CN1396659A - 包括纳米管电子源的数据存储装置 - Google Patents

包括纳米管电子源的数据存储装置 Download PDF

Info

Publication number
CN1396659A
CN1396659A CN02141131A CN02141131A CN1396659A CN 1396659 A CN1396659 A CN 1396659A CN 02141131 A CN02141131 A CN 02141131A CN 02141131 A CN02141131 A CN 02141131A CN 1396659 A CN1396659 A CN 1396659A
Authority
CN
China
Prior art keywords
nanotube
storage device
data storage
electron source
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN02141131A
Other languages
English (en)
Inventor
J·H·尼克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Publication of CN1396659A publication Critical patent/CN1396659A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1409Heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/81Array wherein the array conductors, e.g. word lines, bit lines, are made of nanowires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/943Information storage or retrieval using nanostructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Semiconductor Memories (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

数据存储装置(110)包括相变存储层(112)和作为电子源的纳米管(212)的阵列(114)。

Description

包括纳米管电子源的数据存储装置
技术领域
本发明总的涉及电子源。本发明还涉及数据存储装置。
背景技术
几十年来研究人员一直致力于数据存储装置如磁硬驱动器、光驱动器和半导体随机存取存储器的存储密度提高和存储成本降低。然而,由于传统技术似乎是正接近对存储密度的基本限制,要增加存储密度变得更加困难。例如,基于传统磁记录的信息存储正很快接近基本物理限制如超顺磁性限制,在这种限制之下磁位在室温时是不稳定的。
不用面对这些基本限制的存储装置正被研究。例如Gibson等在美国专利5,557,596中所描述的就是这样一种信息存储装置。该装置包括具有电子发射表面的多电子源,该电子发射表面最接近存储介质。在写操作期间,电子源用相对高强度的电子束轰击存储介质。在读操作期间,电子源用相对低强度的电子束轰击存储介质。
这种装置中的存储位的尺寸可以通过降低电子束的直径而得到减小。存储位的尺寸的减小增加存储密度和容量,并且降低存储成本。
在这种装置中“Spindt”发射器可用来产生聚焦的电子束。Spindt发射器为圆锥形状,并在其锥尖发射电子束。该锥尖加工得尽可能尖以减小工作电压并获得小的电子束直径。
然而,Spindt发射器引起一些问题。一个问题是Spindt发射器对冲击敏感。Spindt发射器的尖端离存储介质仅仅只有几个纳米。如果一个尖端同存储介质接触,它将被损坏。另一个问题是Spindt发射器发射的电子束的方向性。有时电子束可以从圆锥的侧面而不是从尖端离开的。还有一个问题是由于比功函数大的能量引起的材料从尖端的损失。材料的损失会降低尖端的有效性。
发明内容
按照本发明的一个方面,数据存储装置包括作为电子源的纳米管。本发明的其它方面和优点将通过接下来的祥述,连同附图,举例阐述本发明的原理而变得清晰。
附图说明
图1是数据存储装置的图解。
图2和图3是存储装置的纳米管阵列的图解。
具体实施方式
如用于说明的附图所示,本发明体现在超高密度数据存储装置中。该数据存储装置包括存储介质和作为电子源的纳米管阵列。比Spindt发射器更稳定,如果该纳米管同存储介质接触它们不会被损坏。此外,该纳米管比Spindt发射器有更高的电子束方向性。更高的方向性将导致电子束具有增加的聚焦和准确性,这使位尺寸得以减小。位尺寸减小将增加存储密度和降低存储成本。更高的方向性也允许纳米管的尖端离存储介质的距离更大。纳米管同Spindt发射器比较有更低的材料转移率。更低的转移率增加了电子源的有效寿命。
参考图1,数据存储装置110的存储介质112包括一个存储层。存储层可以用相变材料制造,如基于硫族化合物的相变材料。通过施加具有适当功率幅度与时间关系的聚焦辐射,存储层的局部区域能在至少两种状态之间实现可逆性转变。例如,局部区域可以在非晶态和晶态之间转变,或者它们可以在不同的晶态之间转变。通过用足以融化相变材料的高强度能量束加热一个区域,然后迅速减少能量束强度急冷该区域,该区域的状态可以从晶态转变成非晶态。急冷相变材料致使它在没有时间成核和生长晶粒的情况下迅速冷却到非晶态。通过用能量束在足以允许晶粒成核和生长的温度加热相变材料,一个区域的状态可以从非晶态转变成晶态。不同的状态代表不同的逻辑值。
存储装置110还包括用作电子源的纳米管(例如:碳纳米管,氮化硼纳米管)阵列114。每个纳米管发射具有适当功率幅度与时间关系的电子束使局部存储区域在非晶态和晶态之间或者在不同的晶态之间转变。纳米管的尖端离存储层最近。电子光学可用来将电子束聚焦到存储介质112上。
纳米管电子源阵列114可以相对于存储介质112安置。因此,每个纳米管尖端可以安置在局部存储区域上方。在替换方案中,可以使用微动器(micromover)(未示出)在读写操作期间沿着存储层表面扫描纳米管阵列114。示范性微动器在受让人的美国专利5,986,381中有描述。
纳米管的稳定性和高方向性允许纳米管尖端和相变层表面之间的距离、相变层表面的平直度等有宽松的公差。
现在参考图2,它示出了纳米管212的阵列114。纳米管212可以是单壁或双壁的,并且它们由其直径、长度、传导率和空间螺旋特征或扭曲状态决定。纳米管212优选是细长的,因为更高的长度直径比提供更好的方向性。纳米管212可以有大于10∶1的长度直径比。例如,碳纳米管是长和薄的碳管的与呋(fullenrene)有关的结构。该碳纳米管紧密地键合,导致存储介质112的相变层具有低的材料转移率。
纳米管212在衬底214上形成。光刻技术或者其它的掩模技术可被用来规定纳米管212在衬底214生长的地方。虽然只有10个纳米管212的单列显示在图2中,但是阵列114可以有任意多的行和列。阵列114可以包括成百或成千的纳米管212。纳米管212之间的间距部分取决于是否使用微动器从存储层表面的一边到另一边扫描阵列114。
在硅衬底上制造碳纳米管114的非光刻技术在Nilsson等的“扫描已形成图案的碳纳米管的场致发射(Scanning field emission frompatterned carbon nanotube films)”,Applied Physics Letters,2000年4月,第76卷,第15期,中有描述。催化剂墨汁在硅衬底的同质氧化物上“印制”成图案,碳纳米管得以生长。
此外参考图3,用于寻址纳米管212的字和位线216和218也形成在衬底214上。纳米管212在读写操作期间可以同时地或者用多路复用的方式被寻址。为在一读或写操作期间选择一纳米管产生电子束,在所选择的纳米管212和存储介质112之间产生电压。字和位线216和218被用来将电压施加到所选择的纳米管212上。参考电位被施加到存储介质112,致使被选择的纳米管212变成阴极,存储介质112变成阳极。纳米管212的传导性可被改变并且电位能够变化,以获得具有所期望的振幅与时间关系的电子束。纳米管212不需要超高真空产生电子束。
除了使用纳米管而非Spindt发射器以外,读写操作可以如Gibson等在美国专利5,557,596中所描述的那样执行。
纳米管电子源不限于用在数据存储装置中。例如,在平版印刷应用中纳米管电子源可以用作电子发射器。
尽管本发明的一个具体实施例已得到描述和阐释,但本发明并不局限于所描述和阐释部分的具体形式或布置。而且,本发明将根据下面的权利要求进行解释。

Claims (8)

1.数据存储装置(110),包括作为电子源的纳米管(212)的阵列(114)。
2.权利要求1的装置,其中该纳米管(212)是基于碳的。
3.权利要求1的装置,其中该纳米管(212)是基于氮化硼的。
4.权利要求1的装置,进一步包括最接近电子源尖端的相变存储层(112)。
5.权利要求1的装置,其中每个纳米管(212)是细长的。
6.权利要求5的装置,其中该纳米管(212)具有大于10∶1的长度直径比。
7.权利要求1的装置,进一步包括用于寻址纳米管(212)的字和位线(216,218)。
8.权利要求1的装置,进一步包括用于定位阵列的微动器。
CN02141131A 2001-07-06 2002-07-05 包括纳米管电子源的数据存储装置 Pending CN1396659A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/900662 2001-07-06
US09/900,662 US6928042B2 (en) 2001-07-06 2001-07-06 Data storage device including nanotube electron sources

Publications (1)

Publication Number Publication Date
CN1396659A true CN1396659A (zh) 2003-02-12

Family

ID=25412893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02141131A Pending CN1396659A (zh) 2001-07-06 2002-07-05 包括纳米管电子源的数据存储装置

Country Status (4)

Country Link
US (2) US6928042B2 (zh)
EP (1) EP1274092A3 (zh)
JP (1) JP2003094400A (zh)
CN (1) CN1396659A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300839C (zh) * 2004-08-06 2007-02-14 中国科学院上海微系统与信息技术研究所 一种纳电子相变存储器的制备方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260051B1 (en) * 1998-12-18 2007-08-21 Nanochip, Inc. Molecular memory medium and molecular memory integrated circuit
US20020138301A1 (en) * 2001-03-22 2002-09-26 Thanos Karras Integration of a portal into an application service provider data archive and/or web based viewer
US6982898B2 (en) 2002-10-15 2006-01-03 Nanochip, Inc. Molecular memory integrated circuit utilizing non-vibrating cantilevers
US7233517B2 (en) * 2002-10-15 2007-06-19 Nanochip, Inc. Atomic probes and media for high density data storage
WO2004075171A2 (en) * 2003-02-14 2004-09-02 Oakley William S Data recording using carbon nanotube electron sources
US8305861B2 (en) * 2003-07-03 2012-11-06 Oakley William S Adaptive read and read-after-write for carbon nanotube recorders
WO2005013033A2 (en) * 2003-07-03 2005-02-10 William Oakley Array of cnt heads
FR2862156B1 (fr) * 2003-11-06 2007-01-05 Commissariat Energie Atomique Dispositif d'enregistrement de donnees a micro-pointes conductrices et procede de fabrication d'un tel dispositif
US20050243660A1 (en) * 2004-04-16 2005-11-03 Rust Thomas F Methods for erasing bit cells in a high density data storage device
US7620632B2 (en) * 2004-06-30 2009-11-17 Skyler Technology, Inc. Method and/or system for performing tree matching
WO2006034398A2 (en) * 2004-09-21 2006-03-30 The Johns Hopkins University Controlled transport and assembly of nanostructures
WO2006035325A1 (en) 2004-09-27 2006-04-06 Koninklijke Philips Electronics N.V. Electric device with nanowires comprising a phase change material
US7190539B1 (en) 2004-12-29 2007-03-13 Storage Technology Corporation Magnetic recorder having carbon nanotubes embedded in anodic alumina for emitting electron beams to perform heat-assisted magnetic recording
US7463573B2 (en) * 2005-06-24 2008-12-09 Nanochip, Inc. Patterned media for a high density data storage device
US20070041237A1 (en) * 2005-07-08 2007-02-22 Nanochip, Inc. Media for writing highly resolved domains
US7367119B2 (en) * 2005-06-24 2008-05-06 Nanochip, Inc. Method for forming a reinforced tip for a probe storage device
US20060291271A1 (en) * 2005-06-24 2006-12-28 Nanochip, Inc. High density data storage devices having servo indicia formed in a patterned media
US20070008865A1 (en) * 2005-07-08 2007-01-11 Nanochip, Inc. High density data storage devices with polarity-dependent memory switching media
US7309630B2 (en) * 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US20070008867A1 (en) * 2005-07-08 2007-01-11 Nanochip, Inc. High density data storage devices with a lubricant layer comprised of a field of polymer chains
US20070008866A1 (en) * 2005-07-08 2007-01-11 Nanochip, Inc. Methods for writing and reading in a polarity-dependent memory switch media
US7420199B2 (en) * 2005-07-14 2008-09-02 Infineon Technologies Ag Resistivity changing memory cell having nanowire electrode
US8525143B2 (en) 2005-09-06 2013-09-03 Nantero Inc. Method and system of using nanotube fabrics as joule heating elements for memories and other applications
US20080001075A1 (en) * 2006-06-15 2008-01-03 Nanochip, Inc. Memory stage for a probe storage device
US20080175033A1 (en) * 2007-01-19 2008-07-24 Nanochip, Inc. Method and system for improving domain stability in a ferroelectric media
US20080233672A1 (en) * 2007-03-20 2008-09-25 Nanochip, Inc. Method of integrating mems structures and cmos structures using oxide fusion bonding
CN101504948B (zh) * 2008-02-05 2011-04-06 财团法人工业技术研究院 中空尖笔状结构与包含其的装置及其制造方法
US8797715B2 (en) * 2011-03-23 2014-08-05 Empire Technology Development Llc Capacitor with parallel nanotubes
US10225082B2 (en) 2016-07-26 2019-03-05 International Business Machines Corporation Carbon nanotube physical entropy source

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4409850C2 (de) * 1994-03-22 1999-05-12 Fraunhofer Ges Forschung Informationsspeichereinheit
US5557596A (en) 1995-03-20 1996-09-17 Gibson; Gary Ultra-high density storage device
KR100365444B1 (ko) 1996-09-18 2004-01-24 가부시끼가이샤 도시바 진공마이크로장치와이를이용한화상표시장치
US6498349B1 (en) * 1997-02-05 2002-12-24 Ut-Battelle Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy
US5986381A (en) 1997-03-14 1999-11-16 Hewlett-Packard Company Electrostatic actuator with spatially alternating voltage patterns
JPH11273551A (ja) * 1998-03-23 1999-10-08 Nec Corp 窒化ホウ素を用いた電子放出素子及びその製造方法
JP3403635B2 (ja) 1998-03-26 2003-05-06 富士通株式会社 表示装置および該表示装置の駆動方法
JP3902883B2 (ja) 1998-03-27 2007-04-11 キヤノン株式会社 ナノ構造体及びその製造方法
US6518570B1 (en) * 1998-04-03 2003-02-11 Brookhaven Science Associates Sensing mode atomic force microscope
KR100398276B1 (ko) * 1998-12-03 2003-09-19 다이켄카가쿠 코교 가부시키가이샤 전자장치의 표면신호조작용 프로우브 및 그 제조방법
KR20010011136A (ko) * 1999-07-26 2001-02-15 정선종 나노구조를 에미터로 사용한 삼극형 전계 방출 에미터의 구조및 그 제조방법
US6519221B1 (en) 1999-11-12 2003-02-11 Massachusetts Institute Of Technology High-density data storage using atomic force microscope
US6542400B2 (en) * 2001-03-27 2003-04-01 Hewlett-Packard Development Company Lp Molecular memory systems and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300839C (zh) * 2004-08-06 2007-02-14 中国科学院上海微系统与信息技术研究所 一种纳电子相变存储器的制备方法

Also Published As

Publication number Publication date
US20050218322A1 (en) 2005-10-06
US6928042B2 (en) 2005-08-09
JP2003094400A (ja) 2003-04-03
EP1274092A3 (en) 2003-10-15
US20030007443A1 (en) 2003-01-09
EP1274092A2 (en) 2003-01-08
US7295503B2 (en) 2007-11-13

Similar Documents

Publication Publication Date Title
CN1396659A (zh) 包括纳米管电子源的数据存储装置
US5557596A (en) Ultra-high density storage device
US7233101B2 (en) Substrate-supported array having steerable nanowires elements use in electron emitting devices
US7892063B2 (en) Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing recording apparatus and recording apparatus, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit
US6465132B1 (en) Article comprising small diameter nanowires and method for making the same
US6974926B2 (en) Sorting of single-walled carbon nanotubes using optical dipole traps
US20040127012A1 (en) Method for fabricating spaced-apart nanostructures
GB2370690A (en) Solid state mass storage memory device
EP1769500A2 (en) Semiconductor storage device
US6735163B2 (en) Ultra-high density storage device with resonant scanning micromover
CN1183598C (zh) 基于调整阴极导电率的超高密度信息存储器
US6643248B2 (en) Data storage device
US20020110074A1 (en) Methods for conducting current between a scanned-probe and storage medium
JP4209424B2 (ja) 情報記憶装置
US20030081532A1 (en) Supplementary energy sources for atomic resolution storage memory devices
JP2004062912A (ja) 固体記憶装置
JP4437619B2 (ja) 近接場光用のプローブ及びその作製方法、並びに近接場光学顕微鏡、光メモリの情報記録再生方式
US6930971B2 (en) Ultra-high density storage device with electron beam steering
JP2000346786A (ja) 高性能ナノチューブプローブ
US7027380B2 (en) Atomic resolution storage device
US20030218927A1 (en) RAM memory based on nanotechnology, capable, among other things, of replacing the hard disk in computers
US20050040383A1 (en) Data storage device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication