CN1558114A - A reciprocating valveless pump with continuously variable cone angle - Google Patents
A reciprocating valveless pump with continuously variable cone angle Download PDFInfo
- Publication number
- CN1558114A CN1558114A CNA2004100006697A CN200410000669A CN1558114A CN 1558114 A CN1558114 A CN 1558114A CN A2004100006697 A CNA2004100006697 A CN A2004100006697A CN 200410000669 A CN200410000669 A CN 200410000669A CN 1558114 A CN1558114 A CN 1558114A
- Authority
- CN
- China
- Prior art keywords
- flow path
- cone angle
- pump
- flow
- continuously variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 230000007246 mechanism Effects 0.000 claims 1
- 239000000741 silica gel Substances 0.000 claims 1
- 229910002027 silica gel Inorganic materials 0.000 claims 1
- 230000004888 barrier function Effects 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
Images
Landscapes
- Reciprocating Pumps (AREA)
Abstract
一种涉及流体机械领域的往复式可连续变锥角无阀泵,包括有泵体(3),与泵体相连接、并使流体通过其流动的锥形体,固定在泵体(3)的机电式振动子,本发明的特征在于,锥形体是采用轴(11)把直线流路挡体(9)与可连续变化锥角的流路挡体(10)铰链连接成为流体可通过的流路挡体;再采用上夹板(8)与下夹板(12)将由直线流路挡体(9)与可连续变化锥角的流路挡体(10)构成的流路挡体置于两夹板之间通过机械紧固件紧固构成。振动子可采用现有压电泵采用的压电式或活塞构成的机械式振动子。本发明改变两只可连续变化锥角的流路挡体(10),就可以得到不同锥角的流路,依靠机电振动子给予的外力就可以实现连续变化锥角θ功能,因此本发明可方便地达到改变泵的流量、液流方向的目的。
A reciprocating valveless pump with continuously variable cone angles related to the field of fluid machinery, comprising a pump body (3), a cone connected to the pump body and allowing fluid to flow through it, fixed on the pump body (3) An electromechanical vibrator, the present invention is characterized in that the cone is hinged by a shaft (11) to connect the linear flow path block (9) and the flow path block (10) that can continuously change the cone angle to form a flow through which the fluid can pass. road block body; then use the upper splint (8) and the lower splint (12) to place the flow path block body composed of the straight flow path block body (9) and the flow path block body (10) that can continuously change the cone angle on the two splints Fastened by mechanical fasteners. The vibrator can adopt the piezoelectric type used in the existing piezoelectric pump or the mechanical vibrator composed of pistons. In the present invention, by changing two flow path barriers (10) that can continuously change the cone angle, flow paths with different cone angles can be obtained, and the function of continuously changing the cone angle θ can be realized by relying on the external force given by the electromechanical vibrator, so the present invention can It is convenient to achieve the purpose of changing the flow rate and liquid flow direction of the pump.
Description
技术领域:Technical field:
一种往复式可连续变锥角无阀泵,涉及对流体机械学科中的可连续变锥角机构及往复式锥形流管无阀泵的改进,属于流体机械领域。A reciprocating valveless pump with continuously variable cone angle relates to the improvement of a continuously variable cone angle mechanism in fluid machinery and a reciprocating cone flow tube valveless pump, belonging to the field of fluid machinery.
背景技术:Background technique:
对于容积型往复式泵而言,如果把阀定义为:在泵的吸入和吐出过程中,至少有一时点,使原本在泵腔中连通的吸入和吐出口之间,产生不连通的原因;也就是说,阀造成的不连通,使泵产生了单向流动。那么所谓无阀就是利用流体的某些性质,创造出即可以产生单向流动,又可在吸入和吐出口之间产生始终连通的特殊机构。For positive displacement reciprocating pumps, if the valve is defined as: during the suction and discharge process of the pump, at least for a moment, the cause of disconnection between the suction and discharge ports that were originally connected in the pump cavity; That is, the valve creates a disconnect that allows the pump to create one-way flow. So the so-called valveless is to use some properties of the fluid to create a special mechanism that can produce one-way flow and always communicate between the suction and discharge ports.
1993年,瑞典的埃斯特门(E.Stemme)等人创造性地发明了锥形流管无阀压电泵。因埃斯特门(E.Stemme)等人的无阀压电泵是利用了互为倒置的圆锥形流管机构,所以称之为圆锥形流管无阀压电泵。图1所示为瑞典埃斯特门(E.Stemme)的无阀压电泵,图1(a)是互为倒置的圆锥形流管,图1(b)为无阀压电泵的构造。In 1993, Sweden's Estemen (E.Stemme) and others creatively invented the conical flow tube valveless piezoelectric pump. Because the valveless piezoelectric pump of people such as Estemen (E.Stemme) has utilized the inverted conical flow tube mechanism, so it is called the conical flow tube valveless piezoelectric pump. Figure 1 shows a valveless piezoelectric pump in E.Stemme, Sweden. Figure 1(a) is a conical flow tube that is inverted to each other, and Figure 1(b) is the structure of a valveless piezoelectric pump. .
1995年,德国的特格拉奇(T.Gerlach)等人在硅板上开发出了微方锥形流管无阀压电泵。图2所示为德国特格拉奇(T.Gerlach)的无阀压电泵,图2(a)为在硅板上加工的方锥形,图2(b)为无阀压电泵的构造。In 1995, Germany's T.Gerlach et al. developed a valveless piezoelectric pump with a micro-square conical flow tube on a silicon plate. Figure 2 shows the valveless piezoelectric pump of T.Gerlach in Germany, Figure 2(a) is a square cone processed on a silicon plate, and Figure 2(b) is the structure of a valveless piezoelectric pump .
图3所示为综合了图1、图2后的无阀压电泵。在图3中1为固定螺钉,2为振动放大片,3为泵体,4为锥形体A,5为锥形体B,6为压电片。振动放大片2被两片压电片6夹在中间后粘接,粘接后的新结构被称为振动子,由振动子,泵体3、锥形体A4、锥形体B5及固定螺钉1所组成的结构只有锥形体A4、锥形体B5的两个与外界连同的开口,如果在振动子的压电片2的两端施加交变电压,振动子就会产生交替伸长与收缩变形,这样振动子、泵体3、锥形体A4、锥形体B5所组成的空间就形成了容积变化,上述结构也就够成了可以单项流动的锥形无阀压电泵。Figure 3 shows the valveless piezoelectric pump combined with Figure 1 and Figure 2. In Fig. 3, 1 is a fixing screw, 2 is a vibration amplifier, 3 is a pump body, 4 is a cone A, 5 is a cone B, and 6 is a piezoelectric film. The vibrating amplifying
振动子被固定螺钉1固定在泵体3上,锥形体A4、锥形体B5是互为倒置锥形体机构,锥形体A4,锥形体B5与泵体3的连接可以是过盈配合连接,也可以是粘接,还可以是焊接。The vibrator is fixed on the
锥形体A4与锥形体B5可以完全相同也可以不完全相同,其相同与否是指几何尺寸的大小。锥形体A4、锥形体B5的主要几何尺寸由图4锥形无阀压电泵给出,θ角为锥角。锥形体A4是扩张管,锥形体B5是收缩管。The cone A4 and the cone B5 may or may not be completely the same, and whether they are the same or not refers to the size of the geometric dimensions. The main geometric dimensions of cone A4 and cone B5 are given by the conical valveless piezoelectric pump in Figure 4, and the angle θ is the cone angle. Cone A4 is an expansion tube, and cone B5 is a constriction tube.
究其锥形流管无阀泵的深层原理,是利用了互为倒置的锥形体机构,所产生的正反向流管流动时的流阻差。也就是说,锥角θ的大小可以直接影响流体宏观性质--流阻,产生流阻的更深层原因是动粘性底层的厚度,动粘性底层厚度增加,宏观上流阻也会增大,流路的流阻增大,流量就会减少。在锥形体机构中流动的流体,其正反向流动宏观上流阻不等,所以正反向流动是存在流阻差,无阀泵单项流动也就源自于正反向流管流动时的流阻差。The underlying principle of the conical flow tube valveless pump is to use the reversed conical body mechanism to generate the difference in flow resistance when the forward and reverse flow tubes flow. In other words, the size of the cone angle θ can directly affect the macroscopic properties of the fluid--flow resistance. The deeper reason for the flow resistance is the thickness of the dynamic viscous bottom layer. As the thickness of the dynamic viscous bottom layer increases, the flow resistance will also increase macroscopically. As the flow resistance increases, the flow rate decreases. The fluid flowing in the cone mechanism has different flow resistances in the forward and reverse flow macroscopically, so there is a difference in flow resistance in the forward and reverse flows, and the single flow of the valveless pump is derived from the flow when the forward and reverse flow pipes flow. Resistance difference.
图5给出了一组锥形体锥角θ与流阻ξ的关系实验数值,扩张管的流阻定为ξd,收缩管的流阻定为ξn,由图5可知,无论是扩张管还是收缩管,其流阻ξ都随锥角θ的增大而增大,可是,扩张管的流阻ξd比收缩管的流阻ξn增加的快,即:扩张管的流阻曲线与收缩管的流阻曲线有交点。根据锥形流管无阀压电泵流量方程可知,泵的流向取决于扩张管、收缩管的流阻差。公式(1)为锥形流管无阀压电泵流量方程。Figure 5 shows a set of experimental values of the relationship between the cone angle θ and the flow resistance ξ, the flow resistance of the expansion tube is defined as ξ d , and the flow resistance of the contraction tube is defined as ξ n . Still shrink tube, its flow resistance ξ increases with the increase of cone angle θ, however, the flow resistance ξ d of the expansion tube increases faster than the flow resistance ξ n of the contraction tube, namely: the flow resistance curve of the expansion tube and The flow resistance curves of the shrink tubes have intersection points. According to the flow equation of the valveless piezoelectric pump with conical flow tube, the flow direction of the pump depends on the flow resistance difference between the expansion tube and the contraction tube. Equation (1) is the flow equation of the conical flow tube valveless piezoelectric pump.
Q和f分别为这种泵的流量和压电振子的频率。ξd和ξn分别为扩张管和收缩管的流体流阻。ΔV由公式(2)给出。在公式(2)中,w(r,0)和
如果ξd大于ξn,由公式(1)可得,泵流量Q大于0(正)。如果ξd小于ξn,则泵流量Q小于0(负)。流量Q的正与负表明了泵的液流方向。换言之,ξd和ξn决定了这种泵的液流方向。If ξ d is greater than ξ n , it can be obtained from formula (1), the pump flow Q is greater than 0 (positive). If ξ d is smaller than ξ n , the pump flow Q is smaller than 0 (negative). The positive and negative of the flow Q indicates the direction of the pump's flow. In other words, ξd and ξn determine the flow direction of the pump.
锥角θ与流阻ξ有着对应关系,也就是锥角θ决定了泵的液流方向。可是迄今为止的已有技术,只能是制作固定锥角θ的锥形体,无法实现可连续变化锥角θ,来达到改变泵的流量、液流方向的目的。The cone angle θ has a corresponding relationship with the flow resistance ξ, that is, the cone angle θ determines the liquid flow direction of the pump. However, the prior art so far can only make a cone with a fixed cone angle θ, and cannot continuously change the cone angle θ to achieve the purpose of changing the flow rate and liquid flow direction of the pump.
发明内容Contents of the invention
本发明的目的在于克服以上不足,提出了可连续变锥角机构,并设计出一种往复式可连续变锥角无阀泵。The object of the present invention is to overcome the above disadvantages, propose a continuously variable cone angle mechanism, and design a reciprocating valveless pump with continuously variable cone angle.
本发明的技术方案是为了实现连续变化锥角θ,改变了图4锥形体的构造,本发明的技术方案如图6、图7、图8、图9、图10所示,为可连续变锥角机构及其带有该机构的往复式可连续变锥角无阀泵。本发明包括有泵体3,与泵体3相连接、并使流体通过其流动的锥形体,被固定螺钉1固定在泵体3上、并置于锥形体上方的、可使泵体内造成容积变化形成流体流动的机电式振动子,本发明的特征在于,锥形体是采用轴11把直线流路档体9与可连续变化锥角的流路档体10铰链连接成为流体可通过的流路档体;再采用上夹板8与下夹板12将由直线流路档体9与可连续变化锥角的流路档体10构成的流路档体置于两夹板之间通过机械紧固件紧固构成。The technical solution of the present invention is to realize the continuously variable cone angle θ, changing the structure of the cone in Fig. 4. The technical solution of the present invention is shown in Fig. 6, Fig. 7, Fig. 8, Fig. 9 and Fig. A cone angle mechanism and a reciprocating valveless pump with continuously variable cone angle. The present invention includes a
所述的一种往复式可连续变锥角无阀泵,锥形体中把流路档体的直线流路档体9或可连续变化锥角的流路档体10的未被铰链连接的两端部边缘与上、下夹板8和12的边缘对齐,并粘接在夹板的中心线两侧,最后,螺拴13穿过上夹板8与下夹板12紧固在螺母7上,这样上夹板8、下夹板12、直线流路档体9、可连续变化锥角的流路档体10就构成了平面上呈锥角的流路,两只直线流路档体9与两只可连续变化锥角的流路档体10的头端部分别是流路的出入口,根据流体的流动方向,两只直线流路档体9与两只可连续变化锥角的流路档体10的头部既可以成为出口,也可以成为入口。In the reciprocating valveless pump with continuously variable cone angle, the two unhinged joints of the straight flow path body 9 of the flow path body or the
具体说来:如图6所示,如果流体是自上而下流动,两只可连续变化锥角的流路档体10就是入口,两只直线流路档体9就是出口;如果流体是自下而上流动,两只可连续变化锥角的流路档体10就是出口,两只直线流路档体9就是入口。Specifically: as shown in Figure 6, if the fluid flows from top to bottom, two
本发明中把两只可连续变化锥角的流路档体10在上而直线流路档体9在下的可连续变锥角机构定义为14,把两只可连续变化锥角的流路档体10在下而直线流路档体9在上的可连续变锥角机构定义为15。14与15可为两只互为倒置的可连续变锥角机构。In the present invention, the continuously variable cone angle mechanism in which two
所述的一种往复式可连续变锥角无阀泵中的可连续变化锥角的流路档体10采用双面带沟槽结构,沟槽内充填橡胶条;轴11、直线流路档体9、可连续变化锥角的流路档体10的缝隙之间充填软硅胶;两只可连续变化锥角的流路档体10可以在上夹板8、下夹板12之间以轴11为轴转动,两只可连续变化锥角的流路档体10与上夹板8、下夹板12之间为纯滑动。接触面间的沟槽内因充填了橡胶条所以可以认为是密封接触。In the reciprocating valveless pump with continuously variable cone angle, the
所述的一种往复式可连续变锥角无阀泵中的机电振动子,可采用由粘接在两片压电片6中间的振动放大片2构成的压电式振动子;也可采用传统往复式压电泵所使用的活塞构成的机械式振动子。The electromechanical vibrator in the valveless pump of a kind of reciprocating continuously variable cone angle can adopt a piezoelectric vibrator composed of a vibrating amplifying
由前述的本发明的技术方案可见改变两只可连续变化锥角的流路档体10,就可以得到不同锥角的流路,两只可连续变化锥角的流路档体10是可以连续精确转动的,所以这种流路是可以实现连续变化锥角θ功能。It can be seen from the foregoing technical solution of the present invention that by changing two
根据图5所示锥形体锥角θ与流阻ξ的实验关系,可以知道改变锥角θ,就可以改变泵的流量与液流方向。图8是可连续变锥角机构的锥角增加与减小示意图。依靠机电振动子给予的外力就可以简单的实现改变锥角θ。According to the experimental relationship between the cone angle θ and the flow resistance ξ of the cone shown in Figure 5, it can be known that changing the cone angle θ can change the flow rate and liquid flow direction of the pump. Fig. 8 is a schematic diagram of increasing and decreasing the cone angle of the continuously variable cone angle mechanism. Depending on the external force given by the electromechanical vibrator, the taper angle θ can be simply changed.
施加外力的方法有多种形式,都属于常规方法,在此只例举一例:在图7中的施力箭头处各连接一只铰链,铰链的另一端各连接一只滚动丝杠,滚动丝杠可以把转动运动改变为直线运动,滚动丝杠的直线运动端连接铰链,滚动丝杠的转动端连接电机,在此的所有连接都是螺栓连接,可连续变锥角机构的锥角增加与减小都可以通过电机的正反转来实现。There are many ways to apply external force, all of which belong to conventional methods, and here is only one example: a hinge is connected to each of the force arrows in Figure 7, and a rolling screw is connected to the other end of the hinge, and the rolling screw The rod can change the rotary motion into linear motion. The linear motion end of the rolling screw is connected to the hinge, and the rotating end of the rolling screw is connected to the motor. All the connections here are bolted. The cone angle of the continuously variable cone angle mechanism increases with the The reduction can be achieved through the forward and reverse rotation of the motor.
往复式可连续变锥角无阀压电泵的工作原理:Working principle of reciprocating valveless piezoelectric pump with continuously variable cone angle:
在图9中由振动放大片2,压电片6组成了压电振子,压电振子,泵体3,及两只互为倒置的可连续变锥角机构14与15组成了具有两个开口相对封闭的腔体。对压电振子施加交变电压,压电振子将产生沿自身平面构造面的垂直方向往复变形,这样就对腔体内流体施加以往复力,在吸入过程,通过两只互为倒置的可连续变锥角机构14与15同时有流体被吸入腔体,只是两只互为倒置的可连续变锥角机构14与15由于图五实验所揭示的原理,一只被吸入的流体比另一只多;在吐出过程,通过两只互为倒置的可连续变锥角机构14与15同时有流体被吐出腔体,只是两只互为倒置的可连续变锥角机构14与15由于图五实验所揭示的原理,在吸入过程吸入流体多的一只比在吸入过程吸入流体少的吐出的流体少;这样就形成了在吸入与吐出过程的流体体积差,因此体积差就形成了泵的单向流动;改变图6中的可连续变化锥角的流路档体10的锥角θ(例如:从小角度向大角度改变),泵的流量将发生改变,进一步加大锥角θ泵的流动方向也将改变。In Fig. 9, the piezoelectric vibrator is composed of the
往复式可连续变锥角无阀泵的工作原理:Working principle of reciprocating valveless pump with continuously variable cone angle:
在图10中由活塞环16,活塞17泵体3,及两只互为倒置的可连续变锥角机构14与15组成了具有两个开口相对封闭的腔体。活塞17上下往复运动,这样就对腔体内流体施加以往复力,在吸入过程,通过两只互为倒置的可连续变锥角机构14与15同时有流体被吸入腔体,只是两只互为倒置的可连续变锥角机构14与15由于图五实验所揭示的原理,一只被吸入的流体比另一只多;在吐出过程,通过两只互为倒置的可连续变锥角机构14与15同时有流体被吐出腔体,只是两只互为倒置的可连续变锥角机构14与15由于图五实验所揭示的原理,在吸入过程吸入流体多的一只比在吸入过程吸入流体少的吐出的流体少;这样就形成了在吸入与吐出过程的流体体积差,因此体积差就形成了泵的单向流动;改变图6中的可连续变化锥角的流路档体10的锥角θ(例如:从小角度向大角度改变),泵的流量将发生改变,进一步加大锥角θ泵的流动方向也将改变。In Fig. 10, a
附图说明:Description of drawings:
图1瑞典埃斯特门(E.Stemme)的无阀压电泵;Fig. 1 The valveless piezoelectric pump of Estemen (E.Stemme) in Sweden;
图2德国特格拉奇(T.Gerlach)的无阀压电泵;Fig. 2 Valveless piezoelectric pump of T.Gerlach, Germany;
图3锥形无阀压电泵;Figure 3 Conical valveless piezoelectric pump;
图4锥形体A4、锥形体B5的构造及主要几何尺寸;The structure and main geometric dimensions of Fig. 4 cone A4 and cone B5;
图5锥形体锥角θ与流阻ξ的关系;The relationship between the cone angle θ and the flow resistance ξ of Fig. 5;
图6本发明的可连续变锥角机构;Figure 6 is the continuously variable cone angle mechanism of the present invention;
(a)可连续变锥角机构的主视图;(a) The front view of the continuously variable cone angle mechanism;
(b)可连续变锥角机构的侧视图;(b) The side view of the continuously variable cone angle mechanism;
图7本发明的充填了橡胶条的密封沟槽示意图Figure 7 is a schematic diagram of the seal groove filled with rubber strips of the present invention
(a)充填了橡胶条的密封沟槽,(a) sealing grooves filled with rubber strips,
(b)橡胶条装入沟槽的示意图,10-1:橡胶条;(b) Schematic diagram of installing the rubber strip into the groove, 10-1: rubber strip;
图8本发明的可连续变锥角机构的锥角增加与减小示意图;Fig. 8 is a schematic diagram of increasing and decreasing the cone angle of the continuously variable cone angle mechanism of the present invention;
图9本发明的压电往复式可连续变锥角无阀泵;Fig. 9 is the piezoelectric reciprocating valveless pump with continuously variable cone angle of the present invention;
图10本发明的可连续变锥角机构的活塞往复式无阀泵16为活塞环,17为活塞。Fig. 10 The piston reciprocating valveless pump of the continuously variable cone angle mechanism of the
具体实施方式:Detailed ways:
参见附图6-10,采用通用机件,即螺栓13为M3×15,螺母7为M3的标准件,上夹板8、直线流路档体9、可连续变化锥角的流路档体10、轴11及下夹板12均为有机玻璃板材机械加工而成。其他辅助材料软硅胶、橡胶条及粘接剂均为市售材料。Refer to accompanying drawings 6-10, using common parts, that is, the
所述的一种往复式可连续变锥角无阀泵,锥形体中把流路档体的直线流路档体9或可连续变化锥角的流路档体10的未被铰链连接的两端部边缘与上、下夹板8和12的边缘对齐,并粘接在夹板的中心线两侧,间隔在2-10mm之间,最后,螺拴13穿过上夹板8与下夹板12紧固在螺母7上。图9所示为安装了可连续变锥角机构的压电往复式无阀泵。In the reciprocating valveless pump with continuously variable cone angle, the two unhinged joints of the straight flow path body 9 of the flow path body or the
图9的压电往复式可连续变锥角无阀泵,采用固定螺钉1将振动子固定在泵体3上,所用部件均为传统往复式压电泵所使用的部件。图10所示的可连续变锥角机构的活塞往复式无阀泵,所用部件也均为压电泵通用部件。The piezoelectric reciprocating valveless pump with continuously variable cone angle in Fig. 9 uses fixing screws 1 to fix the vibrator on the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100006697A CN1306165C (en) | 2004-01-16 | 2004-01-16 | Reciprocating valveless pump with consecutively changeable cone angle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100006697A CN1306165C (en) | 2004-01-16 | 2004-01-16 | Reciprocating valveless pump with consecutively changeable cone angle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1558114A true CN1558114A (en) | 2004-12-29 |
CN1306165C CN1306165C (en) | 2007-03-21 |
Family
ID=34350449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100006697A Expired - Fee Related CN1306165C (en) | 2004-01-16 | 2004-01-16 | Reciprocating valveless pump with consecutively changeable cone angle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1306165C (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007043976A1 (en) * | 2005-10-13 | 2007-04-19 | Nanyang Technological University | Electro-active valveless pump |
CN100338361C (en) * | 2005-08-12 | 2007-09-19 | 北京工业大学 | Valveless piezoelectric pump |
CN100390413C (en) * | 2006-11-10 | 2008-05-28 | 南京航空航天大学 | Standing wave-driven piezoelectric ceramic pump for forward and reverse fluid flow |
CN100408852C (en) * | 2005-01-14 | 2008-08-06 | 黑龙江大学 | MEMS V-shaped microvalve manufacturing method |
CN108223339A (en) * | 2016-12-14 | 2018-06-29 | 德尔格制造股份两合公司 | Cavity pump and the method for running cavity pump |
CN111828290A (en) * | 2020-07-20 | 2020-10-27 | 广州大学 | A valveless piezoelectric pump |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE508435C2 (en) * | 1993-02-23 | 1998-10-05 | Erik Stemme | Diaphragm pump type pump |
JP2001221166A (en) * | 2000-02-10 | 2001-08-17 | Furuyama Akimi | Displacement type pump with spiral pipes and fluid transfer method |
CN2429701Y (en) * | 2000-06-14 | 2001-05-09 | 临安特种阀门厂 | Stop valve with declined surface and two gates |
-
2004
- 2004-01-16 CN CNB2004100006697A patent/CN1306165C/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100408852C (en) * | 2005-01-14 | 2008-08-06 | 黑龙江大学 | MEMS V-shaped microvalve manufacturing method |
CN100338361C (en) * | 2005-08-12 | 2007-09-19 | 北京工业大学 | Valveless piezoelectric pump |
WO2007043976A1 (en) * | 2005-10-13 | 2007-04-19 | Nanyang Technological University | Electro-active valveless pump |
US8668474B2 (en) | 2005-10-13 | 2014-03-11 | Nanyang Technological University | Electro-active valveless pump |
CN100390413C (en) * | 2006-11-10 | 2008-05-28 | 南京航空航天大学 | Standing wave-driven piezoelectric ceramic pump for forward and reverse fluid flow |
CN108223339A (en) * | 2016-12-14 | 2018-06-29 | 德尔格制造股份两合公司 | Cavity pump and the method for running cavity pump |
CN111828290A (en) * | 2020-07-20 | 2020-10-27 | 广州大学 | A valveless piezoelectric pump |
CN111828290B (en) * | 2020-07-20 | 2022-04-19 | 广州大学 | A valveless piezoelectric pump |
Also Published As
Publication number | Publication date |
---|---|
CN1306165C (en) | 2007-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1179127C (en) | Multi-chamber piezo film driven pump | |
CN1306165C (en) | Reciprocating valveless pump with consecutively changeable cone angle | |
CN1174170C (en) | Peristaltic fluid pump | |
CN101846059B (en) | Self-adaptive piezoelectric pump with active valve | |
CN2580141Y (en) | Multiple cavity piezoelectric membrane driving pump | |
CN1807887A (en) | Integrated precise medicine transportation pump | |
CN1959109A (en) | Standing wave driven piezoelectric ceramic pump capable of realizing positive and negative directional flow of liquid | |
CN101526078A (en) | Precision liquid-gas transmission and matching machine based on piezoelectric material | |
CN203770100U (en) | Piezoelectric vibrating type microfluid pumping device | |
CN100338361C (en) | Valveless piezoelectric pump | |
CN202900597U (en) | Ultrasonic current micro-pump capable of achieving bidirectional-flow | |
CN100335779C (en) | Travelling wave driven prezoelectric ceramic pump capable of realizing forward-reverse fluid flow | |
CN100335785C (en) | Piezoelectric pump | |
CN109723629B (en) | Piezoelectric wafer pump | |
CN206903843U (en) | A kind of electric diaphragm pump | |
CN1232730C (en) | Discharge valve apparatus of closed compressor | |
CN100338362C (en) | Built-in corrugated channel valveless piezoelectric pump | |
CN2839640Y (en) | Rotary plugged impression non-valve pressure electric pump | |
CN102996418B (en) | Ultra-acoustic streaming micro-pump capable of realizing bidirectional flow | |
CN1673528A (en) | Micro-mechanical reciprocating diaphragm pump | |
CN1948754A (en) | Built-in rotatable multi-block valveless piezoelectric pump | |
CN2615382Y (en) | Elliptic gear pump | |
CN200968273Y (en) | Rotatable multi-quadrat valveless piezoelectric pump with built-in attached oval-shaped groove | |
CN109882387B (en) | A piezoelectric gas pump | |
CN109772223B (en) | a fluid mixer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |