背景技术
迄今已有用于测量电容性麦克风等电容性传感器的电容值的电容测量装置,其中,所述电容性传感器其电容会随所接收的物理量(加速度、压力、气体、光、声波等)的变化而变化。图1表示现有的电容测量装置100。如图1所示,现有的电容测量装置100包括:运算放大器OP、交流电压发生装置OSC、电容性传感器Cs、作为反馈阻抗的电阻Rf等。交流电压发生器OSC在进行电容测量时产生向电容性传感器Cs施加的动作信号Vin。电容性传感器Cs与运算放大器OP的反相输入端子通过信号线L相连。电阻Rf连接在信号线L与运算放大器OP之间。此外,传感器电容Cs连接在运算放大器OP的反相输入端子和交流电压发生器OSC之间。交流电压发生器OSC的一端连接在基准电位上。
作为图1所示的现有电容测量装置100的动作,当从交流电压发生器OSC施加电压Vin时,交流电流流向电容性传感器Cs。此时,由于运算放大器OP的输入阻抗在理想状态下为无穷大,因而流经电容性传感器Cs的电流将全部流向电阻Rf。
可以通过下述方法来求出电容测量装置的输出Vout。
当设定动作信号的振幅为V,动作信号的角速度为ωin,电容性传感器的基准电容为Cd,电容性传感器Cs的变化电容的振幅为C,电容变化的角速度为ωc时,动作信号Vin以及电容性传感器的电容Cs可表示为:
Vin=Vsinωint (1)
Cs=Cd+Csinωct (2)
流经电容性传感器的电流Is可表示为:
Is=d(CsVin)/dt (3)
输出Vout可表示为:
Vout=-IsRf (4)
因而,由公式(1)至公式(4)可导出:
Vout=-Rf{(Cd+C·sinωct)·ωin·cosωint
+C·ωc·cosωct·sinωint}V (5)
从公式(5)可知,输出Vout具有以电容变化的角速度ωc为系数的项。由此,当反馈阻抗为电阻时,如果电容性传感器的电容以频率ωc变化,则将输出与所述频率ωc相关的输出Vout(具有频率相关性)。因此,当反馈阻抗为电阻时,必须要在后阶段形成处理电路,以使输出不具有频率特性,但此时将导致电路规模变大。
因此,又提出了不是使用电阻而是使用电容器(电容)来构成反馈阻抗的技术。图2表示用电容Cf来构成反馈阻抗的电容测量装置101。此时,由于传感器电容Cs所储存的电荷与反馈电容Cf中所储存的电荷相等,所以有下式成立:
-Cf·Vout=Cs·Vin (6)
因而输出Vout可表示为:
Vout=-(Cd+Csinωct)/Cf·Vsinωin (7)
从上述公式可知,输出电压Vout不包含与角速度ωc成比例的项。这是由于当使用电容器来构成反馈阻抗时,可使介于两个电容器之间的信号线L的电荷保持恒定。
如上所述,由于在电路输出中不出现与电容的变化频率成比例的项,所以不必在后阶段设置处理电路。由此可防止电路规模变大。
但是,在利用电容Cf来构成反馈阻抗时,连接Cf与电容性传感器的信号线L将处于电悬浮状态。由此,在电路动作中将产生信号线L的电位不稳定或电路输出饱和为电源电压等异常情况。
为了防止上述的电路异常情况,如图2所示,也可以在信号线L与地之间连接电阻Rg,从而固定信号线L的电位。
但是,在通过电阻Rg来固定电位的情况下,测量电容时电阻Rg的两端有时会产生电位差,从而在电阻Rg中有电流流过。此时,将导致信号线L的电荷量发生变化,从而会降低电容测量装置101的灵敏度。
因此,最好能有一种部件,可在不改变信号线L的电荷量的情况下,固定信号线L的电位。
此外,当传感器电容Cs的基准电容Cd与电容变化C相比非常大时,电容变化无法在输出Vout中充分地反映出来。
因此,最好能有一种电路,即使在基准电容Cd与电容变化C相比为非常大的情况下,也可以获得足够的灵敏度。
发明内容
本发明是为解决上述课题而进行的,其目的在于,提供一种电容测量装置,包括:电位固定部件,可在不改变电容测量装置的信号线的电荷量的情况下,固定信号线的电位;以及基准电容消除部件,可消除电容性传感器的基准(固定)电容对电路输出产生的影响。
本发明一个方面的电位固定装置是一种连接在两个电容之间的连接线上的电位固定装置,所述两个电容是指第一电容以及与所述第一电容直接相连的第二电容,其中,所述电位固定装置包括:输出端子,连接在所述连接线上;以及电压供给部件,通过从所述输出端子向所述连接线供给电压,保持所述第一电容与所述第二电容的总计电荷量,同时维持所述两个电容之间的连接线的电位为恒定;所述电压供给部件包括:分压部件,包括第一高电阻和与所述第一高电阻直接相连的第二高电阻,并将由所述第一高电阻与所述第二高电阻分压的电位输出到所述输出端子中;以及第三电容,至少与所述第一高电阻或所述第二高电阻中的一个并联连接。这里,第一高电阻与第二高电阻最好串联连接。另外,本发明中的高电阻可以利用二极管的反偏特性、或晶体管的关断状态来实现。
本发明另一方面的电位固定装置是一种连接在两个电容之间的连接线上的电位固定装置,所述两个电容是指第一电容以及与所述第一电容直接相连的第二电容,其中,所述电位固定装置包括:输出端子,连接在所述连接线上,以及电压供给部件,从所述输出端子向所述连接线输出与施加在所述连接线上的动作信号的电位相等的电位;所述电压供给部件包括:分压部件,包括第一高电阻和与所述第一高电阻直接相连的第二高电阻,并将由所述第一高电阻与所述第二高电阻分压的电位输出到所述输出端子中;以及第三电容,至少与所述第一高电阻或者所述第二高电阻中的一个并联连接。由此在所述连接线上没有来自第一高电阻与第二高电阻的电流流动,从而,连接线的电荷量得以保持。由于保持了连接线的电荷量,因而,例如在电容测量装置中,即使在固定了第一电容与第二电容之间的连接线的电位的情况下,电容测量装置的灵敏度也不会下降。其结果可进行正确的电容测量。并且,通过选择适当的第一高电阻、第二高电阻的电阻值,可较容易地调节电压供给部件的输出电位。另外,第一高电阻与第二高电阻最好串联连接。这里,高电阻是指与所述第一电容以及第二电容的阻抗成分相比具有相对高的阻值的足够大的电阻。此外,从另一方面来说,高电阻又具有下述特性部件,即所述部件使得从连接线看过去的电位固定部分的输入阻抗大于从连接线看过去的包括第一电容或第二电容中的任一个电容的电路的输入阻抗。
另外,在上述一方面或另一方面的电位固定装置中,优选以下结构:即,所述电压供给部件还包括放大器和规定电压施加部件,在所述放大器上连接所述第一高电阻的一端,所述第一高电阻的另一端与所述第二高电阻的一端相连,在所述第一高电阻的另一端与所述第二高电阻的一端之间连接所述输出端子,所述第二高电阻的另一端与所述规定电压施加部件相连。
当如上述构成时,通过确定放大器的放大率、第一固定电阻和第二固定电阻的电阻值、以及规定电位施加部件的电压值,可以容易地将电压供给部件的输出端子的电位控制为与施加在第一电容与第二电容之间的连接线上的动作信号的电位相等的电位。此外,通过确定放大器的放大系数和用于消除基准电容的电容的电容值,可以容易地控制在流经第一电容的电流中由用于消除基准电容的电容所提供的量。
在上述一方面或另一方面的所述电位固定装置中,还包括第一运算放大器,并且,所述第一电容是被测电容,所述两个电容之间的连接线是信号线,在所述信号线上连接有所述第一运算放大器的输入端子。
此外,在上述一方面或另一方面的所述电位固定装置中,所述电位固定装置还包括第二运算放大器,所述第二运算放大器的输出端子与所述第二电容相连。
本发明一方面的电位固定方法是一种用于固定两个电容之间的连接线的电位的电位固定方法,所述两个电容是指第一电容以及与所述第一电容直接相连的第二电容,其中,所述电位固定方法包括电压供给部件,所述电压供给部件至少包含用于分压的两个高阻抗,并至少在所述两个高阻抗的一侧具有放大器与第三电容,并且,通过向所述两个电容之间的连接线施加所述电压供给部件的输出,并调节所述放大器的放大率与所述第三电容的电容值,从而确定连接线的固定电位。另外,高阻抗与高电阻起相同的作用。
