CN1409428A - 燃料电池发电系统及控制该系统的方法 - Google Patents

燃料电池发电系统及控制该系统的方法 Download PDF

Info

Publication number
CN1409428A
CN1409428A CN02143214A CN02143214A CN1409428A CN 1409428 A CN1409428 A CN 1409428A CN 02143214 A CN02143214 A CN 02143214A CN 02143214 A CN02143214 A CN 02143214A CN 1409428 A CN1409428 A CN 1409428A
Authority
CN
China
Prior art keywords
fuel cell
gas
reformer
hydrogen
feeding mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN02143214A
Other languages
English (en)
Inventor
上田哲也
宮内伸二
尾関正高
麻生智倫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001285422A external-priority patent/JP2003100332A/ja
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1409428A publication Critical patent/CN1409428A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

一种燃料电池发电系统,包括:重整炉,通过从原料气体供应装置所提供的原料气体中产生富氢气体;燃料电池,在其中引起在所述重整炉中产生的富氢气体和氧化剂气体彼此反应以产生电功率;惰性气体供应装置,将特定惰性气体至少供应给所述重整炉;以及替代气体供应装置,将除所述特定惰性气体外的替代气体至少提供给所述重整炉,其中当所述燃料电池操作停止时,如果所述燃料电池操作停止是普通的停止,就使用所述替代气体供应装置来排放至少留在所述重整炉中的富氢气体,并且如果所述燃料电池操作停止是紧急停止,就使用所述惰性气体供应装置执行所述排放。

Description

燃料电池发电系统及控制该系统的方法
技术领域
本发明涉及燃料电池发电系统,它通过引起从原料气体产生的富氢气体与氧化剂气体的互相反应产生功率。
背景技术
如在日本专利公开号3-257762中揭示的一种传统的燃料电池发电系统具有如图10所示的结构。图10中所示的燃料电池发电系统具有从原料气体形成富氢气体的重整炉(reformer)41、加热重整炉41的燃烧器42、通过氮供应管44和截流阀45连接到重整炉41上流侧的管线上的氮设备46和燃料电池43,它通过重整气体的供应管47在重整炉的下流侧连接到重整炉,并通过引起空气中的氧和产生的氢进行互相反应来产生功率。在燃料电极43a侧的燃料电池43的下流部分通过氢排放连接管48连接到燃烧器42。
在一般的燃料电池发电系统中,当操作停止时首先停止原料气体的供应,当原料气体供应停止时,富氢气体停留在由重整炉41-重整气体供应管47-燃料电池43-燃料电极43a-氢排放连接管48组成的管道中。若空气通过自由对流从向大气开口的燃烧器42流入富氢气体管道中,就有氢和氧激烈反应的危险。
当操作停止时,如在传统的燃料电池发电系统那样,截流阀45打开,将氮作为惰性气体从氮气设备46通过氮供气管44充入到由重整炉41-重整气体供气管47-燃料电池43的燃料电极43a-氢气排放连接管线48组成的管道中;以便全部排放富氢气体。排放的氢气在燃烧器42中燃烧。
因此,在传统的燃料电池发电系统中,每当操作停止时,进行使用氮的吹洗操作,以防止氢和空气直接互相反应,从而确保安全。
传统的燃料电池发电系统需要配备包括大氮气瓶的氮气设备46,用于在每次操作停顿时完成氮气充气吹洗。例如,如果该发电系统应用于单独固定的家用发电机,电动车辆电源等,就需要相当大的空间用于安装该系统,而且设备的生产成本也相当高。而且,需要周期地更换氮气瓶或充氮气,并要考虑相应的运行费用。
为解决此问题,可以采用一种不用氮气瓶的方法来排放留在管线中的富氢气体。但在这种情况,需要复杂的控制过程,而且在如系统故障这样的紧急情况中难以连续地排放停留在管线中的富氢气体。在这种情况,富氢气体停留在管线中,且不可能保证足够安全等级,避免氢气的氧化反应。
发明内容
考虑传统技术的上述问题,本发明的目标是提供一种燃料电池发电系统,在其中必要的惰性气体供应设备在尺寸等方面最小,而同时保证安全性,避免有关残留富氢气体的危险性,它能安装在较小的空间,并且进行配置,以便减少初始费用和运行费用。
由本发明新发明者作出的发明及本发明牵涉的发明将在下面描述。
本发明的第一发明点是一种燃料电池发电系统,包括:
重整炉,通过从原料气体供应装置所提供的原料气体中产生富氢气体;
燃料电池,在其中引起所述重整炉中产生的富氢气体和氧化剂气体彼此反应以产生电功率;
惰性气体供应装置,将特定惰性气体至少供应给所述重整炉;以及
替代气体供应装置,将除所述特定惰性气体外的替代气体至少提供给所述重整炉,
其中当所述燃料电池操作停止时,如果所述燃料电池操作停止是普通的停止,就使用所述替代气体供应装置来排放至少留在所述重整炉中的富氢气体,并且如果所述燃料电池操作停止是紧急停止,就使用所述惰性气体供应装置执行所述排放。
本发明的第二发明点是一种根据第一发明点的燃料电池发电系统,进一步包括:对所述替代气体供应装置中的异常进行检测的异常检测装置,其中当所述异常检测装置检测到异常时,就进行所述紧急停止,并且使用所述惰性气体供应装置来执行所述排放。
本发明的第三发明点是一种根据第一发明点的燃料电池发电系统,其中所述替代气体供应装置包括将空气至少供应给所述重整炉的空气供应装置,并使用水汽产生器,所述产生器提供水汽用于所述重整炉的重整反应,并且
其中在停止将原料气体提供给所述重整炉之后,引起来自所述水汽产生器的水汽和来自所述空气供应装置的吹洗空气以此顺序流动以执行所述排放。
本发明的第四发明点是一种根据第三发明点的燃料电池发电系统,进一步包括旁通管,从所述重整炉输出的富氢气体通过该旁通管排放,而不用通过所述燃料电池;切换装置,用于从所述旁通管和所述燃料电池中选择其一作为从所述重整炉输出气体的目的地;以及燃料电池原料气体供应装置,用于将所述原料气体供应给所述燃料电池,
其中当执行所述排放时,所述切换装置选择所述旁通管,就执行所述重整炉中的富氢气体排放,并且所述燃料电池原料气体供应装置将所述原料气体供应给所述燃料电池以排放所述燃料电池中的残余氢气。
本发明的第五发明点是一种根据第三发明点的燃料电池发电系统,进一步包括旁通管,从所述重整炉输出的富氢气体通过该旁通管排放,而不用通过所述燃料电池;以及切换装置,用于从所述旁通管和所述燃料电池中选择其一作为从所述重整炉输出气体的目的地,
其中当执行所述排放时,所述切换装置选择所述旁通管,就执行所述重整炉中的富氢气体排放,并且所述燃料电池的燃料电极和氧电极通过电阻器电气相连以引起所述燃料电池中的残留氢气与所述氧化剂气体反应,将其消耗。
本发明的第六发明点是一种根据第三发明点的燃料电池发电系统,进一步包括温度检测器,其中当在所述燃料电池发电系统的启动操作期间和在所述燃料电池开始发电之前停止所述燃料电池发电系统工作时,对所述重整炉的温度进行检测,
如果所述重整炉的温度等于或高于预定温度,所述替代气体供应装置就通过使用所述水汽和所述空气来操作执行所述排放,并且
如果所述重整炉的温度低于预定温度,就仅由所述空气供应装置提供的吹洗空气执行所述排放。
本发明的第七发明点是一种根据第一、四和五任一发明点的燃料电池发电系统,其中在所述燃料电池中反应期间使用的富氢气体的气体排放线和旁通管中的至少一个与用于加热所述重整炉的燃烧器相连,并且在停机时排放的可燃气体在所述燃烧器中燃烧,
本发明的第八发明点是一种根据第一发明点的燃料电池发电系统,进一步包括配置在所述重整炉和所述燃料电池之间的变换器(shifter),并且它将一氧化碳除去,其中含有铂、钌、铑和钯中至少一个的催化剂配置在所述变换器中。
本发明的第九发明点是一种根据第一发明点的燃料电池发电系统,其中在所述紧急停止时,有关紧急停止的信息就传送给维护管理人或负责维护所述燃料电池发电系统的维护公司。
本发明的第十发明点是一种控制燃料电池发电系统的方法,所述系统具有重整炉,通过从原料气体供应装置所提供的原料气体中产生富氢气体;以及燃料电池,在其中引起所述重整炉中产生的富氢气体和氧化剂气体彼此反应以产生电功率,其中所述方法包括:
惰性气体供应步骤,将特定惰性气体至少供应给所述重整炉;以及
替代气体供应步骤,将除所述特定惰性气体外的替代气体至少提供给所述重整炉,
其中当所述燃料电池操作停止时,就使用所述惰性气体供应步骤所提供的惰性气体或所述替代气体供应步骤所提供的替代气体来排放至少留在所述重整炉中的富氢气体。
(发明方面1)
一种燃料电池发电系统包括:
通过重整反应从所述原料中产生富氢气体的重整炉;
将原料供应给重整炉的原料供应装置;
控制重整炉温度的温度控制装置,以便促进重整反应;
将空气提供给重整炉的第一空气供应装置;
检测重整炉温度的温度检测装置;
燃料电池,在其中通过使用富氢气体产生电功率;以及
控制装置,依据温度检测装置检测到的温度来控制重整炉、原料供应装置、第一空气供应装置、温度控制装置以及燃料电池的工作,
其中当停止燃料电池工作时,控制装置执行这样的控制:重整炉的温度等于或低于预定温度,同时至少原料供应装置继续供应原料,
其中当重整炉的温度变成等于预定温度时,并且当重整炉和燃料电池中的富氢气体基本上为提供给重整炉的原料所替代时,控制装置执行这样的控制:将来自第一空气供应装置的空气提供给重整炉和燃料电池,并且
其中预定温度是不能产生富氢气体或所产生的富氢气体的量不足以与空气反应的温度。
(发明方面2)
一个燃料电池发电系统包括:
借助重整反应从原料产生富氢气体的重整炉;
供应原料到重整炉的原料供应装置;
控制重整炉温度以促进重整反应的温度控制装置;
供应空气到重整炉的第一空气供应装置;
检测重整炉的温度的温度检测装置;
借助使用富氢气体产生电功率的燃料电池;和
根据由温度检测装置检测的温度来控制重整炉、原料供应装置、第一空气供应装置、温度控制装置和燃料电池操作的控制装置,
其中控制装置进行这样的控制:使重整炉的温度在燃料电池操作开始以前等于或低于预定温度,并进行这样的控制,以便当在重整炉和燃料电池中用供应到重整炉的原料进行替代完成时将重整炉的温度上升到预定温度之上并开始燃料电池的操作,以及
其中预定温度是这样的温度:在此温度下不会产生富氢气体,或富氢气体产生的量不足以与空气反应。
(发明方面3)
按发明方面1或2的燃料电池发电系统,其中温度控制装置包括燃烧器和将用于燃烧的空气供应到燃烧器的第二空气供应装置,和
其中控制装置将第二空气供应装置供应空气到燃烧器的供应速率设置成特别高的值以达到保持温度等于或低于预定温度的控制。
(发明方面4)
按发明方面3的燃料电池发电系统,其中燃烧器燃烧从燃料电池或重整炉排出的废气。
(发明方面5)
按发明方面1或2的燃料电池发电系统,它还包括第二燃烧器,它燃烧从燃料电池或重炉排出的废气。
(发明方面6)
按发明方面1或2的燃料电池发电系统,其中温度控制装置包括供应水汽到重整炉的水汽供应装置,
其中重整炉通过水汽重整进行重整反应,且
其中控制装置将供应水汽到重整器的水汽供应装置的供应速率设置到特别高的值,以达到维持重整炉的温度等于或低于预定温度的控制。
(发明方面7)
按发明方面1或2的燃料电池发电系统,它还包括:
一氧化碳去掉器,它配置在重整炉和燃料电池之间,并去除包含在由重整器产生的富氢气体中的一氧化碳;和
关闭在一氧化碳去除器和燃料电池之间的管道的管道关闭装置,
其中当燃料电池的操作开始时,控制装置进行这样的控制:使在重整器的温度升到高于预定温度之后,在一氧化碳去除器成为能有效地去除包含在富氢气体中的一氧化碳之前,从一氧化碳去除器输出的富氢气体不引入到燃料电池。
(发明方面8)
按发明方面7的燃料电池发电系统,其中控制装置进行这样的控制,使系统开始操作前原料供应到燃料电池,并进行这样的控制,使在原料包含在燃料电池中之后管道关闭装置关闭管道。
(发明方面9)
按发明方面1或2的燃料电池发电系统,其中原料供应装置和第一空气供应装置具有公共的连接到重整炉的供应管道,和
其中对供应管道切换,使得当该供应管道用作原料供应装置的一部分时原料被供应到重整炉,而当该供应管道用作第一空气供应装置的一部分时,再切换供应管道,空气被供应到重整炉。
(发明方面10)
按发明方面1或2的燃料电池发电系统,它还包括原料供应装置和重整炉之间的脱硫装置。
(发明方面11)
一种控制燃料电池发电系统的方法,该系统包括:通过重整反应从原料产生富氢气体的重整炉;供应原料到重整炉的原料供应装置;控制重整炉温度以促进重整反应的温度控制装置;供应空气到重整炉的第一空气供应装置;检测重整炉的温度的温度检测装置;和其中通过使用富氢气体产生电功率的燃料电池,所述方法包括根据由温度检测装置测得的温度来控制重整炉、原料供应装置、第一空气供应装置、温度控制装置和燃料电池的控制过程。
其中在控制过程中当燃料电池的操作停止时,执行控制,以便重整炉的温度等于或低于预定温度,而至少原料供应装置继续供应原料;和
当重整炉的温度成为等于预定温度,且当在重整炉和燃料电池中的富氢气体基本上由供应到重整炉的原料所替代时,进行控制,使得从第一空气供应装置来的空气供应到重整炉和燃料电池;和
其中预定温度是这样的温度,在此温度不产生富氢气体或富氢气体产生的量不足以与空气反应。
(发明方面12)
一种控制燃料电池发电系统的方法,该系统包括:借助重整反应从原料产生富氢气体的重整炉;供应原料到重整炉的原料供应装置;控制重整炉的温度以促进重整反应的温度控制装置;供应空气到重整炉的第一空气供应装置;检测重整炉温度的温度检测装置;和其中通过使用富氢气体产生电功率的燃料电池,的述方法包括根据由温度检测装置检测的温度来控制重整炉、原料供应装置、第一空气供应装置、温度控制装置和燃料电池的控制过程,
其中在控制过程中,执行控制,使得在燃料电池的操作开始之前,重整炉的温度等于或低于预定温度。
执行控制,使得当在重整炉和燃料电池中用供应到重整炉的原料的替代完成时提高重整器的温度到预定温度之上并开始燃料电池的操作,以及
其中预定温度是这样的温度,在此温度下不产生富氢气体,或富氢气体产生的量不足以与空气反应。
(发明方面13)
按发明方面11或12的控制燃料电池发电系统的方法,其中燃料电池发电系统的温度控制装置包括燃烧器和向燃烧器供应空气进行燃烧的第二空气供应装置,和
其中在控制处理中,第二空气供应装置供应到燃烧器的空气供应速率设成特别高,以达到保持重整炉的温度等于或低于预定温度。
(发明方面14)
按发明方面11或12控制燃料电池发电系统的方法,其中燃料电池发电系统还具有供应水汽到重整器的水汽供应装置,且重整炉借助水汽重整进行重整反应,且
其中在控制过程中,供应水汽到重整器的水汽供应装置的供应速率设成特别高,以达到保持重整炉的温度等于或低于预定温度的控制。
例如,随后提及的实施例7到10对应于这些发明方面。
附图简述
图1是示意图,示出在本发明的实施例1中燃料电池发电系统的结构。
图2是示意图,示出在本发明的实施例2中燃料电池发电系统的结构。
图3是示意图,示出在本发明的实施例3中燃料电池发电系统的结构。
图4是示意图,示出在本发明的实施例4中燃料电池发电系统的结构。
图5是示意图,示出在本发明的实施例7中燃料电池发电系统的结构。
图6是示意图,示出在本发明的实施例8中燃料电池发电系统的结构。
图7是示意图,示出在本发明的实施例9中燃料电池发电系统的结构。
图8是示意图,示出在本发明的实施例10中燃料电池发电系统的结构。
图9是示意图,示出在本发明的实施例11中燃料电池发电系统的结构。
图10是示意图,示出传统的燃料电池发电系统的结构。
图11是示意图,示出在本发明的实施例7中另一个燃料电池发电系统的结构。
符号描述
1、重整炉
2、燃烧器
3、原料气体供应装置
4、水汽产生器
5、空气供应装置
6、惰性气体供应装置
7、变换器
9、燃料电池
9a.燃料电极
9b.氧电极
21.旁路管
22.切换装置23.原料气体旁路管25.电阻32.排放管51.重整炉52.燃烧器53.燃烧器吹风器54.原料气体供应装置54a.原料气体管线55.空气供应装置55a.空气吸气管线56.燃料电池58.排放管61.三向阀门62.第二燃烧器510.水汽产生器511.温度检测器512.控制装置521.气体供应装置521a.入口522.切换设备531.一氧化碳去除器532.旁路管533.切换装置541.停止阀542.脱硫器
具体实施方式将参考附图叙述本发明的实施例。实施例1图1是示出在本发明的实施例1中燃料发电系统的结构的示意图。燃料电池发电系统具有重整炉1,其中装填了引起重整反应的重整催化剂1a。重整炉1配置有燃烧器2作为加热装置。原料气体供应装置3连接到该重整炉1的上流方向入口1b,水汽产生器4、空气供应装置5和惰性气体供应装置6(如按本发明充填代表特定惰性气体的氮气的高压氮气瓶6b,和电操作的氮气阀6b)也以汇流方式与入口1b相连。
用于除去一氧化碳的变换器7连接到重整炉1的下流端口1c。用于一氧化碳变换反应的变换催化剂7a充填在变换器7中。在变换器7的下流方还可提供选择氧化器8,用于减少一氧化碳的浓度。燃料电池9连接到变换器7的下流端口。燃料电池9由燃料电极9a和氧电极9b组成。电输出线9c和9d分别连接到燃料电极9a和氧电极9b。吹风机10连接到燃料电池9的氧电极9b。配置控制单元11用于控制系统的工作。
现叙述实施例1中的操作。当进行发电时,原料气体供应装置3通过重整炉的上流端口1b将如碳氢化合物这样的原料气体供给重整炉1。当原料气体通过重整催化剂1a时,它由燃烧器2加热并借助重整反应转换成富氢气体。通常一氧化碳包含在富氢气体中。若包含一氧化碳的富碳气体供应到燃料电池9,在燃料电极9a中的催化剂就会一氧化碳中毒,导致发电能力的下降。因此,此富氢气体加到变换器7,以便在变换器7中存在变换催化剂7a的情况下进行一氧化碳去除反应,然后再将富氢气供到燃料电池9的燃料电极9a。尤其在固体聚合物燃料电池的情况中,因为在此类燃料电池中的反应温度较低,一氧化碳中毒的影响显著较大。在这种情况,在重整炉1的下流侧可以配置选择氧化器8,用于进一步降低一氧化碳的浓度。
另一方面,用作氧化剂气体的空气从吹风机10送到燃料电池9的氧电极9b。在燃料电池9中,引起送到燃料电极9a的氢和送到氧电极9b的空气中的氧互相反应,从而产生功率。通过电输出线9c和9d实现电源供应。可使用液体燃料碳氢化合物替代原料气体。
接着描述在关闭时的操作。首先,停止从原料气体供应装置3向重整炉1的原料气体供应。在紧急停止情况,停留在重整炉1、变换器7和燃料电池9的燃料电极9a的富氢气体通过使用从惰性气体供应装置6提供的惰性气体予以排放。在正常停止的情况,停留在重整炉1、变换器7和燃料电池9的燃料电极9a中的富氢气体通过不使用惰性气体的装置排放。
在实施例1中,在正常停止时刻不使用惰性气体操作,并且对应于本发明的替代气体供应装置的装置使得在原料气体供应停止以后将水汽从水汽产生器4送到重整炉1以流动,并且还使得从空气供应装置5供应的吹洗空气以该顺序流动,从而排放停留在重整炉1、变换器7和燃料电池9的燃料电极9a中的富氢气体。避免在原料气体停止供应后立即使用空气排放的理由是因为在富氢气体和空气之间的分界面可能形成具有使氢氧互相反应的浓度的氢氧混合物,在通过重整炉1时在高温情况下会在重整炉1中发生激烈的氧化反应,而且,在使用水汽排放富氢气体后再次使用空气进行排放的理由是因为需要避免当水汽滞留或由于冷却变成水滴时形成的不利影响,即水的作用引起管线的锈蚀。
在实施例1中,在异常的情况中,例如,由于系统故障而不能从水汽产生器4提供水汽,或不能从空气供应装置5提供吹洗空气,并且因而难以通过在正常停止时不使用惰性气体进行排放的装置来排放滞留的富氢气体时,就使用高压氮气瓶6a和常开型电操作氮气阀6b(具有在不供电时打开的功能)(作为惰性气体供应设备的例子)作为紧急停止的设备,以便在没有电功率时,从机械上供应惰性气体(氮)。即,在紧急停止时刻,对系统的电源供应停止,且从原料气体供应装置3到重整炉1的原料气体供应随即停止。同时,打开常开电操作氮气阀6b,将高压氮瓶6a中的氮用作惰性气体供应。从而排放滞留在重整炉1、变换器7和燃料电池9的燃料电极9a中的富氢气体。
还可以提供检测上述异常情况的异常检测装置。控制装置11能实现这样的控制,当异常检测装置检测到异常情况时,控制装置11停止对系统供电或停止对操作氮阀6b的供电,使惰性气体供应装置6能自动操作。另外,通过使用外部指示设备,如蜂鸣器或灯等,仅一步操作就能通知用户检测到异常情况的结果,催促用户改变操作方式,使惰性气体供应装置6能操作,异常情况的检测可以这样:监测由水汽产生器4产生的水汽的速率和从空气供应装置5供应的吹洗空气的速率,并检测这些速率超过预先设置的限制之一的异常值。
因为如上所述在正常停止时不使用惰性气体,惰性气体供应装置6的结构或部件能在尺寸、数量等方面最小化,例如通过减少高压氮气瓶6a的尺寸或减少瓶的数量来减少安装空间,同时保证最低要求性能,从而减少生产费用及运行费用。因此系统安排成在紧急停止时刻防止富氢气体滞留在管线中并与氧气剧烈反应,从而确保安全性。
实施例2
图2是示意图,示出在本发明的实施例2中燃料电池发电系统的结构。与实施例1中相同的部件用同样的参照字符标记,对它们的描述不再重复。旁路管线21通过在变换器7和燃料电池9的燃料电极9a之间的切换装置22与主管线分叉。形成本发明的燃料电池原料气体供应装置的一部分的原料气体旁路管线23连接到第二原料气体供应装置24。原料气体旁路管线23在切换装置22和燃料电池9的燃料电极9a之间具有汇流点。电阻25和开关26在电输出线9c和9d之间连接。
下面将描述在实施例2中的关闭操作。使用与实施例1中相同的紧急停止方法。下面将描述在正常停止时不使用惰性气体的方法。首先,停止原料气体到重整炉1的供应,切换装置22将富氢气体管线切换到旁路管线21。从水汽产生器4供应的水汽和从空气供应装置5供应的吹洗空气依次流过重整炉1-变换器7-管线进入到旁路管线21,从而排放残留的富氢气体。
此外,通过下述两个方法之一或两者,排放在燃料电池9的燃料电极中的残留富氢气体。
在第一方法中,当到重整炉1的原料气体供应停止时,且当切换装置22切换富氢气体管线到旁路管线21时,原料气体从形成本发明的燃料电池原料气体供应装置的一部分的第二原料气体供应装置24通过原料气体旁路管线23送到燃料电池9的燃料电极9a,从而排放富氢气体,可以去除第二原料气体供应装置24,而原料气体可以从原料气体供应装置3供应到原料气体旁路管线23。在此情况,本发明的燃料电池的原料气体供应装置由原料气体供应装置3和原料气体旁路管线23组成。
在第二方法中,当停止原料气体向重整炉1的供应且当切换装置22将富氢气体管线切换到旁路管线21时,开关26关闭,以通过电输出线9c和9d以及电阻25与燃料电池9的燃料电极9a和氧电极9b电气连接,引起残留氢气与氧化剂气体反应,从而消耗残留的氢气,若系统安排成只使用第二方法,第二原料气体供应装置24和燃料气体旁路管线23可以去除。
在实施例2中,在燃料电池9中残留的氢气由于下述理由借助除使用水汽吹洗外的其他方法排放。在使用水汽吹洗的情况,即使随后用空气吹洗,也不可能保证当操作重新开始时,燃料电极侧9a的流速设定得足够高,因为水汽一般易于凝结并阻塞在燃料电池9的燃料电极9a中狭窄的流道,导致不能稳定地产生功率。在此实施例中,因为不进行使用水汽吹洗,能避免上述问题。
实施例3
图3是示意图,示出在本发明的实施例3中燃料电池发电系统的结构。与实施例1中相同的部件用同样的参照字符标记,对它们的描述不再重复,温度检测器31附属于重整炉1以检测重整催化剂1a的温度。通常,从如碳氢化合物这样的原料气体产生富氢气体的重整反应是在某个温度或更高温度下进行(在水汽重整系统中,一般在600到700度)。在此实施例中,燃烧器2的加热量和原料气体的流速根据由温度检测器31检测的重整催化剂1a的温度进行控制,因而调节重整催化剂1a的温度,使得实现正确的重整反应。
将描述实施例3中在发电之前起动时刻的操作。当操作开始时,如碳氢化合物这样的原料气体从原料气体供应装置3通过重整炉1的上流端口1b供应到重整炉1。在操作初始阶段,因为重整催化剂1a的温度低,重整反应不能有效地进行。当重整催化剂1a的温度由于燃烧器2的加热而增加到足以促进重整反应的高点时就产生富氢气体。
当产生富氢气体时,首先,送到燃料电池9的燃料电极9a的氢和供应到氧电极9b的空气中的氧互相反应产生电能,通过电输出线9c和9c供电。
在实施例3中,在系统起动后燃料电池9开始产生功率前需要停止系统操作的情况中,当在重整器1上的温度检测器31检测的重整催化剂1a的温度等于或高于足以产生富氢气体的预定温度时,采用与实施例1中不使用惰性气体的相同方法。
另一方面,当由在重整器1的温度检测器31检测的重整催化剂1a的温度低于在产生富氢气体以前的预定温度时,采用如下所述的不使用惯性气体的方法,首先停止到重整炉1的原料气体的供应,空气供应装置5引起吹洗空气流入,以排放滞留在重整炉1、变换器7和燃料电池9的燃料电极9a中的残留气体。
在实施例3中,当重整催化剂1a的温度低于在产生富氢气体以前的预定温度时,不进行使用水汽的吹洗而只进行使用空气的吹洗。在此情况,就防止吹洗空气与高温的富氢气体的接触,从而确保安全性。
实施例4
图4是示意图,示出在本发明的实施例4中燃料电池发电系统的结构。与实施例1和2中相同的部件用同样的参照字符标记,对它们的描述不再重复。在燃料电池9的燃料电极9a和用于加热重整炉1的燃烧器2之间连接排放管32。在供应到燃料电池9的燃料电极9a的富氢气体中大部分氢的分量用于发电反应,但在气体中少量的氢作为氢废气被排放,以在燃烧炉2中有效地用作加热燃料。旁路管线21也有到此排放管32的汇流连接。
在此实施例中,通过排放管32或旁路管线21排放的富氢气体或可燃气体不是排放到系统之外,而是在燃烧器2中完全燃烧,从而保证了较高的安全等级。
实施例5
本发明的实施例5包括在图1到4示出的实施例1到4中的燃料电池发电系统中的任一个,其特征在于充填或包含在变换器7中用于去除在重整炉1和燃料电池9之间产生的一氧化碳的变换催化剂7a至少包含一种贵金属催化剂:铂、钌、铑和钯。
在大多数情况,如铜一锌催化剂这样的基本金属催化剂用于去除一氧化碳的变换反应。但是使用铜锌催化剂作为变换催化剂7a具有一个缺点,如果吹洗空气如实施例1到4中那样在关闭后立即流过变换器7,变换催化剂7a由于氧化而变质,在实施例5中,使用从铂、钌、铑和钯中选择的贵金属催化剂作为变换催化剂7a。因此,即使在关闭后吹洗空气立即流过变换器7,变换催化剂7a也不会因氧化而变质,因此大大改善其耐用性。
实施例6
本发明的实施例6包括图1到4中所示的实施例1到4中的任何一个燃料电池发电系统,其特征在于当控制单元11认识到紧急停止时,它将有关紧急停止的信息通知维修管理人员或维修公司。对此信息的传递是借助由控制装置11控制的通信装置实现的。例如,该通信装置可由电话、因特网终端或无线通信器实现。
在实施例1到4中的“紧急停止”以一个产品整个使用期一次或更低的频率发生。但是,在紧急停止时,常开的电气操作氮气阀6b打开,以从高压氮气瓶6a持续供应氮气。因此,当操作重新开始时需要维修操作,包括复位如故障这样的异常状态,和更换高压氮气瓶,在实施例6中,有关发生紧急停止的信息立即通知维修人员或维修公司,使其能立即采取必要维修步骤,以免对用户造成不便。
虽然已讨论使用水汽和空气作为替代的气体,但按本发明的替代气体可以从除由惰性气体供应装置使用的惰性气体以外的任何类型的气体中选择。例如可以使用原料气体。
在按本发明的系统中由原料气体在重整炉和燃料电池中实现替换的安排在下面将作为本发明的替代气体供应装置的另一个例子来叙述。但是,为叙述方便,下面将叙述一种燃料电池发电系统的结构,它没有用惰性气体替换的机构,且其中只用原料气体实现替换。
实施例7
图5是示意图,示出在本发明的实施例7中的燃料电池发电系统的结构。如图示,重整炉51配置有燃烧器52和用于为燃烧器52的燃烧提供空气的燃烧器吹风器53,它们是能通过原料气体与该气体的重整反应从原料气体产生富氢气体的装置。在重整炉51的上流方向配置有原料气体供应装置54和空气供应装置55。在重整炉51的下流方向配置有燃料电池56。燃料电池56由燃料电极56a和氧电极56b组成。在重整炉51中产生的富氢气体被送到燃料电极56a,而用作氧化剂气体的空气由吹风器装置57送到氧电极56b。引起富氢气体和空气互相反应产生电功率。排放管58连接到燃料电极56a的下流端并连到燃烧器52的燃料供应管线59。
例如,对在此实施例的重整反应,使用了水汽重整系统。水汽产生器510连接到重整器51。提供温度检测器511作为检测在重整炉51中的温度的装置,控制装置512根据温度检测器511检测到的温度控制重整炉51、燃烧器52、燃烧器吹风器53、原料气体供应装置54、吹风器装置57和水汽产生器510的操作。
在重整炉51和燃料电池56的燃料电极56a之间可以提供一氧化碳去除器。
现将描述实施例7中的操作,在执行发电时,原料气体供应装置54在控制装置512的控制下将如碳氢化合物这样的原料气体送到重整炉51。重整炉51通过由燃烧器52加热引起的重整反应产生富氢气体,并将产生的气体送到燃料电池56的燃料电极56a。另一方面,用作氧化剂气体的空气由吹风器装置57送到燃料电池56的氧电极56b。在燃料电池56中,送到燃料电极56a的富氢气体和送到氧电极56b的空气中的氧互相反应,由此产生电功率,虽然大多数氢用于在燃料电池56的燃料电极56a处的发电反应,但反应未用去的氢废气通过排放管58和随后的燃料供管线59送到燃烧器52用作加热重整炉51的燃料。能使用酒精、LPG或液态燃料碳氢化合物替代原料气体。即原料不限于气体形式,也能以液体形式提供。上述情况也能用于下述的每个实施例。
下面讨论在燃料电池56关闭时的操作。首先,在控制装置512的控制下,从原料气体供应装置54提供的原料气体供应继续,而重整炉51的温度降到等于或低于预定温度的点,在此点上不能由重整反应产生富氢气体,或产生某个浓度的一定量富氢气体,使得该气体在暴露在空气中时不会与空气反应。重整炉51保持在此温度中。此时,希望从水汽产生器510继续供应水汽以防止原料气体未反应的部分碳化,以作为碳化物保留。但是,如果原料气体未碳化,水汽的供应可以停止。
预定的温度依据重整炉51的结构,可设成约300度,以限止富氢气体的产生,从而确保足够安全等级。“某浓度的一定量富氢气体,使得该气体在暴露在空气中时不会与空气反应”表示了在重整炉51中整个气体中产生的富氢气体的比例(即富氢气体的量/(供应原料气体的量+富氢气体的量))约为4%。
此时,从原料气体供应装置54供应的原料气体在重整炉51中不转换成富氢气体,且此原料气体未经改变地流出重整炉51,到燃料电池56的燃料电极56a,流过排放管58和燃料供应管线59,并流入燃烧器52以排放富裕的氢。因此,在管线中原料气体替代了富氢气体。在燃烧器52中,由原料气体压入燃烧器52的富氢气体被燃烧并消耗掉。随后,当原料气体排放时,就燃烧并消耗它。
在原料气体开始供应之后,当判断到整个富氢气体在每个部件或每个管线内都由原料气体所替代,或者残留的富氢气体的浓度已下降到使富氢气体在暴露在空气中不会与空气反应,此时就停止原料气体的供应。然后,从空气供应装置55供应的吹洗空气依次流过重整炉51、燃料电池56的燃料电极56a、排放管线58、燃料供应管线59和燃烧器52,从而导致滞留在每个部件和每条管线中的整个原料气体在燃烧器52中燃烧并排放掉。这样,空气就代替了每个部件和每条管线中的气体。避免立刻使用空气进行排放的原因是有可能在富氢气体和空气的交界面存在具有氢和氧能互相反应的浓度的氢氧混合物,从而当通过重整炉51时,在高温情况下发生剧烈的氧化反应。
最后,当确认整个原料气体已用空气替代,燃烧器52和燃烧器吹风器53的操作停止,并停止了整个系统的操作。
断定富氢气体基本上全部被原料气体替代的时间可以是通过从事先测量的富氢气体和原料气体在管线中流动的速率或速度等经计算确定的值,此时间也可以是在管线中借助使用浓度计等装置测量的富氢气体的浓度变得等于或小于预定值的时间。
下面是将重整炉51的温度降低到上述预定温度的第一方法。为供应燃烧空气到燃烧器52的燃烧器吹风器53的空气供应速率设置成特别高,以降低重整器加热的温度。供应空气的速率如下决定。选择等价率λ=A/F(当燃烧器52在燃烧时的燃料(原料气体,富氢气体等)量F和供应空气流动速率A),这样λ=3或更大。当燃烧器52完全燃烧燃料时,λ的值λ=1。
降低重整炉51的温度到上述预定温度的第二方法是这样的方法,其中水以过高的速率供应到用于在水汽重整系统中提供水汽到重整炉51的水汽产生器510,以冷却重整炉51。
作为降低重整炉51的温度的另一种方法,可以想到简单地降低原料气体的流速以降低燃烧器52的发热量的方法。但是此方法也降低了在重整炉51中加热的原料的流速。因此,此方法在某些条件下在降低重整炉51的温度方面不充分有效,不能认为是有利的方法。
在此实施例中,可采用图11中所示的安排。在图11中示出的安排中,在排放管58中提供三向阀61,且在从三向阀61引出的分支的端点处提供第二燃烧器62,从而使得从燃料电池56排放的氢废气在第二燃烧器62中燃烧。因此,可以借助停止燃烧器52来立即冷却重整炉51到预定温度。此时,氢废气能作为废气排放出系统之外,而不是在第二燃烧器中燃烧。第二燃烧炉62可以安置在重整炉51和燃料电池56之间。
因此,在此实施例中,当燃料电池56的操作停止时,通过使用原料气体和空气安全地排放富氢气体。消除了对包括大的氮气瓶的氮气设备的需要,降低了生产费用。在燃料电池发电系统应用于独立的固定式家用发电机、电动车辆电源等的情况,其安装空间也较小。不需要周期地更换氮气瓶或补充氮气,所以运行费用降低了。
实施例8
图6是示意图,示出本发明的实施例8中燃料电池发电系统的结构,与实施例7中相同的部件用同样的参照字符表示,对它们的描述不再重复,气体供应装置521既作为原料气体供应装置54又作为空气供应装置55。在控制装置512的控制下,在入口521a处的切换设备522在该气体供应装置521作为原料气体供应装置54使用时选择原料气体管线54a,而在该气体供应装置521作为空气供应装置55使用时选择空气吸入管线55a。
通过使用气体供应装置521,用于原料气体供应装置54的管道和用于空气供应装置55的管道可以结合起来,使得燃料电池发电系统的制造成本进一步降低。
实施例9
图7是示意图,示出在本发明的实施例9中燃料电池发电系统的结构。与实施例中相同的部件用同样的参照字符表示,对它们的描述不再重复。一氧化碳去除器531是去除包含在由重整炉51产生的富氢气体中的一氧化碳的装置,一氧化碳去除器531放置在重整炉51和燃料电池56的燃料电极56a之间。一氧化碳去除器531一般是借助使用变换反应或可选择的氧化反应有选择地去除富氢气体中的一氧化碳的装置。一氧化碳去除器531用作防止燃料电池56的燃料电极56a中的催化剂会一氧化碳中毒。旁路管线532分叉通过放置在一氧化碳去除器531和燃料电池56的燃料电极56a之间的切换装置533,在来自燃料电池56的排放管线58中具有汇合点,并连接到燃烧器52的燃料供应管线59。
将描述在燃料电池56起动时实施例9的操作。首先,原料气体供应装置54依次供应原料气体到重整炉51、一氧化碳去除器531、燃料电池56的燃料电极56a、排放管58、燃料供应管线59和燃烧器52,引起原料气体在燃烧器52中燃烧,而重整器51的温度在预定时间周期内维持在不会由重整反应产生富氢气体的点。然后,切换装置533从到燃料电池56的燃料电极56a的管线切换到旁路管线532,且重整器51的温度上升到能由重整反应产生富氢气体的温度。然后,当一氧化碳去除器531变得能有效地去除包含在富氢气体中的一氧化碳时,切换装置533从旁路管线532切换到通向燃料电池56的燃料电极56a的管线,开始从燃料电池56发电。未能有效去除一氧化碳的富氢气体经旁路管线532被送到燃烧器52,用于在燃烧器52内燃烧。
在使原料气体流到燃料电池56的燃料电极56a完成残留空气的吹洗之后,即使在提高重整器51的温度引起重整反应以后,还要暂时切换到旁路管线532的理由如下所述。即使在重整器51富氢气体产生温度达到之后,如果在重整器51的下流方的一氧化碳去除器531中的温度不是足够接近于反应温度,大量的一氧化碳就包含在从一氧化碳去除器531输出的富氢气体。若这样的富氢气体输入到燃料电池56,在燃料电极56a上的催化剂会中毒。因此,在一氧化碳去除器531中的温度足够靠近反应温度之前,富氢气体送到旁路管线532,从而防止它输入到燃料电池56,因此防止在燃料电极56a的催化剂中毒。
上述操作开始过程防止了首先送入燃料电池56的燃料电极56a的富氢气体接触空气,因而使操作安全地开始。
如上所述,即使在燃料电池56的起动时间也消除了使用如氮气这样的惰性气体的需要,从而能缩小安装空间,降低生产及运行的费用。
实施例10
图8是示意图,示出在本发明的实施例10中燃料电池发电系统的结构。与实施例7中相同的部件用同样的参照字符表示,对它们的描述不再重复。在从燃料电池56引出的排放管58中提供了停止阀541。
将描述实施例10中的操作,首先,在起动燃料电池之前,原料气体先放在切换装置533和停止阀541之间的燃料电池56的燃料电极56a之中,在燃料电池56起动时,原料气体供应装置54依次供应原料气体到原料气体重整器51、一氧化碳去除器531、旁路管线532、燃料供应管线59和燃烧器52,以将重整器51的温度增加到通过重整反应产生富氢气体的点。然后,当一氧化碳去除器531变得能够有效地去除包含在富氢气体中的一氧化碳时,停止阀41打开,切换装置533从旁路管线532切换到通向燃料电池56的燃料电极56a的管线,并开始从燃料电池56发电。
上述操作起动过程防止首先供应到燃料电池56的燃料电极56a的富氢气体接触空气,因而使操作能安全地起动。
在燃料电池56起动之前,原料气体先前包含(enclose)在切换装置533和停止阀541之间的燃料电池56的燃料电极56a中的方法实例在下面描述。在已用实施例7中描述的关闭方法做出上述的关闭的情况中,当原料气体最终通过燃料电池56的燃料电极56a时,切换装置533切换到用于建立重整器51和燃料电池56之间传送的位置。在燃料电池56被原料气体充满以后,停止阀541关闭,使原料气体包含在燃料电池56的燃料电极中。以此方式很容易实现事先包含原料气体的方法。
如上所述,即使在燃料电池56的起动时刻也消除了使用如氮气那样的惰性气体的需要,能缩小安装空间,降低生产及运行的费用。
实施例11
图9是示意图,示出在本发明的实施例11中燃料电池发电系统的结构。与实施例7和10相同的部件用同样的参照字符表示,对它们的描述不再重复。原料气体供应装置54配置有脱硫器542,它去除原料气体中的硫成分(例如有气味的分量),以防止在重整器51、一氧化碳去除器531和燃料电池56的燃料电极56a中催化剂由于硫成分中毒。在实施例7和10中,此脱硫器542能与任何原料气体供应装置54相结合,有效地使用。
在实施例7到10中的起动和关闭方法中,原料气体直接送到一氧化碳去除器531或燃料电池56的燃料电极56a。因此,如果原料气体包含硫成分(例如:有气味的成分),此实施例的脱硫器542呈现催化剂中毒以维持希望的性能。
下面将描述本发明的发明人所做出的发明和有关本发明的内容。
在本发明的实施例7中,燃烧器52是上述发明中温度控制装置的例子,燃烧器吹风器53是上述发明第二空气供应装置的例子,而空气供应装置55是上述发明的第一空气供应装置的例子。而且,温度传感器511对应于上述发明中的温度检测装置。
在本发明的实施例8中,气体供应装置521、切换设备522和入口521a是上述发明的供应管道的例子。
在本发明的实施例9中,切换装置533和旁路管线532是上述发明的管道关闭装置的例子。但是,上述发明的管道关闭装置的安排不限于此例。此安排可以另选成去掉旁路管线532,切换装置533切换成使得未能有效地去掉一氧化碳的富氢气体向外排放或暂时积累。简而言之,只要它能关闭在一氧化碳去除器531和燃料电池56之间的富氢气体管道,以防止在一氧化碳去除器531尚未能有效地去掉包含在富氢气体中的一氧化碳之前就将从一氧化碳去除器531输出的富氢气体引入到燃料电池56,那么,任何装置都能满足要求。
在本发明的实施例7到11的每个实施例中的燃料电池发电系统的结构和操作已作为上述发明的例子予以说明。然而,上述发明可以作为控制燃料电池发电系统的方法,即控制重整炉51、原料气体供应装置54、空气供应装置55、水汽产生器510、燃烧器52、燃烧器吹风器53和温度检测器511的方法。若重整炉51不是进行水汽重整的重整器类型,水汽产生器510可以去掉。
虽然已提到在上述发明的温度控制装置和燃烧器52、燃烧器吹风器53和水汽产生器510之间的对应关系,温度控制装置可以借助使用电热器、冷却设备等实现。在这种情况,用于加热重整器的排放气体供应管线可以从燃料电池56或一氧化碳去除器531中除去。
本发明的优点
按照本发明可以降低燃料电池发电系统的生产费用和运行费用。

Claims (10)

1、一种燃料电池发电系统,其特征在于,包括:
重整炉,通过从原料气体供应装置所提供的原料气体中产生富氢气体;
燃料电池,在其中引起在所述重整炉中产生的富氢气体和氧化剂气体彼此反应以产生电功率;
惰性气体供应装置,将特定惰性气体至少供应给所述重整炉;以及
替代气体供应装置,将除所述特定惰性气体外的替代气体至少提供给所述重整炉,
其中当所述燃料电池操作停止时,如果所述燃料电池操作停止是普通的停止,就使用所述替代气体供应装置来排放至少留在所述重整炉中的富氢气体,并且如果所述燃料电池操作停止是紧急停止,就使用所述惰性气体供应装置执行所述排放。
2、如权利要求1所述的燃料电池发电系统,其特征在于,进一步包括:对所述替代气体供应装置中的异常进行检测的异常检测装置,其中当所述异常检测装置检测到异常时,就进行所述紧急停止,并且使用所述惰性气体供应装置来执行所述排放。
3、如权利要求1所述的燃料电池发电系统,其特征在于,所述替代气体供应装置包括将空气至少供应给所述重整炉的空气供应装置,并使用水汽产生器,所述产生器提供水汽用于所述重整炉的重整反应,并且
其中在停止将原料气体提供给所述重整炉之后,引起来自所述水汽产生器的水汽和来自所述空气供应装置的吹洗空气以此顺序流动以执行所述排放。
4、如权利要求3所述的燃料电池发电系统,其特征在于,进一步包括旁通管,从所述重整炉输出的富氢气体通过该旁通管排放,而不用通过所述燃料电池;切换装置,用于从所述旁通管和所述燃料电池中选择其一作为从所述重整炉输出气体的目的地;以及燃料电池原料气体供应装置,用于将所述原料气体直接供应给所述燃料电池,
其中当执行所述排放时,所述切换装置选择所述旁通管,就执行所述重整炉中的富氢气体排放,并且所述燃料电池原料气体供应装置将所述原料气体供应给所述燃料电池以排放所述燃料电池中的残余氢气。
5、如权利要求3所述的燃料电池发电系统,其特征在于,进一步包括旁通管,从所述重整炉输出的富氢气体通过该旁通管排放,而不用通过所述燃料电池;以及切换装置,用于从所述旁通管和所述燃料电池中选择其一作为从所述重整炉输出气体的目的地,
其中当执行所述排放时,所述切换装置选择所述旁通管,就执行所述重整炉中的富氢气体排放,并且所述燃料电池的燃料电极和氧电极通过电阻器电气相连以引起所述燃料电池中的残留氢气与所述氧化剂气体反应,将其消耗。
6、如权利要求3所述的燃料电池发电系统,其特征在于,进一步包括温度检测器,其中当在所述燃料电池发电系统的启动操作期间和在所述燃料电池开始发电之前停止所述燃料电池发电系统工作时,对所述重整炉的温度进行检测,
如果所述重整炉的温度等于或高于预定温度,所述替代气体供应装置就通过使用所述水汽和所述空气来操作执行所述排放,并且
如果所述重整炉的温度低于预定温度,就仅由所述空气供应装置提供的吹洗空气执行所述排放。
7、如权利要求1、4和5任一所述的燃料电池发电系统,其特征在于,在所述燃料电池中反应期间使用的富氢气体的气体排放线和旁通管中的至少一个与用于加热所述重整炉的燃烧器相连,并且在停机时排放的可燃气体在所述燃烧器中燃烧,
8、如权利要求1所述的燃料电池发电系统,其特征在于,进一步包括配置在所述重整炉和所述燃料电池之间的变换器,并且它将一氧化碳除去,其中含有铂、钌、铑和钯中至少一个的催化剂配置在所述变换器中。
9、如权利要求1所述的燃料电池发电系统,其特征在于,在所述紧急停止时,有关紧急停止的信息就传送给维护管理人或负责维护所述燃料电池发电系统的维护公司。
10、一种控制燃料电池发电系统的方法,所述系统具有重整炉,通过从原料气体供应装置所提供的原料气体中产生富氢气体;以及燃料电池,在其中引起所述重整炉中产生的富氢气体和氧化剂气体彼此反应以产生电功率,其特征在于,所述方法包括:
惰性气体供应步骤,将特定惰性气体至少供应给所述重整炉;以及
替代气体供应步骤,将除所述特定惰性气体外的替代气体至少提供给所述重整炉,
其中当所述燃料电池操作停止时,就使用所述惰性气体供应步骤所提供的惰性气体或所述替代气体供应步骤所提供的替代气体来排放至少留在所述重整炉中的富氢气体。
CN02143214A 2001-09-19 2002-09-19 燃料电池发电系统及控制该系统的方法 Pending CN1409428A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-285422 2001-09-19
JP2001285422A JP2003100332A (ja) 2001-09-19 2001-09-19 燃料電池発電システム
JP2002031494 2002-02-07
JP2002-031494 2002-02-07

Publications (1)

Publication Number Publication Date
CN1409428A true CN1409428A (zh) 2003-04-09

Family

ID=26622527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02143214A Pending CN1409428A (zh) 2001-09-19 2002-09-19 燃料电池发电系统及控制该系统的方法

Country Status (4)

Country Link
US (1) US7033687B2 (zh)
EP (1) EP1296397A3 (zh)
KR (1) KR20030025209A (zh)
CN (1) CN1409428A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006604B (zh) * 2005-02-18 2010-09-15 松下电器产业株式会社 燃料电池系统及其运行方法
CN102138242A (zh) * 2009-05-12 2011-07-27 松下电器产业株式会社 燃料电池系统
CN102216206A (zh) * 2008-11-20 2011-10-12 松下电器产业株式会社 氢生成装置以及具备其的燃料电池系统
CN101088187B (zh) * 2004-10-26 2011-12-14 松下电器产业株式会社 燃料电池发电装置
CN102725900A (zh) * 2010-01-28 2012-10-10 依莱克托电能系统股份有限公司 用于从氢气产生电功率以及从电功率产生氢气的系统的运行的管理
CN103259030A (zh) * 2012-02-15 2013-08-21 通用汽车环球科技运作有限责任公司 用于简化的燃料电池系统的操作方法
US8916304B2 (en) 2008-11-20 2014-12-23 Panasonic Corporation Hydrogen generator and fuel cell system including same
US9083014B2 (en) 2008-11-20 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system for performing normal and abnormal shut-down processes

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192669B2 (en) * 2001-11-30 2007-03-20 Matsushita Electric Industrial Co., Ltd. System and method of fuel cell power generation
US20060166056A1 (en) * 2003-08-07 2006-07-27 Akinari Nakamura Fuel cell power generation system
DE10348637A1 (de) * 2003-10-15 2005-05-25 J. Eberspächer GmbH & Co. KG Verdampferanordnung zur Erzeugung eines in einem Reformer zur Wasserstoffgewinnung zersetzbaren Kohlenwasserstoff/Luft- oder/und Wasserdampf-Gemisches und Verfahren zum Betreiben einer derartigen Verdampferanordnung
JP5065678B2 (ja) * 2004-10-15 2012-11-07 パナソニック株式会社 燃料電池システム及びその運転方法
KR101126200B1 (ko) * 2005-01-10 2012-03-23 삼성에스디아이 주식회사 연료 전지 시스템 및 일산화탄소 정화기
JP4593311B2 (ja) * 2005-02-24 2010-12-08 三菱電機株式会社 燃料電池発電システム及びその停止方法
FR2884357A1 (fr) * 2005-04-11 2006-10-13 Renault Sas Dispositif de production d'electricite embarque a bord d'un vehicule automobile incluant un reformeur de carburant
US8071243B2 (en) * 2005-12-02 2011-12-06 Panasonic Corporation Fuel cell system
KR100737580B1 (ko) * 2006-07-05 2007-07-10 현대자동차주식회사 연료전지의 장기 보관 장치
KR100759664B1 (ko) * 2006-09-12 2007-09-17 삼성에스디아이 주식회사 퍼징 장치가 구비된 연료전지 시스템 및 그 가동 정지 방법
JP5406426B2 (ja) * 2006-09-28 2014-02-05 アイシン精機株式会社 燃料電池システム
KR100959118B1 (ko) * 2007-10-30 2010-05-25 삼성에스디아이 주식회사 연료 전지 시스템
US8697451B2 (en) * 2010-11-22 2014-04-15 Fuelcell Energy, Inc. Sulfur breakthrough detection assembly for use in a fuel utilization system and sulfur breakthrough detection method
KR101225994B1 (ko) * 2010-12-30 2013-01-24 삼성중공업 주식회사 연료전지시스템 및 이를 구비한 선박
TWI450438B (zh) * 2011-07-29 2014-08-21 Ind Tech Res Inst 液態燃料電池系統關機及自維護運作程序
KR101411544B1 (ko) * 2012-08-31 2014-06-25 삼성중공업 주식회사 연료전지 시스템의 비상 정지 장치 및 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212774A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The In-system inert gas substitution method in fuel battery power generating system
JP2511866B2 (ja) 1986-02-07 1996-07-03 株式会社日立製作所 燃料電池発電システム及びその起動方法
JP2689638B2 (ja) 1988-10-07 1997-12-10 富士電機株式会社 改質触媒温度制御方法および装置
JPH02234360A (ja) * 1989-03-07 1990-09-17 Fuji Electric Co Ltd 燃料電池発電システム
US4965143A (en) * 1989-11-09 1990-10-23 Yamaha Hatsudoki Kabushiki Kaisha Shutdown method for fuel cell system
JPH03163762A (ja) * 1989-11-20 1991-07-15 Fuji Electric Co Ltd 燃料電池の停止方法
JP2972261B2 (ja) 1990-03-07 1999-11-08 大阪瓦斯株式会社 燃料電池発電システムの窒素パージ方法及び昇温方法
US5178969A (en) * 1990-07-06 1993-01-12 Kabushiki Kaisha Toshiba Fuel cell powerplant system
JPH0471169A (ja) 1990-07-10 1992-03-05 Fuji Electric Co Ltd 燃料電池発電システムの起動方法
JP3360318B2 (ja) * 1992-08-20 2002-12-24 富士電機株式会社 燃料電池発電装置
JP2001189165A (ja) * 2000-01-05 2001-07-10 Daikin Ind Ltd 燃料電池システム、該燃料電池システムの停止方法及び立ち上げ方法
JP3112168B1 (ja) * 2000-01-06 2000-11-27 富士電機株式会社 燃料電池自動車の安全装置
JP3405454B2 (ja) 2000-06-12 2003-05-12 松下電器産業株式会社 水素発生装置の起動方法
JP2002179401A (ja) 2000-12-11 2002-06-26 Toyota Motor Corp 水素ガス生成システムの運転停止方法
US6821494B2 (en) * 2001-07-31 2004-11-23 Utc Fuel Cells, Llc Oxygen-assisted water gas shift reactor having a supported catalyst, and method for its use

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088187B (zh) * 2004-10-26 2011-12-14 松下电器产业株式会社 燃料电池发电装置
CN101006604B (zh) * 2005-02-18 2010-09-15 松下电器产业株式会社 燃料电池系统及其运行方法
US8747498B2 (en) 2008-11-20 2014-06-10 Panasonic Corporation Hydrogen generator and fuel cell system comprising the same
CN102216206A (zh) * 2008-11-20 2011-10-12 松下电器产业株式会社 氢生成装置以及具备其的燃料电池系统
CN103972555A (zh) * 2008-11-20 2014-08-06 松下电器产业株式会社 氢生成装置以及具备其的燃料电池系统
US8916304B2 (en) 2008-11-20 2014-12-23 Panasonic Corporation Hydrogen generator and fuel cell system including same
US9083014B2 (en) 2008-11-20 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system for performing normal and abnormal shut-down processes
CN102138242A (zh) * 2009-05-12 2011-07-27 松下电器产业株式会社 燃料电池系统
US8980488B2 (en) 2009-05-12 2015-03-17 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
CN102725900A (zh) * 2010-01-28 2012-10-10 依莱克托电能系统股份有限公司 用于从氢气产生电功率以及从电功率产生氢气的系统的运行的管理
CN102725900B (zh) * 2010-01-28 2016-02-17 依莱克托电能系统股份有限公司 用于从氢气产生电功率以及从电功率产生氢气的系统的运行的管理
CN103259030A (zh) * 2012-02-15 2013-08-21 通用汽车环球科技运作有限责任公司 用于简化的燃料电池系统的操作方法
CN103259030B (zh) * 2012-02-15 2015-11-25 通用汽车环球科技运作有限责任公司 用于简化的燃料电池系统的操作方法

Also Published As

Publication number Publication date
US7033687B2 (en) 2006-04-25
EP1296397A3 (en) 2004-03-24
US20030068540A1 (en) 2003-04-10
KR20030025209A (ko) 2003-03-28
EP1296397A2 (en) 2003-03-26

Similar Documents

Publication Publication Date Title
CN1409428A (zh) 燃料电池发电系统及控制该系统的方法
CN1178322C (zh) 发电装置及其运作方法
CN1298614C (zh) 燃料重整系统和具有该燃料重整系统的燃料电池系统
CN100337356C (zh) 燃料电池系统
CN101057358A (zh) 燃料电池系统
CN1284260C (zh) 燃料电池电源装置预热
CN1645660A (zh) 氢制造装置及燃料电池发电装置
CN1205115C (zh) 氢精制装置
CN100336259C (zh) 燃料电池发电系统及其操作方法
CN1039002A (zh) 制造氨的方法
CN1692518A (zh) 燃料电池系统及其相关方法
CN1679198A (zh) 燃料电池发电系统
CN1257834C (zh) 氢气发生装置
CN1496589A (zh) 用作燃料电池、重整炉或热电设备的多功能能量系统
CN1643724A (zh) 燃料电池系统及其控制方法
CN1437281A (zh) 燃料电池系统以及操作燃料电池系统的方法
CN1610792A (zh) 燃气发动机
CN1636860A (zh) 氢生成装置和使用该装置的燃料电池系统
CN1645659A (zh) 氢发生装置及其运行方法和燃料电池发电系统
US7704616B2 (en) Method for purging fuel cell system
CN1922752A (zh) 燃料电池系统和对其进行控制的方法
CN1717828A (zh) 电源系统及其异常检测方法
CN1514506A (zh) 燃料电池发电系统及其燃料电池发电方法
CN1297030C (zh) 燃料电池发电装置
CN1839504A (zh) 燃料电池发电系统及其转化器的劣化度检测方法以及燃料电池发电方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication