作用是保持纤维素颗粒以气态“溶液”或浆液的形式悬浮在空气中。在所描述的实施方案中,空气是悬浮气体或流体。但如果整个设备在高于大气压下操作从而将操作温度提高到100℃以上时,用氮气或非氧化性气氛代替空气可能是特别有利的。
为了保持设备的气态流体悬浮体负荷,原料应该为已经被破碎到足够小的末状颗粒从而通过旋转桨叶很容易使其悬浮的原料纤维素生物质。通常原料代表已经破碎到直径只有几分之一毫米的颗粒的生物质。初始颗粒越大,纤维素全部破碎所花的时间越长。理想的是所述木材在用设备30破碎之前已经用图1中的刨床52和搅拌器44或者其它提供类似锯末的产品的设备破碎成为大致为锯末的材料。
在操作过程中,轴36以1000RPM或更高的速度旋转。在这种速度下,纤维素颗粒被桨叶38搅动,并且漏斗中的空气(气体)变成稳定循环的气体和纤维素末的“流体”。每次通过桨叶38时,一些碎片与移动的桨叶38接触,使它们受剪切力作用。循环纤维素颗粒的摩擦力可以产生相当多的热。另外,整个漏斗32均带有加热/冷却系统夹套(图中未画出),从而可以在设备内保持特定的温度。已经发现,多种纤维素材料在大气压下破碎的最佳温度为约40-50℃。提高上述温度可以加速破碎过程,但在能量利用方面的整体增加可能是不利的。
在向迅速混合的纤维素颗粒上施加热和机械力的同时,通过接口35加入水,从而使次晶态阵列溶剂化。如上面所解释的,加入液态水但保持材料不聚积成“球”是很困难的。如果材料形成“球”,则次晶态阵列的大部分表面被埋在“球”内,则氢键的断裂很少发生。当加入的水量刚好形成浆液时也会发生上述这种情况。在浆液中次晶态阵列可以暴露,但过量水用作润滑剂,从而不能向阵列应用机械力而使其剥离。所加的水的总量受破碎过程开始时结合在纤维素中的水的剩余量影响。较高的温度在一定程度下允许更快地加入水。
已经发现,通过逐渐加入水“蒸气”可以加入相对大量的水。这一点可以通过以细雾形式向迅速混合的颗粒中注入水来实现。将喷雾水预热到设备温度(如50℃),并在设备中观察不到液态水的累积。在这一温度下,雾滴几乎立即蒸发。由于这一原因水的加入也称为蒸气的加入。另外也可以用蒸汽来加入水蒸气,并加热整个装置。在任何情况下,混合纤维素材料均吸收大量的水(至少两倍于纤维素材料的初始重量,并且通常要高得多),但并没有明显可见地变湿或形成“球”。据信这样持续地吸收水可以通过破碎次晶态阵列来实现,从而越来越多的纤维素可以被水合。
也就是说,将热水注入到纤维素颗粒的气态悬浮体或“浆液”中。水与颗粒接触并迅速被吸收。当次晶态阵列表面层吸收水时,有些水插入聚合物链之间。这在很大程度上减弱了表面聚合物链的粘附性,这是因为聚合物和插入的水之间存在氢键而不是表面聚合物链和更深嵌入的聚合物链之间存在氢键。当水合的纤维素材料在破碎设备中被搅动时,剪切力使聚合物链沿弱化的水合区域分离。当次晶态阵列碎裂时,暴露出更多的纤维素阵列,而后者依次被水合并破碎。这一过程持续进行直到没有水再被吸收为止。根据原料颗粒的细小程度、所应用的温度以及其它因素,该过程在上述机器中可能花费12-24小时的处理时间。当然,如果原料非常粗,则需要长得多的破碎周期(因此优选应用预处理以形成纤维素末作为原料)。
如果偶然形成了“球”(例如由于加入过量的流体水),则可以通过“解压干燥”过程来逆转这一形成。实际上当桨叶持续快速旋转时升高室温。对漏斗或室进行放空从而使水蒸气逸出。也可以通过对室部分抽真空来加速干燥过程。随着干燥所述“球”分解,最终导致室内充满悬浮于空气中的细颗粒。已经发现即使当看不见明显的“球”时,定期进行这种解压干燥循环也是有利的。这一步骤可以破碎甚至更小的聚集体(如图11所示)。
提高破碎速率的一种方法是提高温度。一种简单有效的方法是构造整个设备成为“高压釜”。也就是说,将漏斗构造成压力容器并向其中通入过热蒸汽。典型的高压釜在温度为约120℃下操作。当然,根据压力,所述温度可以比这一温度高得多。虽然通过细小液体喷雾加水可以更迅速地加入水,但也可以只通过蒸汽加入水。高压釜方法的一个优点是仅通过使高压釜对大气放空即可以很容易地实现“解压干燥”。而不需要应用减压来加速干燥过程。
纤维素破碎的最终产品是极细的粉末。据信这种材料主要是带有很少或没有次晶态区域的相互缠绕的纤维素链。这种材料与造纸或其它浸软技术的产品显明不同,其中后者细胞壁片的整个细胞壁在显微镜下观察时仍然是可见的。图10给出了在放大倍数为2,000X时所形成的细小粉末。颗粒的外观是无定形的,并且直径通常小于10μm。据信这一结构由单个纤维素链(即没有次晶态区域)的材料的缠绕团形成。很明显,没有证据表明存在植物细胞壁。所述细胞结构已经被完全破碎。图11给出了由于向部分破碎的纤维素材料中加入过量水而形成的“微球”。很明显自由纤维素链以及次晶态纤维素片均被包在球中。已经发现,如果纤维素生物质完全破碎,则其在水中至少部分可溶。这表明已经形成基本没有次晶态聚集体的纤维素短链。可溶的或近乎可溶的材料极易被酶消化。
图中的破碎机30配有任选的分馏机构,所述分馏机构是针对连续进行“在线”处理而设计的。“分馏器”由多块档板54组成(参见图6),每块档板54具有一个或多个孔56。在本实施方案中,孔56的直径尺寸为一到几个厘米。随着纤维素末66被破碎,更小的颗粒能够向上通过孔56。在分馏器的每一级,只有最小的颗粒能够向上通过进入下一级(参见图9A和9B)。随着末在每一级累积,较大的颗粒向下返回到旋转桨叶38上,从而经历更多个破碎循环。只有最细的、完全破碎的颗粒60才能到达档板组的顶部,并在此处作为最终产品而被采出。
图12的图线给出了本发明破碎后的纤维素材料的酶消化过程。纵坐标为以mg/dl为单位的葡萄糖浓度,而横坐标为以分钟为单位的时间。在零时间点向每种样品中加入20mg/ml纤维素酶(Novo-Nordisk)开始消化。在35℃下进行培育。空心圆圈表示完全破碎的纤维素材料60,而实心圆圈表示纤维素末66(用于破碎的原料)。图线表明完全破碎的材料的消化相对来说是线性的。实际上,消化持续到基本完全(95%或更好)。另一方面,纤维素末66表现出在初始的葡萄糖释放之后进行缓慢持续的消化(如果有的话)。据信初始的消化代表没有束缚在次晶态阵列中的小部分纤维素的破碎。此后,消化进行得非常慢,这是因为酶必须从次晶态阵列的边缘进行“咀嚼”。这一缓慢的消化过程是经常遇到的,甚至使得生物质的酶消化过程不切实际地慢。但破碎后的纤维素60可以定量消化成葡萄糖,而这种葡萄糖可以作为食物源或者可以发酵成乙醇。
综上所述,本发明通过破坏存在于纤维素质生物质中的次晶态阵列而将纤维素生物质破碎成为易于水解的纤维素链。所形成的材料可以很容易地水解成为葡萄糖而用作食物或发酵成为乙醇或用作其它燃料成分。该方法涉及在迅速搅拌的条件下使纤维素颗粒的浆液悬浮在空气或其它气体中,同时通过加入热水即细雾或蒸气而使次晶态阵列水合。次晶态阵列的水合弱化了氢键,并且可以通过破碎设备30提供的机械力使纤维素链剥离。因此,实际上发生了两个重要步骤。第一个是次晶态阵列的水合,而第二个是阵列水合层的机械剥离。这些步骤或过程是紧密相关的。如果存在错误的水合条件,则阵列的表面层不会被水合,也就不能被剥离。如果表面层没有被剥离,则更深的层就不能被水合,从而整个破碎过程受到抑制。机械力也是非常重要的。例如,如果加入了过量的水,水起到润滑剂的作用,并且阻止机械剪切力剥离纤维素的任何水合层。同时,过量水使部分破碎的材料堆积并形成“球”。这将保护大部分次晶态阵列区域不会进一步破碎。
已经发现除了保持最佳的水加入速率外(水应该尽可能快地加入,而不能慢到足以提供充足的液体水从而形成“球”),也可以应用添加剂使作用于水合纤维素上的剪切力最大化。预想的是这些材料通过力的传递而起作用,因此它们通常被称为“增稠剂”。似乎任何增粘剂都可以用于加速破碎过程。各种“增稠剂”的最佳浓度最好经验确定。以被破碎的纤维素材料的总重量为基准,最佳浓度通常为几个百分点或更低。对破碎来说,这些试剂并不是必需的。但它们可以明显加快处理过程,并且使水的加入速率在某种程度上来讲并不关键。也就是说,这些试剂中的一些有助于防止“球”的形成或促进处理过程。
增稠剂包括多种多糖和低聚糖源的增稠胶,所述多糖和低聚糖包括淀粉、果胶、葡甘露聚糖、半乳甘露聚糖、黄原胶、菊粉、聚右旋糖、糊精、纤维素醚(羟甲基纤维素)和半纤维素。另外,多种其它有机增粘剂也是有效的,包括蛋白质(明胶)、肽、高分子量醇、聚乙二醇、聚乙烯醇、聚乙烯基吡咯烷酮、聚丙烯酸、聚丙烯酰胺和清洁剂如聚氧乙醇。除了这些可溶的亲水性试剂外,多种细颗粒试剂也是有效的。这些试剂包括二氧化硅、氧化铝、镁、锆和钛的氧化物。当这些“磨料”颗粒很细(直径仅为几个μm)时,是最有效的。据信这些材料本身并不作为研磨剂,而是通过羟基与纤维素链相互作用从而增加了链上的机械支点。令人惊讶的是,细粉状聚四氟乙烯(PTFE)也是特别有效的。很明显,PTFE通过氢键与纤维素相互作用。
令人惊讶的是,通过简单的酿酒酵母细胞-特别是那些由常规酿酒过程留下的细胞可提供有效的“增稠”剂。这些细胞的直径仅有几个到几十个μm。它们似乎与细无机颗粒的作用方式相同;但由于酵母细胞有其自己的多糖细胞壁,它们有效地与纤维素生物质结合且与之相互作用。另外,酵母细胞可能含有多种活性酶,而这些酶可能通过消化作用而对破碎过程有贡献。为了使所有的酶有效起作用,在某种程度上降低消化温度(例如使其接近40℃而不是50℃)可能是有利的。也已经试验过其它微生物,但看起来很可能它们中的多种与酵母细胞具有相同的有利性质。“增稠剂”的选择是经济问题。如果目标是产生燃料乙醇,则应用相对昂贵的有机“增稠剂”会明显抬高成本。而试剂如废的酿酒酵母可以加速破碎过程,但成本增加是可以忽略的。
虽然已经从纤维素颗粒气态浆液的角度对本发明的优选实施方案进行了描述,其中所述颗粒在加入或喷入气态水的过程中被迅速搅拌,但也可以应用增稠剂按稍微不同的方式来实施本发明。通常适当加入增稠剂,在稍微更大量的水存在时,也可以向纤维素颗粒传递力。但仍然希望不加入大量的水,以至于使颗粒“成球”。但通过加入增稠剂,纤维素颗粒可以形成“面团”,而这种“面团”可以通过迅速旋转桨叶或刀片而被揉制或搅拌,而不是被悬浮。在形成面团时,也可以应用所述机械但其旋转速率要低得多。类似针对用于实际面团而设计的钩和辊的设备也可以有效应用(例如面包房设备)。对于基于面团的方法,可能在某种程度上更难加入水。蒸气的加入是无效的,但在揉制过程中可以通过喷雾或以小份的形式加入水。也可以如上文所述应用解压干燥过程往复地使水从空气悬浮体过渡到面团方法。也可以整块干燥面团,然后用球磨机使之破碎,从而将面团转化成为适于气体悬浮过程的形式。
实施例
将10公斤甘蔗渣用图1所示的搅拌器44预处理后加入到设备30中。对于甘蔗渣和类似的材料来说,刨的步骤可能并不需要。在本实验中,漏斗32的尺寸可以容纳约200升,并且其构造没有档板54。按喷雾方式加入约10l水,同时轴36慢慢旋转,从而使水充分混入甘蔗渣内。将温度升高至40℃,同时提高旋转速率。当从外现来看物料非常干时,以喷雾方式加入另外10l水。5小时后初始的长甘蔗渣纤维已经变短,并且其小片被破碎成薄的碎片。在这一点以后,每隔1小时加入1l水。再经过5-10小时后,材料看起来在某种程度上有颗粒状外观,这是由于细小的纤微素颗粒粘接在一起造成的。破碎的进展过程用一个放大倍数为50X的显微镜监控。重复应用解压干燥,几个循环后甘蔗渣被破碎成重量为8kg的极细的纤维素粉末。最终的重量取决于在原料中有多少水。
在第二个实施例中,通过破碎新闻纸(纸)使其撕碎为碎片(小于1cm×1cm)。将1kg碎纸片与2kg活酵母细胞(酿酒副产品)以及100ml水一起加入到设备30中。将温度升高至35-40℃。当对物料进行搅拌时,纸的纤维特征逐渐消失。按100g每份加入更多的纸,同时每份中加入50ml水。该操作持续进行,直到已经加入25l水为止。对材料进行处理,直到形成乳状溶液且看不到纸纤维为止。在这一点加入酶(1g由Meiji Seika Kaisha Ltd.得到的纤维素酶(Meiselase)和1g由NovoNordisk得到的“Novozaim”)。40小时后,纤维素基本上完全被消化成糖。虽然可以应用增稠剂(酵母细胞)在稍微过量的水存在时使报纸和其它纸有效地破碎,但利用气态悬浮方法,纸是相对难于完全破碎的。与等重量的纤维素生物质相比,所述破碎要花费相对更长的时间。很明显,为了造纸对细胞壁进行处理使纤维素更难破碎。
向设备30中加入约15kg锯末。在持续搅拌条件下按每份2l逐渐加入约10l水。将温度提高至约40℃,并且当其被迅速处理(搅拌)时,材料出现膨胀。通过喷雾以每10分钟1l的速率加入10l水。如果发现有任何迹象表明形成了“球”,则停止加入水,直到通过搅拌使“球”消失。整体的温度与搅拌速率相关。也就是说,当速率增加时,温度升高。因此通过提高轴36的转动速率同时停止加入水可以干燥材料。过程结束时,剩下13kg极细的纤维素颗粒。所得到的颗粒可以利用化学物质或酶迅速水解。
例如将1kg极细的纤维素颗粒逐渐搅拌入10l水中。然后用醋酸使其pH值降低至6.0,并加入2g Meiselase(由Meiii Seika Kaisha Ltd.得到)和2g“Novozaim”(由Novo Nordisk得到)。将所述材料在40℃下反应24小时。过滤、中和并干燥液体,得到520g还原性糖。
也可以应用来自适热性微生物的热稳定性酶。在这种情况下,等重量的木材粉末和水与1wt%适热性纤维素酶混合,并在60-70℃下搅拌。在24小时内,纤维素基本上完全被消化。为了达到最大的消化速率,持续搅拌是非常重要的。
本发明的方法已经应用来自多种植物源的纤维素生物质进行了实验。木本和草本材料效果都很好。双子叶以及单子叶显花植物的细胞壁和裸子植物的木材都可以被有效破碎。破碎的精确速率以及加入水的最佳速率在某种程度上随不同物种而变化。但如上文所解释的通过观察“球”的形成,可以相对简单地获得破碎任何纤维素样品的最佳条件。
各种纤维素粉末可能具有其它用途或性质。已经发现,来自各种草的纤维素粉末对于各种真菌类来说是非常好的培养基。另外有些木材如日本柳杉(Cryptomeria japonica)可以产生具有抗菌或抗感染性质的细粉。据设想这些性质源于在原始木材中存在的丹宁酸和其它酚。这些化合物是不溶于水的,并且明显不会通过破碎过程而水解。
下列权利要求被理解为包括上面具体列举和描述的、在概念上等价的、可以被明显代替的以及实质上结合了本发明的基本思想的那些。本领域的熟练技术人员将会意识到在不偏离本发明范围的前提下,可以对前述优选实施方案进行各种改变和调整。所列举的实施方案只是针对举例目的而阐述的,不应该被认为是对本发明的限制。因此,应该理解的是,在所附权利要求的范围内,本发明可以按不同于这里具体描述的内容进行实施。

Claims (24)

1.一种用于破碎纤维素生物质从而使所述生物质易于水解的方法,所述方法包括如下步骤:
在一个保留有水蒸气的容器内搅拌纤维素生物质颗粒,从而形成所述颗粒在气体中的悬浮体;
将所述悬浮体的温度升高到至少35℃;
以足够慢的速率以细雾或水蒸气的形式加入水,从而使水被所述颗粒吸收而没有自由液态水累积;以及
继续加入水直到所述颗粒不能吸收更多的水为止。
2.权利要求1的方法,其实施温度为40℃-90℃。
3.权利要求1的方法,其实施压力高于大气压力。
4.权利要求3的方法,其实施温度至少为90℃。
5.权利要求1的方法,其中水以蒸汽的形式加入。
6.权利要求1的方法,进一步包括如下步骤:停止加入水,提高温度以干燥所述颗粒并且放空容器以释放水蒸气,从而破碎颗粒块并增加所述颗粒吸收的水。
7.权利要求6的方法,其中在加入步骤之后停止,并当所述颗粒干燥后继续。
8.权利要求1的方法,其中向所述悬浮体中加入增稠剂以提高破碎速率。
9.权利要求8的方法,其中所述增稠剂为选自多糖、低聚糖、果胶材料、半纤维素材料、清洁剂、表面活性剂、蛋白质、多肽、肽(polyaminoacids)、聚丙烯酸、聚丙烯酰胺、聚乙烯醇、聚乙烯基吡咯烷酮和聚乙二醇的亲水性有机化合物。
10.权利要求8的方法,其中所述增稠剂为无机颗粒材料。
11.权利要求10的方法,其中所述无机颗粒材料选自二氧化硅、氧化铝、氧化镁、二氧化钛和氧化锆。
12.权利要求8的方法,其中所述增稠剂为颗粒状的聚四氟乙烯。
13.权利要求8的方法,其中所述增稠剂包括微生物细胞。
14.权利要求13的方法,其中所述微生物为酵母。
15.一种用于破碎纤维素生物质从而使所述生物质易于水解的方法,所述方法包括如下步骤:
在一个容器内搅拌纤维素生物质颗粒,从而形成所述颗粒在流体中的悬浮体;
向悬浮体中加入增稠剂;
将所述悬浮体的温度升高到至少35℃;和
加入水以置换被所述颗粒吸收的水,直到所述颗粒不能吸收更多水的为止。
16.权利要求15的方法,其中所述流体为气体。
17.权利要求15的方法,其中所述流体为水。
18.权利要求15的方法,其中所述增稠剂为选自多糖、低聚糖、果胶材料、半纤维素材料、清洁剂、表面活性剂、蛋白质、多肽、肽、聚丙烯酸、聚丙烯酰胺、聚乙烯醇、聚乙烯基吡咯烷酮和聚乙二醇的亲水性有机化合物。
19.权利要求15的方法,其中所述增稠剂为无机颗粒材料。
20.权利要求19的方法,其中所述无机颗粒材料选自二氧化硅、氧化铝、氧化镁、二氧化钛和氧化锆。
21.权利要求15的方法,其中所述增稠剂为颗粒状的聚四氟乙烯。
22.权利要求15的方法,其中所述增稠剂包括微生物细胞。
23.权利要求22的方法,其中所述微生物为酵母。
24.一种用于破碎纤维素生物质从而使所述生物质易于水解的设备,所述设备包括:
用于在一个保留有水蒸气的容器内搅拌纤维素生物质颗粒从而形成所述颗粒在气体中的悬浮体的装置;
用于将所述悬浮体的温度升高到至少35℃的装置;以及
用于以足够慢的速率以细雾或水蒸气的形式加入水从而使水被所述颗粒吸收而没有自由液态水累积的装置。
CNB018226175A 2001-01-17 2001-01-16 植物材料破碎成为易于水解的纤维素颗粒 Expired - Fee Related CN100467491C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2001/000500 WO2002058314A1 (en) 2001-01-17 2001-01-17 Channel quality measurement in data transmission using hybrid arq

Publications (2)

Publication Number Publication Date
CN1639196A true CN1639196A (zh) 2005-07-13
CN100467491C CN100467491C (zh) 2009-03-11

Family

ID=8164253

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB018226175A Expired - Fee Related CN100467491C (zh) 2001-01-17 2001-01-16 植物材料破碎成为易于水解的纤维素颗粒
CNB018089518A Expired - Lifetime CN100409605C (zh) 2001-01-17 2001-01-17 测量信道质量的混合arq方法、发送器和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB018089518A Expired - Lifetime CN100409605C (zh) 2001-01-17 2001-01-17 测量信道质量的混合arq方法、发送器和系统

Country Status (6)

Country Link
US (2) US7002923B2 (zh)
EP (1) EP1258095B1 (zh)
JP (1) JP3629263B2 (zh)
KR (1) KR20020080496A (zh)
CN (2) CN100467491C (zh)
WO (1) WO2002058314A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782116A (zh) * 2010-01-20 2012-11-14 希乐克公司 分散原料和加工物料
CN102933620A (zh) * 2010-06-16 2013-02-13 可乐丽股份有限公司 聚乙烯醇系聚合物和使用其的水解性纤维素的制造方法
CN102046876B (zh) * 2008-04-01 2013-10-09 生物质转换公司 用于消化纤维素生物质的简化方法
CN103442816A (zh) * 2011-03-22 2013-12-11 昭和电工株式会社 植物性生物质的水解反应用原料的前处理方法和植物性生物质的糖化方法
CN104955922A (zh) * 2012-12-19 2015-09-30 国际壳牌研究有限公司 应用耐水催化剂对生物质水热加氢催化处理

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0110125D0 (en) * 2001-04-25 2001-06-20 Koninkl Philips Electronics Nv Radio communication system
US6810236B2 (en) 2001-05-14 2004-10-26 Interdigital Technology Corporation Dynamic channel quality measurement procedure for adaptive modulation and coding techniques
DE10132577A1 (de) * 2001-07-10 2003-01-30 Philips Corp Intellectual Pty Verfahren zur Übertragung von Datenpaketen
US7315573B2 (en) * 2002-02-28 2008-01-01 Texas Instruments Incorporated Channel monitoring for improved parameter selection in a communication system
KR20050092696A (ko) * 2002-12-16 2005-09-22 패씨브 엘티디. 이더넷 프레임 순방향 오류 정정 초기화 및 자동-감지 방법
JP2006518155A (ja) * 2003-02-14 2006-08-03 フォーカス エンハンスメンツ インコーポレイテッド 周波数分割多重方法とそのための装置
US7489903B2 (en) * 2003-04-29 2009-02-10 Nokia Corporation Method and system for exchanging the capacity reports in a radio access network
JP4454320B2 (ja) * 2004-01-09 2010-04-21 富士通株式会社 伝送装置、伝送制御プログラム、及び伝送方法
SE0400163D0 (sv) * 2004-01-28 2004-01-28 Ericsson Telefon Ab L M Method and systems of radio communications
US7366477B2 (en) * 2004-05-06 2008-04-29 Nokia Corporation Redundancy version implementation for an uplink enhanced dedicated channel
CN102882664B (zh) * 2004-05-10 2015-08-12 艾利森电话股份有限公司 用于在无线通信系统中提供自主重传的方法和系统
CA2563733C (en) * 2004-05-10 2014-09-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for providing autonomous retransmissions in a wireless communication system
GB0415451D0 (en) * 2004-07-09 2004-08-11 Nokia Corp Communication system
EP1829297B1 (en) * 2004-12-17 2011-04-13 Telefonaktiebolaget LM Ericsson (publ) Retransmission in wireless communication systems
KR101025072B1 (ko) * 2004-12-30 2011-03-25 엘지에릭슨 주식회사 에이치에이알큐 방식을 사용하는 통신 시스템에서 최적의리던던시 버전 선택 방법
CN1921368B (zh) * 2005-08-25 2011-05-04 松下电器产业株式会社 多层自动重发请求方法
US20070259665A1 (en) * 2006-05-03 2007-11-08 Chiu Chun-Yuan Error detection and retransmission methods and devices for communication systems
JP5355386B2 (ja) * 2006-05-10 2013-11-27 コーニンクレッカ フィリップス エヌ ヴェ Harqを使用するワイヤレス通信システム及びシステムを動作させる方法
US9882683B2 (en) * 2006-09-28 2018-01-30 Telefonaktiebolaget Lm Ericsson (Publ) Autonomous transmission for extended coverage
MY154476A (en) * 2006-10-23 2015-06-30 Interdigital Tech Corp Method and apparatus for sending and receiving channel quality indicators (cqis)
US20080153501A1 (en) * 2006-12-20 2008-06-26 Motorola, Inc. Smart antenna for common channel incremental redundancy
EP1936853B1 (en) * 2006-12-20 2018-11-21 Panasonic Intellectual Property Corporation of America Avoidance of feedback collision in mobile communications
FR2910757B1 (fr) * 2006-12-22 2009-05-08 Thales Sa Procede de retransmission a redondance incrementale pour des paquets fragmentes.
KR101366332B1 (ko) * 2007-04-19 2014-02-21 엘지전자 주식회사 통신 시스템에서의 데이터 블록 재전송 방법
US20080270866A1 (en) * 2007-04-26 2008-10-30 Infineon Technologies Ag Transmission with automatic repeat request process
US20100229065A1 (en) * 2007-10-25 2010-09-09 Yasuaki Yuda Radio reception device, radio transmission device, and radio communication method
US8169973B2 (en) * 2007-12-20 2012-05-01 Telefonaktiebolaget L M Ericsson (Publ) Power efficient enhanced uplink transmission
US9445167B2 (en) * 2007-12-29 2016-09-13 Alcatel Lucent Persistent scheduling method and apparatus based on semi-grouping and statistically multiplexing
US8116271B2 (en) * 2008-02-07 2012-02-14 Samsung Electronics Co., Ltd. Methods and apparatus to allocate acknowledgement channels
GB2457759A (en) * 2008-02-25 2009-09-02 Cambridge Silicon Radio Ltd Modifying the transmission parameters of acknowledgements (ACKs) based on reception quality
US8634333B2 (en) 2008-05-07 2014-01-21 Qualcomm Incorporated Bundling of ACK information in a wireless communication system
FR2932933B1 (fr) * 2008-06-18 2011-04-01 Canon Kk Procedes et dispositifs de transmission et de reception de donnees
US8824319B2 (en) * 2009-01-27 2014-09-02 Mitsubishi Electric Corporation Transmitting apparatus, transmitting and receiving apparatus, communication system, and communication method
JP5199930B2 (ja) * 2009-03-23 2013-05-15 株式会社エヌ・ティ・ティ・ドコモ 受信装置
CN101674235B (zh) * 2009-09-27 2011-11-30 中兴通讯股份有限公司 数据传输方法和设备
US8769686B2 (en) * 2010-02-26 2014-07-01 Futurewei Technologies, Inc. System and method for securing wireless transmissions
US8953517B2 (en) 2010-06-23 2015-02-10 Futurewei Technologies, Inc. System and method for adapting code rate
US20130039266A1 (en) 2011-08-08 2013-02-14 Research In Motion Limited System and method to increase link adaptation performance with multi-level feedback
WO2018066781A1 (ko) * 2016-10-07 2018-04-12 엘지전자 주식회사 경쟁 기반 비직교 다중 접속 방식에 기초하여 신호를 송수신하는 방법 및 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT358491B (de) * 1979-03-01 1980-09-10 Ruthner Othmar Aufbereitung von muell- und klaerschlamm
JPH1079724A (ja) 1996-09-03 1998-03-24 Toshiba Corp 無線通信システム
US5425051A (en) * 1992-11-09 1995-06-13 Norand Corporation Radio frequency communication network having adaptive parameters
NZ229080A (en) * 1989-05-11 1991-10-25 Convertech Group Ltd Two stage process and equipment for the steam hydrolysis of woody material
JP2967897B2 (ja) * 1993-07-22 1999-10-25 エヌ・ティ・ティ移動通信網株式会社 自動再送要求データ伝送方法
JPH08163085A (ja) * 1994-12-02 1996-06-21 Toshiba Corp 情報通信装置
JP3351653B2 (ja) * 1995-03-30 2002-12-03 株式会社東芝 無線通信システムの再送制御方式および端末装置
JPH09172391A (ja) 1995-12-20 1997-06-30 Fujitsu General Ltd スペクトラム拡散通信方式
JP2820932B2 (ja) 1996-03-19 1998-11-05 株式会社ワイ・アール・ピー移動通信基盤技術研究所 スペクトラム拡散通信装置
JP3242856B2 (ja) * 1997-02-17 2001-12-25 シャープ株式会社 スペクトル直接拡散通信システム
US6389066B1 (en) 1997-09-21 2002-05-14 Lucent Technologies Inc. System and method for adaptive modification of modulated and coded schemes in a communication system
US6704898B1 (en) * 1998-10-23 2004-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Combined hybrid automatic retransmission request scheme
JP2000224226A (ja) 1999-01-27 2000-08-11 Denso Corp 誤り制御方式及び装置、送信及び受信制御装置
US6167273A (en) * 1999-04-28 2000-12-26 Nokia Mobile Phones Ltd. Apparatus, and associated method, for effectuating power control to maintain desired QoS levels in the performance of a communication service
GB9911777D0 (en) 1999-05-20 1999-07-21 Univ Southampton Transceiver
KR100607934B1 (ko) * 1999-08-27 2006-08-03 삼성전자주식회사 광대역 무선 통신에서의 링크 계층의 오류 제어방법 및 이를위한 기록 매체
US6608818B1 (en) * 1999-11-10 2003-08-19 Qualcomm Incorporated Radio link protocol enhancements to reduce setup time for data calls

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046876B (zh) * 2008-04-01 2013-10-09 生物质转换公司 用于消化纤维素生物质的简化方法
CN102782116A (zh) * 2010-01-20 2012-11-14 希乐克公司 分散原料和加工物料
CN102782116B (zh) * 2010-01-20 2014-06-18 希乐克公司 分散原料和加工物料
CN102933620A (zh) * 2010-06-16 2013-02-13 可乐丽股份有限公司 聚乙烯醇系聚合物和使用其的水解性纤维素的制造方法
CN102933620B (zh) * 2010-06-16 2015-07-15 可乐丽股份有限公司 聚乙烯醇系聚合物和使用其的水解性纤维素的制造方法
US9193802B2 (en) 2010-06-16 2015-11-24 Kuraray Co., Ltd. Polyvinyl alcohol polymer, and method for producing hydrolyzable cellulose using the same
CN103442816A (zh) * 2011-03-22 2013-12-11 昭和电工株式会社 植物性生物质的水解反应用原料的前处理方法和植物性生物质的糖化方法
CN104955922A (zh) * 2012-12-19 2015-09-30 国际壳牌研究有限公司 应用耐水催化剂对生物质水热加氢催化处理
CN104955922B (zh) * 2012-12-19 2016-11-16 国际壳牌研究有限公司 应用耐水催化剂对生物质水热加氢催化处理

Also Published As

Publication number Publication date
EP1258095B1 (en) 2018-04-25
CN1428026A (zh) 2003-07-02
EP1258095A1 (en) 2002-11-20
WO2002058314A1 (en) 2002-07-25
JP3629263B2 (ja) 2005-03-16
JP2004517585A (ja) 2004-06-10
CN100467491C (zh) 2009-03-11
KR20020080496A (ko) 2002-10-23
US20060062167A1 (en) 2006-03-23
US20030185175A1 (en) 2003-10-02
CN100409605C (zh) 2008-08-06
US7002923B2 (en) 2006-02-21
US7583614B2 (en) 2009-09-01

Similar Documents

Publication Publication Date Title
CN100467491C (zh) 植物材料破碎成为易于水解的纤维素颗粒
US9714299B2 (en) Method for processing a biomass containing lignocellulose
CN102876729B (zh) 废物部分的不加压预处理、酶法水解和发酵
AU2005282168C1 (en) Process for producing a pretreated feedstock
JP4619917B2 (ja) リグノセルロースの前処理方法
EP2343379A1 (en) Saccharide production process and ethanol production process
EP2172568A1 (en) Method and apparatus for conversion of cellulosic material to enthanol
JPH08503126A (ja) バイオマスの前処理方法
JP2007124933A (ja) リグノセルロースの前処理方法
EP1353957B1 (en) Disruption of plant material to readily hydrolyzable cellulosic particles
AU2001227940A1 (en) Disruption of plant material to readily hydrolyzable cellulosic particles
WO2010016536A1 (ja) リグノセルロース原料の処理方法
Singh et al. Bioethanol Production From Brassica Napus Biomass And Pineapple Waste
Hemanthkumar et al. Pretreatment of agricultural wastes to improve biogas production: A review
ZA200306079B (en) Disruption of plant material to readily hydrolyzable cellulosic particles.
JP2010166857A (ja) 樹皮原料から糖類を製造する方法
Muthukumarappan Lignocellulosic feedstock preparation by size reduction and pretreatment.
JP2010115171A (ja) 樹皮原料から糖類を製造する方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090311

Termination date: 20100220