CN1464963A - 热泵装置 - Google Patents

热泵装置 Download PDF

Info

Publication number
CN1464963A
CN1464963A CN02802534A CN02802534A CN1464963A CN 1464963 A CN1464963 A CN 1464963A CN 02802534 A CN02802534 A CN 02802534A CN 02802534 A CN02802534 A CN 02802534A CN 1464963 A CN1464963 A CN 1464963A
Authority
CN
China
Prior art keywords
evaporimeter
gas cooler
heat pump
mentioned
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02802534A
Other languages
English (en)
Other versions
CN1250926C (zh
Inventor
桑原修
向山洋
小林雅博
上村一朗
井崎博和
石原寿和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN1464963A publication Critical patent/CN1464963A/zh
Application granted granted Critical
Publication of CN1250926C publication Critical patent/CN1250926C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration

Abstract

在设置具有压缩机(1)、气体冷却器(3)、减压装置(5)以及蒸发器(7)的制冷循环并可利用该气体冷却器加热水而构成的热泵装置上,在制冷循环中高压侧填充使用在超临界区域工作的CO2等制冷剂,在气体冷却器出口与减压装置之间设置散热器(21),使该散热器出口的制冷剂温度与给气体冷却器的给水温度无关而大致保持一定温度。

Description

热泵装置
技术领域
本发明涉及热泵装置,特别是关于在可提高蒸发器的除霜效率、并可将被气体冷却器加热的水作为热水提供而构成的热泵式热水装置上,可抑制给水温度变化时的循环制冷剂量的变动的热泵装置。
技术背景
一般,众所周知的是设置具有压缩机、气体冷却器、减压装置以及蒸发器的制冷循环,并可将被该气体冷却器加热的水作为热水提供而构成的热泵式热水装置。
在这种装置上,在例如使用CO2制冷剂作为制冷循环的制冷剂时,因为制冷循环的高压侧处于成为超临界的过临界循环(TranscriticalCycle),所以,可望利用水的升温幅度大的加热工序获得高的效率系数(COP)。
在该热泵式热水装置上,提供给气体冷却器的给水温度例如低到5℃左右时,压缩机排出的CO2制冷剂,在气体冷却器与5℃左右的低温水进行热交换低温冷却直到密度与液体为同样程度(以下,为液态),之后膨胀至蒸发器,在蒸发器完全气化,循环到压缩机。
另一方面,当提供给气体冷却器的给水温度例如高到50℃左右时,CO2制冷剂,因为在该气体冷却器与50℃左右的高温水进行热交换,所以,不怎么被冷却,保持高温气体状态直到气体冷却器出口,膨胀至蒸发器,再循环到压缩机。
这样,存在当给水温度变化、气体冷却器出口温度变化时,制冷剂的密度变化的问题。
而且,制冷剂密度变化大的时候,因为制冷循环的容积一定,所以,在给水温度高时和给水温度低时,循环的最佳制冷剂量产生差别。在该最佳制冷剂量产生差别时,如果根据最佳制冷剂量必须大的运行状态填充制冷剂,则在最佳制冷剂量可以少的运行状态就会产生过剩制冷剂,从而存在必须设置将其暂时储存的储罐,同时使为了获得最佳制冷剂量的控制复杂化等种种问题。
又,在这种装置中,构成制冷循环的机器类作为热泵机组置于室外的情况较多,例如在冬季等,需经常进行蒸发器的除霜。
这种情况下的除霜运行,一般是采用热气体除霜,即,使从压缩机排出的制冷剂旁路气体冷却器以及减压装置直接提供到蒸发器,在该蒸发器利用制冷剂热量进行热气除霜。
但是,在外界气温很低,例如有极轻的大量的雪粉飞舞的情况下,进行热气体除霜运行时,蒸发器上的雪粉附着量太多,往往存在不能将它们充分融化的情况。
又,一般热泵机组的底板(排水盘)与蒸发器的下部之间的间隙极小,残留在该间隙的排水往往冻结,冰以其为外壳从下面长大,在寒冬持续的地区等难以有效除去这些冰。
虽然也可考虑增设电热器等进行除霜,但这会使电容量增大,增加运行成本。
因此,本发明的目的在于提供消除上述现有技术存在的问题、利用简单构成控制给水温度上升时的循环最佳制冷剂量的变化同时可有效进行蒸发器的除霜的热泵装置。
发明介绍
本发明是设置具有压缩机、气体冷却器、减压装置以及蒸发器的制冷循环并可利用该气体冷却器加热水而构成的热泵装置,其特征在于:在制冷循环中高压侧填充使用在超临界区域工作的制冷剂,并在气体冷却器出口与减压装置之间设置散热器。
本发明,其特征在于:具有使上述散热器出口的制冷剂温度与给气体冷却器的给水温度无关而大致保持一定温度的构成。
本发明,其特征在于:散热器配置在蒸发器的下部。
本发明,其特征在于:散热器构成从气体冷却器连接到减压装置的制冷剂管的一部分。
本发明,其特征在于:蒸发器是翅片·管式换热器,制冷剂管的一部分贯穿蒸发器的翅片下部配置。
本发明,其特征在于:上述制冷剂是CO2制冷剂。
在这些方案中,因为散热器出口的制冷剂温度与给气体冷却器的给水温度无关而大致保持一定温度,所以,散热器出口的制冷剂密度也与给水温度无关而大致一定。
因为制冷剂密度大致一定,制冷循环的容量一定,所以,循环的制冷剂量一定,可抑制最佳制冷剂量的变化。
又,在将散热器配置在蒸发器的下部时,可利用简单的构成有效进行蒸发器的除霜。
图面的简单说明
图1是本发明的热泵装置的一实施形式的回路图。
图2是蒸发器的立体图。
图3是T-h线图。
图4是显示另外的实施形式的蒸发器的立体图。
实施发明的最佳形式
参照图说明本发明的一实施形式。
在图1中,符号1表示压缩机,在该压缩机1上,通过实线所示的制冷剂管,依次连接气体冷却器3、减压装置(膨胀阀)5、由翅片·管式的空气热源式换热器构成的蒸发器7、以及储存器8,构成制冷循环。
在该制冷循环中填充使用CO2制冷剂。该CO2制冷剂臭氧破坏系数为0,地球温暖化系数为1,所以,对环境造成的负荷小,无毒性、可燃性,是安全且廉价的。
上述气体冷却器3,由CO2制冷剂流动的实线所示的制冷剂盘管9和水流动的虚线所示的水盘管11构成,该水盘管11通过水管连接在图中未示的热水箱上。在水管上连接图中未示的循环泵,该循环泵被驱动使热水箱的水在气体冷却器3循环,在此被加热储存在热水箱内。
该热泵式热水装置,作为热泵机组置于室外,必须进行为了除去附着在蒸发器7上的霜的除霜运行。这时的除霜运行,是将从压缩机1排出的制冷剂通过旁通管13直接提供给蒸发器7,通过将其加热而进行的。旁通管13旁路气体冷却器3和减压装置5。在除霜运行时,设置在旁通管13上的通常关闭的除霜用电磁阀15打开。
在本实施形式中,从气体冷却器3连接到减压装置5上的制冷剂管的一部分(散热器)21配置在蒸发器7的下部而构成。
该蒸发器7,是翅片·管式的空气热源式换热器,是在复数的翅片23、23、23…的孔中贯穿蛇行状的减压装置5的形式,使最下部的大致U字形的管子25a对应上述制冷剂管的一部分21,在该大致U字形的管子25a与比其更下游的管子25之间连接减压装置5。
图2是蒸发器7的立体图。
在该蒸发器7上,管子25从上风侧向下风侧配置二列,上述大致U字形的管子(制冷剂管的一部分)25a贯穿上述翅片23的下部配置。
在该管子25a内,在气体冷却器3被冷却的高压制冷剂流入,是通过入口管A流入,经过三次蛇行的管子25a之后,从出口管B流出,流向膨胀阀5。然后,在减压装置5膨胀之后,通过位于管子25a的正上方的上风侧的入口管C流入蒸发器7,经过1次蛇行达到上方侧的管子25b,从那里沿上风侧的管子25多次地蛇行流动,从上风侧的最上位置的管子25c移行到下风侧的管子25d,沿该下风侧的管子25从上向下流动,从最下位置的出口管D向压缩机1流出。
图3是T-h线图。
在该热泵式热水装置上,例如,在冬季运行时,当供给水盘管11的给水温度低到5℃左右时,如图3的T-h线图所示那样,CO2制冷剂,在压缩机1排出(点A),通过在气体冷却器3与5℃左右的水热交换而被冷却之后,流入散热器21,在此利用与空气的热交换进一步被冷却,以几乎接近液态的密度(液态)经过散热器21的出口(点B)之后,在膨胀阀5膨胀,到达蒸发器7的入口(点C),在该蒸发器7完全气化,循环到压缩机1的吸入(点D)。
这时,因为给水温度低到5℃左右,所以,作为制冷剂状态,在气体冷却器3的出口达到点B的附近,几乎为液态,可认为在散热器21上没怎么发挥冷却效果。
另一方面,在提供给水盘管11的给水温度例如高到50℃左右时,从压缩机1排出(点a)的CO2制冷剂,在蒸发器7与50℃左右的高温水进行热交换而被冷却。这时,作为制冷剂状态,气体冷却器3的出口几乎与点E相当,在此没有达到液态,可认为几乎是气态。经过该气体冷却器3的出口(点E)的制冷剂,到达散热器21,在此利用与空气的热交换被冷却,达到几乎液态,以液态到达散热器21的出口(点B),经过该出口(点B)之后,在膨胀阀5膨胀,至蒸发器7的入口(点C),在该蒸发器7完全气化,循环到压缩机1的吸入(点D)。
上述循环,因为高压侧处于成为超临界的过临界循环(Transcritical Cycle),所以,可望获得高的COP。
在本实施形式中,因为在气体冷却器出口与减压装置5之间设置散热器21,所以,不管在供给水盘管11的给水温度低的情况或高的情况,都可保持散热器21出口(点B)的制冷剂温度大致一定。
即,与到蒸发器7的给水温度无关,可保持散热器21出口(点B)的制冷剂温度在大致一定温度。但是,因为实际上散热器的温度变化,所以,点B的温度也有稍许变化。
如果采用它,不管给水温度低的情况或高的情况,因为沿制冷循环循环的制冷剂的密度几乎不变,并且,制冷循环的容量(散热器21、蒸发器7等的容积)一定,所以,不会因给水温度的高低在最佳制冷剂量上产生差别,可抑制最佳制冷剂量的变化。
因此,可抑制高压侧的压力上升,可抑制随着压缩比增大的效率下降,因为不会如过去那样产生剩余制冷剂,所以,不必设置暂时储存的储罐等,不会使为了获得最佳制冷剂量的控制复杂化。
散热器21,因为可作为蒸发器7的一部分制造,且可兼用蒸发器7的送风机,所以,可抑制设备成本,因为不必设置别的冷却源,所以,可望节能化。
又,在本实施形式中,在热水供应运行中,在气体冷却器3被冷却的高压制冷剂通常流到蒸发器7的下部。
在气体冷却器3的出口的制冷剂温度,在以高于提供给气体冷却器3的水的温度为前提时,供给此处的水的温度,当考虑水管的防冻设备等时,因为可维持0℃以上,所以,气体冷却器3的出口的制冷剂温度也可维持在0℃以上。
因此,在热水供应运行中,蒸发器7的下部的温度被保持在0℃以上,可防止蒸发器7处的下部的排水冻结。
对应热水供应运行中的蒸发器7处的蒸发温度与外界气温之差,从热水供应运行切换到除霜运行,但除霜运行时的热气体流入蒸发器7的管子25b,从那里沿上风侧的管子25多次蛇行流动,从上风侧的最上位置的管子25c移行到下风侧的管子25d,沿该下风侧的管子25从上向下流动,从最下位置的出口侧的管子D向压缩机1流动。这样,蒸发器7被加热,附着在其上的霜融化,排水排向下方。
在该实施形式中,即使设计使排出的排水滞留在蒸发器7的下部,在热水供应运行中,因为通过气体冷却器3的高压制冷剂也流过大致U字形的管子25a,所以,使蒸发器7的下部的温度保持在0℃以上,蒸发器7下部的排水不会冻结,可获得防止结冰的效果。
图4所示为另一实施形式。
在该实施形式中,蒸发器7与散热器21形成单独的翅片,该散热器21配置在蒸发器7的下部。这样,也可获得与上述实施形式几乎同样的效果。如果这样分开构成散热器21与蒸发器7,则设置散热器21的位置不限于蒸发器7的下部。也适宜设置在与蒸发器7并排或上部可作为设置空间的位置。在不设置在蒸发器7的下部的时候,不用说不能得到防冻结的效果。
以上,是根据一实施形式说明了本发明,当然本发明并不限于此。
产业上利用的可能性
本发明的热泵装置,适用于利用简单构成控制给水温度变化时的最佳制冷剂量的变化的情况,适用于有效进行蒸发器的除霜的情况,适用于热泵式热水装置,但并不局限于此,还可适用于例如采暖装置等。

Claims (6)

1.一种热泵装置,具有压缩机、气体冷却器、减压装置以及蒸发器的制冷循环,并构成可利用该气体冷却器加热水,其特征在于:在制冷循环中高压侧填充使用在超临界区域工作的制冷剂,并在气体冷却器出口与减压装置之间设置散热器。
2.如权利要求1所述的热泵装置,其特征在于:具有使上述散热器出口的制冷剂温度与给气体冷却器的给水温度无关而大致保持一定温度的构成。
3.如权利要求1或2所述的热泵装置,其特征在于:上述散热器配置在上述蒸发器的下部。
4.如权利要求1至3任一项所述的热泵装置,其特征在于:上述散热器构成从气体冷却器连接到减压装置的制冷剂管的一部分。
5.如权利要求4所述的热泵装置,其特征在于:上述蒸发器是翅片·管式换热器,上述制冷剂管的一部分贯穿上述蒸发器的翅片的下部配置。
6.如权利要求1至5任一项所述的热泵装置,其特征在于:上述制冷剂是CO2制冷剂。
CNB028025342A 2001-07-02 2002-07-02 热泵装置 Expired - Fee Related CN1250926C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP200413/2001 2001-07-02
JP200413/01 2001-07-02
JP2001200413 2001-07-02

Publications (2)

Publication Number Publication Date
CN1464963A true CN1464963A (zh) 2003-12-31
CN1250926C CN1250926C (zh) 2006-04-12

Family

ID=19037539

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028025342A Expired - Fee Related CN1250926C (zh) 2001-07-02 2002-07-02 热泵装置

Country Status (7)

Country Link
US (1) US7104079B2 (zh)
EP (1) EP1403598B1 (zh)
JP (1) JPWO2003004947A1 (zh)
KR (1) KR20030029882A (zh)
CN (1) CN1250926C (zh)
DE (1) DE60230510D1 (zh)
WO (1) WO2003004947A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769811B (zh) * 2004-10-25 2010-05-05 松下电器产业株式会社 热泵式热水供给装置
US7954856B2 (en) 2006-03-31 2011-06-07 Daikin Industries, Ltd. Flareless pipe coupling structure, flareless pipe coupling method, and on-site pipe coupling method
CN103712387A (zh) * 2013-12-26 2014-04-09 丹佛斯微通道换热器(嘉兴)有限公司 辅助除霜结构、换热器及热泵系统
CN104236088A (zh) * 2014-09-15 2014-12-24 广东瑞星新能源科技有限公司 一种超低温空气源热泵热水机组
CN113108497A (zh) * 2020-03-09 2021-07-13 珠海格力节能环保制冷技术研究中心有限公司 热泵空调系统及其控制方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003304208A1 (en) * 2003-06-12 2005-01-04 Milind V. Rane Multiutility vapor compression system
US7028494B2 (en) * 2003-08-22 2006-04-18 Carrier Corporation Defrosting methodology for heat pump water heating system
TWI332073B (en) * 2004-02-12 2010-10-21 Sanyo Electric Co Heating/cooling system
JP4593950B2 (ja) 2004-03-23 2010-12-08 キヤノン株式会社 画像形成装置
JP2009052880A (ja) * 2004-03-29 2009-03-12 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2006046694A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd 冷凍装置
AU2005327835A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation CO2-refrigeration device with heat reclaim
JP2008533426A (ja) * 2005-03-18 2008-08-21 キャリア・コマーシャル・リフリージレーション・インコーポレーテッド 遷臨界二酸化炭素冷蔵システムの凝縮水による熱伝達
FR2901015A1 (fr) * 2006-05-12 2007-11-16 Goff Michel Paul Marcel Le Batterie a air surchauffe dans le cadre d'un groupe frigorifique, pompe a chaleur.
WO2008124475A1 (en) 2007-04-03 2008-10-16 Global Heating Solutions, Inc. Spa having heat pump system
FR2933484A1 (fr) * 2008-07-03 2010-01-08 2F2C Procede de refrigeration d'au moins un meuble et/ou une chambre frigorifique et de chauffage d'au moins un local, installation et echangeur de chaleur pour sa mise en oeuvre
WO2010027533A1 (en) * 2008-09-08 2010-03-11 Carrier Corporation Microchannel heat exchanger module design to reduce water entrapment
US20100229575A1 (en) * 2009-03-10 2010-09-16 Shaw Engineering Associates, Llc Defrost system and method for heat pumps
US8385729B2 (en) 2009-09-08 2013-02-26 Rheem Manufacturing Company Heat pump water heater and associated control system
CN102003842B (zh) * 2010-11-04 2013-04-10 三花控股集团有限公司 蒸发器和具有它的制冷系统
US9234673B2 (en) 2011-10-18 2016-01-12 Trane International Inc. Heat exchanger with subcooling circuit
US9188369B2 (en) * 2012-04-02 2015-11-17 Whirlpool Corporation Fin-coil design for a dual suction air conditioning unit
GB201220186D0 (en) * 2012-11-09 2012-12-26 Styles Scott Heating system
US9228762B2 (en) 2013-02-28 2016-01-05 Whirlpool Corporation Refrigeration system having dual suction port compressor
EP3006866B1 (en) * 2013-05-31 2020-07-22 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104697257A (zh) * 2013-12-09 2015-06-10 博西华电器(江苏)有限公司 冷凝器、冷凝器制作方法以及具有该冷凝器的制冷器具
CN103743156B (zh) * 2014-01-06 2016-08-17 丹佛斯微通道换热器(嘉兴)有限公司 热泵系统
FR3019637A1 (fr) * 2014-04-02 2015-10-09 Bosch Gmbh Robert Evaporateur air/fluide compose d'un echangeur de chaleur a ailettes
CN106288482B (zh) * 2015-05-19 2019-03-12 Tcl空调器(中山)有限公司 空调器
CN108027189B (zh) * 2015-09-18 2021-07-06 开利公司 用于制冷机的冻结防护系统和方法
CN113483451B (zh) * 2021-07-12 2022-06-14 珠海格力电器股份有限公司 空调运行的控制方法、模组、空调和计算机存储介质

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263250A (en) 1975-11-20 1977-05-25 Teijin Ltd Preparation of aqueous emulsions of polyethylene
GB1544804A (en) * 1977-05-02 1979-04-25 Commercial Refrigeration Ltd Apparatus for and methods of transferring heat between bodies of fluid or other substance
US4262496A (en) * 1979-09-13 1981-04-21 Carrier Corporation Refrigeration circuit defrost system, method and components
US4265094A (en) * 1979-10-04 1981-05-05 Haasis Jr Hans Unitized refrigeration and water heating system
DE3027512A1 (de) 1980-07-19 1982-02-18 August Brötje GmbH & Co, 2902 Rastede Rohrleitungsschaltung fuer eine waermepumpe
US4907738A (en) * 1984-09-20 1990-03-13 Conserve, Inc. Heat pump
US4680941A (en) * 1986-05-21 1987-07-21 Richardson Elvet M Waste heating recovery system
US4957157A (en) * 1989-04-13 1990-09-18 General Electric Co. Two-phase thermal control system with a spherical wicked reservoir
US5099651A (en) * 1989-09-05 1992-03-31 Gas Research Institute Gas engine driven heat pump method
US4955207A (en) * 1989-09-26 1990-09-11 Mink Clark B Combination hot water heater-refrigeration assembly
US5212965A (en) * 1991-09-23 1993-05-25 Chander Datta Evaporator with integral liquid sub-cooling and refrigeration system therefor
US5297397A (en) * 1991-11-11 1994-03-29 Pointer Ronald J Efficiency directed supplemental condensing for high ambient refrigeration operation
JPH08327192A (ja) 1995-06-06 1996-12-13 Toyo Saamokontoroole Kk 冷凍機のエバポレータ
JPH11337282A (ja) 1998-05-22 1999-12-10 Sanyo Electric Co Ltd 熱交換器およびその製造方法
US6112547A (en) * 1998-07-10 2000-09-05 Spauschus Associates, Inc. Reduced pressure carbon dioxide-based refrigeration system
JP3393601B2 (ja) 1999-09-09 2003-04-07 株式会社デンソー ヒートポンプ式給湯器
JP2001108317A (ja) 1999-10-05 2001-04-20 Daikin Ind Ltd 二酸化炭素冷媒を使用したヒートポンプ式の冷暖房型空気調和機
JP2001153476A (ja) 1999-11-30 2001-06-08 Sanyo Electric Co Ltd 冷凍装置
JP4517529B2 (ja) * 2000-07-21 2010-08-04 株式会社日本自動車部品総合研究所 ヒートポンプサイクル、加熱装置、車両用暖房装置、暖房装置および蒸気圧縮式冷凍サイクル
JP3615475B2 (ja) 2000-09-28 2005-02-02 三洋電機株式会社 ヒートポンプ給湯機
JP2002106960A (ja) 2000-09-28 2002-04-10 Sanyo Electric Co Ltd ヒートポンプ給湯機
JP4056211B2 (ja) 2000-10-31 2008-03-05 三洋電機株式会社 ヒートポンプ給湯機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769811B (zh) * 2004-10-25 2010-05-05 松下电器产业株式会社 热泵式热水供给装置
US7954856B2 (en) 2006-03-31 2011-06-07 Daikin Industries, Ltd. Flareless pipe coupling structure, flareless pipe coupling method, and on-site pipe coupling method
CN103712387A (zh) * 2013-12-26 2014-04-09 丹佛斯微通道换热器(嘉兴)有限公司 辅助除霜结构、换热器及热泵系统
CN103712387B (zh) * 2013-12-26 2019-08-30 丹佛斯微通道换热器(嘉兴)有限公司 辅助除霜结构、换热器及热泵系统
CN104236088A (zh) * 2014-09-15 2014-12-24 广东瑞星新能源科技有限公司 一种超低温空气源热泵热水机组
CN113108497A (zh) * 2020-03-09 2021-07-13 珠海格力节能环保制冷技术研究中心有限公司 热泵空调系统及其控制方法
CN113108497B (zh) * 2020-03-09 2022-05-10 珠海格力节能环保制冷技术研究中心有限公司 热泵空调系统及其控制方法

Also Published As

Publication number Publication date
JPWO2003004947A1 (ja) 2004-10-28
EP1403598A4 (en) 2005-11-30
DE60230510D1 (de) 2009-02-05
CN1250926C (zh) 2006-04-12
WO2003004947A1 (fr) 2003-01-16
US20040020230A1 (en) 2004-02-05
EP1403598A1 (en) 2004-03-31
EP1403598B1 (en) 2008-12-24
US7104079B2 (en) 2006-09-12
KR20030029882A (ko) 2003-04-16

Similar Documents

Publication Publication Date Title
CN1250926C (zh) 热泵装置
US5655373A (en) Gas turbine intake air cooling apparatus
CN1239866C (zh) 除霜器及使用这种除霜器的冰箱
CN1167920C (zh) 热泵系统
JP4623600B2 (ja) 冷媒を用いた高性能蓄熱冷却システム
CN1719159A (zh) 冷冻设备
CN1265463A (zh) 热交换器
CN1401410A (zh) 无霜深冷式气体脱水装置
CN103175349A (zh) 热源型蒸发式冷凝器及蒸发冷热泵空调机组
CN101078583A (zh) 可调节冷媒流量的空调器及其调节方法
CN203177546U (zh) 热源型蒸发式冷凝器及蒸发冷热泵空调机组
CN1880895A (zh) 一种风冷式冰柜的侧送风方法及采用该方法的风冷式冰柜
CN104704304A (zh) 冷冻装置
CN1839287A (zh) 冷冻装置
CN1672002A (zh) 冷冻装置
CN100552327C (zh) 热泵及热泵的压缩机排出压力控制装置
CN1447890A (zh) 斯特林冷却装置、冷却库及冰箱
KR101008519B1 (ko) 하이브리드 히트펌프장치
CN100414222C (zh) 带有溢流式蒸发系统的模块化制冷装置
KR20060129789A (ko) 실외기 없는 에어컨
CN1474129A (zh) 电冰箱
CN1177087A (zh) 气冷吸收式空调机
KR102342956B1 (ko) 고효율 증발식 응축기
CN1548850A (zh) 空调室外机凝结水排水装置
JP2003083639A (ja) 冷凍或いは空調設備用の熱交換器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060412

Termination date: 20150702

EXPY Termination of patent right or utility model