此外,本发明另一方面的电位固定方法是用于固定两个电容之间的连接线的电位的电位固定方法,所述两个电容是指第一电容以及与所述第一电容直接相连的第二电容,其中,所述电位固定方法包括电压供给部件,所述电压供给部件包括放大器、第一高电阻和第二高电阻、以及至少与第一高电阻或第二高电阻中的任一个并联连接的第三电容,并且,通过将由所述第一高电阻与第二高电阻分压的电压输出到所述两个电容之间的连接线上,并调节所述放大器的放大率与所述两个高电阻的值以及第三电容的值,从而将施加在所述两个电容之间的连接线上的动作信号的电位设定为与所述电压供给部件的输出电位相等。
在本发明的一方面以及另一方面的电位固定方法中,最好在所述电压供给部件的第一高电阻或第二高电阻的任一侧的端部上,还包括规定电压施加部件,从而通过调节所述规定电压施加部件的施加电压,可以将施加在所述两个电容之间的连接线上的动作信号的电位设定为与所述电压供给部件的输出电位相等。
此外,在上述一方面以及另一方面的电位固定方法中,还可以将所述第一电容以及所述第二电容中的任一个用作被测电容。
发明的最佳实施方式
图3是包含本发明第一实施例中的电位固定装置的电容测量装置的电路图。
首先,参照图3说明包含第一实施例的电位固定装置的电容测量装置的结构。在本第一实施例中,包括:用于获得增益并作为电流源的运算放大电路11、处于虚短路状态的运算放大器12、交流电压发生器13、被测电容14、以及反馈电容15。另外,运算放大器12是本发明的“第一运算放大器”的一个示例,运算放大电路11是本发明的“第二运算放大器”的一个示例。此外,被测电容14为本发明的“第一电容”或者“第二电容”的一个示例,其电容值Cs可用基准电容Cd与变化电容Csinωct相加,即Cs=Cd+Csinωct来表示。基准电容是第一、第二电容所固有的电容,即指有外力施加前的固定电容值。反馈电容15是本发明的“第一电容”或者“第二电容”的一个示例。被测电容14与反馈电容15通过信号线17相连。另外,所述信号线17是本发明的“连接线”的一个示例。被测电容14不与信号线相连的那一端可以处于悬浮状态,但是将其连接在规定电位上时可实现高精度的测量。信号线17联接在运算放大器12的一个输入端子上。此外,交流电压发生器13连接在运算放大器12的另一个输入端子上。
这里,在第一实施例中,使用包括电压供给电路1的电位固定装置来固定信号线17的电位。这里,电压供给电路1是本发明的“电压供给部件”的一个示例。电压供给电路1包含放大率为A的放大器2、电阻值为Ra1的第一高电阻3、电阻值为Ra2的第一高电阻4、以及电容值为Cc的用于消除基准电容的电容8。第一高电阻3的Ra1以及第二高电阻4的Ra2,与从共用的频率与检测电容求出的近似的特性阻抗值相比,只要是具有相对足够大的数值的电阻值即可。另外,在本申请中,以A倍等方式出现的变量A均表示零(0)以外的实数。
此外,在放大器2的输入侧,连接有与交流电压发生器13不同的另一交流电压发生器(另一电源)7。在放大器2的输出侧连接着第一高电阻3的一端。在第一高电阻3的另一端与第二高电阻4的一端之间,连接着输出端子5。所述电压供给电路1的输出端子5在P点与信号线17相连。在第二高电阻4的另一端设有端子6。并向端子6施加规定的电位Vs。所述端子6是本发明的“规定电压施加部件”的一个示例。此外,从输出端子5输出通过第一高电阻3以及第二高电阻4的电阻分配而分压的电压Va。
此外,放大器2例如具有如图4所示的结构。即,放大器2包括放大器2、运算放大器21、电阻值为R1的电阻22、以及电阻值为R2的电阻23。在运算放大器21的同相输入端子连接有交流电压发生器7(参照图3)。此外,在运算放大电路21的输出端子与反相输入端子之间连接有电阻22。此外,在运算放大电路21的反相输入端子与GND之间连接有电阻23。通过如上述构成,可以容易地获得放大率A=(R1+R2)/R2的放大器2。
作为根据第一实施例的电容测量装置的电位固定方法,确定放大器2的放大率A、第一高电阻3的电阻值Ra1、第二高电阻4的电阻值Ra2以及端子6的电压Va,使得流经信号线17的动作信号的电压Vin与电压供给电路1的输出端子5的电压Va相等,并且,确定作为第三电容的用于消除基准电容的电容8的电容值Cc、放大器2的放大率A,由此至少提供一部分的在被测电容14中流通的电流。
作为图3所示的第一实施例的电容测量装置的电容测量动作,由于运算放大器12处于虚短路状态,因而来自交流电压发生器13的电压Vin(动作信号)施加到信号线17上。由此,在被测电容14的两端存在电压,从而有电流流通。从而,从信号输出端子18输出与被测电容14的电容Cs相对应的输出Vout。通过对所述输出电压Vout进行各种信号处理,可获得被测电容14的电容Cs。
如上所述,在第一实施例中,在连接被测电容14与固定电容15的信号线17上连接施加交流电压的电压供给电路1,其中,所述交流电压用于进行电位固定和基准电容消除,此外,设定放大器2的放大率A、Ra1、Ra2,使得电压供给电路1的输出端子5的电位与施加在信号线17上的动作信号的电位Vin相等,其中,所述输出端子5的电位是利用第一高电阻3与第二高电阻4对放大器2的输出进行分压来确定的,由此,可使信号线17上没有来自第一高电阻3与第二高电阻4的电流流动,从而可防止信号线17的电荷量发生变化。此外,通过在电压供给电路1中包含具有高阻抗值的第一高电阻3以及第二高电阻4,可有效防止在信号线17中流通的电流的一部分流向电压供给电路1。这样,也可以防止信号线17的电荷量发生变化。另外,通过从放大器2经由用于消除基准电容的电容8至少提供一部分的在被测电容14中流通的电流,减少了从运算放大器11经反馈电容15提供到被测电容的基准电容上的电流,从而可在输出Vout中充分反映出被测电容中的电容变化分量。此外,通过从放大器2经由用于消除基准电容的电容向被测电容提供电流,减少了流经反馈电容15的电流,换句话说,即减少了流经反馈电容的电流的偏置分量,因此可提高使用Cf确定的电容测量装置的增益。
其结果是,在第一实施例的电容测量装置中,即使在固定了连接被测电容14与固定电容15的信号线17的电位的情况下,电容测量装置的灵敏度也不会下降,因而可进行正确的电容测量。
下面,利用公式对第一实施例进行说明。首先,电压供给电路的输出Va表示为:
Va=Ra2(AVo-Vs)/(Ra1+Ra2) (8)
这里,为了简便,取A=2,Vs=0,Ra1=Ra2。此时,由于设定
Va=Vin(Va与Vin同电位),所以,只要使
Vo=Vin (9)即可。因此,流经用于消除基准电容的电容Cc的电流Ic表示为:
Ic=d{Cc(AVc-Vin)}/dt=d(CcVin)/dt (10)
接着,由于运算放大器12处于虚短路状态,因而来自交流电压发生器13的电压Vin(动作信号)被供给到信号线17上。由此,在被测电容14中有电流流通。所述电流Is表示为:
Is=d(CsVin)/dt
=(Cdωincosωint+Cωccosωct·sinωint
+Cωinsinωct·cosωint)V (11)
这里,Cd是被测电容14的基准电容值,C是被测电容14的变化电容的振幅,ωc是电容变化的角频率,V是动作信号的振幅,ωin是动作信号的角频率。
此外,流经反馈电容Cf的电流If可表示为:
If=d{Cf(Vout-Vin)}/dt (12)
这里,由于运算放大器12的输入阻抗足够大,并且,设定Va=Vin,此外Ra1以及Ra2为足够大的电阻值,所以在Ra1以及Ra2中没有电流流通,从而Ic、Is及If之间构成如下关系:
If=Is-Ic (13)
d{Cf(Vout-Vin)}/dt
=d(CsVin)/dt-d(CcVin)/dt (14)
因此,信号输出端子18的输出Vout为:
Vout={1+(Cs-Cc)/Cf}Vin
={1+(Cd+Csinωct-Cc)/Cf}Vsinωint (15)
在条件(A=2、Vs=0、Ra1=Ra2)下,Cc与Cd相等,因而可以消除被测电容14的基准电容对电路输出的影响。换句话说,在电路输出中只输出了与被测电容14中的变化电容相对应的信号。即此时,电路输出表示为:
Vout=(1+Csinωct/Cf)Vsinωint (16)
由此基准电容对电路输出没有影响,从而能够以高灵敏度正确检测出电容变化。
在以上说明中,从电流的角度进行了说明,下面,从电压的角度来进行验证。
由于运算放大器12的输入阻抗足够大,并且设定Va=Vin,且由于Ra1以及Ra2为非常大的电阻值,因而在Ra1以及Ra2中没有电流流通,从而信号线的电荷量恒定。从而,
CcVin+Cf(Vout-Vin)=CsVin (17)
Vout={1+(Cs-Cc)/Cf}Vin
={1+(Cd+Csinωct-Cc)/Cf}Vsinωint (18)
这与上述Vout的公式相同。因此,在图3所示的实施例中,可以根据上述条件,进行正确的电容测量。
图5是本发明的第二实施例的电容测量装置的电路图,其中所述电容测量装置具有包含电压供给电路的电位固定/基准电容消除部件。在所述第二实施例的电压供给电路1中,在上述第一实施例的结构中的放大器2的输入侧,连接了用于向信号线17中施加动作信号Vin的交流电压发生器13,以代替交流电压发生器7。另外,第二实施例中的其他结构与第一
实施例相同。
在第二实施例中,如上所述,通过在放大器2的输入侧连接用于向信号线17中施加动作信号Vin的交流电压发生器13,可以省略第一实施例中的交流电压发生器7,由此与第一实施例相比可简化电路结构。
此外,在第二实施例中,与上述第一实施例相同,通过调节放大器2的放大率A、第一高电阻3的电阻值Ra1、第二高电阻4的电阻值Ra2以及端子6的电压Va,可以很容易地将电压供给电路1的输出端子5中的电压Va设定为与信号线17的动作信号的电压Vin相等,并且,可通过调节放大器2的放大率A以及用于消除基准电容的电容的电容值Cc,来设定被测电容的消除量。具体地说,通过将图4所示的放大器2的阻抗22及23设为R1=R2,使得放大器2的放大率A为A=2,并通过设定Vs=OV,Ra1=Ra2,可以容易地使电压供给电路1的输出端子5的电压Va与信号线17的动作信号电压Vin为同电位。此外,将被测电容14的基准电容设定为Cc=Cd,并将放大器2的放大率通过上述设定为A=2时,在被测电容中,流经基准电容的电流全部将由基准电容消除电容所提供,而在反馈电容15中只有流经变化电容成分的电流流通,因此基准电容值不影响输出Vout。
另外,这次所公开的实施例其所有方面仅作为示例,而不能作为用作限定的部分。本发明的范围不是通过上述实施例的说明,而是通过权利要求书来确定,而且还包括与权利要求书等同的含义及范围内的所有变更。
例如,在上述实施例中,作为电压供给电路1的高阻抗使用了第一高电阻3以及第二高电阻4,但是本发明并不局限于此,作为高阻抗,例如也可以利用二极管的反偏特性,还可以使用晶体管的关断状态。即,可以说高阻抗与高电阻作为电阻成分所起的作用是相同的。
在图3、图5中是以两个运算放大器构成的,但是也可以如图6所示只由一个构成。此外,12是由运算放大器构成的,但是也可以由阻抗变换器来构成。
此外,在上述实施例中,说明了具有如图3以及图5所示的电路结构的电容测量装置,但本发明并不局限于此,也可以适用于具有其他电路结构的电容测量装置。
此外,在上述实施例中,说明了对电容测量装置中的连接被测电容14与固定电容15的信号线17的电位进行固定的情况,但本发明并不局限于此,也可以广泛地适用于对电容测量装置以外的装置的电位进行固定的情况,其中,所述电容测量装置包含第一电容与第二电容直接相连的电路结构。
如上所述,根据本发明,在固定第一电容与第二电容之间的连接线的电位的情况下,可防止第一电容与第二电容之间的连接线的电荷量发生变化。此外,由于可经由用于消除基准电容的电容来供给至少一部分的在被测电容中所流通的电流,因此,可向输出Vout中充分反映产生的电容变化。其结果是,例如在电容测量装置中,即使在将第一电容与第二电容之间的连接线的电位固定起来的情况下,电容测量装置的灵敏度也不会下降,因而能够以高灵敏度进行正确的电容测量。