CN1382201B - 脱硫方法及用于脱硫的吸附剂 - Google Patents

脱硫方法及用于脱硫的吸附剂 Download PDF

Info

Publication number
CN1382201B
CN1382201B CN008147981A CN00814798A CN1382201B CN 1382201 B CN1382201 B CN 1382201B CN 008147981 A CN008147981 A CN 008147981A CN 00814798 A CN00814798 A CN 00814798A CN 1382201 B CN1382201 B CN 1382201B
Authority
CN
China
Prior art keywords
desulfurization
diesel
pressure
gasoline
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN008147981A
Other languages
English (en)
Other versions
CN1382201A (zh
Inventor
G·P·卡尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp filed Critical China Petroleum and Chemical Corp
Publication of CN1382201A publication Critical patent/CN1382201A/zh
Application granted granted Critical
Publication of CN1382201B publication Critical patent/CN1382201B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4093Catalyst stripping
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/703Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

提供包含负载有选自钴、镍、铁、锰、铜、钼、钨、银、锡和钒或其混合物的基本上还原价态的促进剂金属的钛酸锌载体的颗粒状吸附剂组合物,用于通过以下方法在脱硫区使裂化汽油或柴油机燃料进料流脱硫,所述方法包括:使所述进料流在脱硫区与颗粒状吸附剂组合物接触,然后使所得低硫含量的物流与硫化的吸附剂分离,然后使分离出的吸附剂在循环回所述脱硫区之前再生和活化。

Description

脱硫方法及用于脱硫的吸附剂
发明领域
本发明涉及裂化汽油和柴油机燃料流体流的脱硫。另一方面,本发明涉及适用于裂化汽油和柴油机燃料流体流脱硫的吸附剂组合物。再一方面,本发明涉及用于从裂化汽油和柴油机燃料流体流中脱硫的硫吸附剂的生产方法。
发明背景
对清洁燃料的需求已导致世界范围内不断地努力降低汽油和柴油机燃料的硫含量。降低汽油和柴油的硫含量被认为是改善空气质量的措施之一,因为燃料中的硫对汽车催化转化器的性能有不利影响。汽车发动机尾气中存在硫的氧化物抑制转化器中的贵金属催化剂并可使之不可逆地中毒。从低效或中毒的转化器中排出的气体含有未燃烧的非甲烷烃和氮的氧化物及一氧化碳。这些排放气被日光催化形成地面臭氧,常称为烟雾。
汽油中的大多数硫来自热加工汽油。热加工汽油例如热裂化汽油、减粘裂化汽油、焦化汽油和催化裂化汽油(以下统称为“裂化汽油”)包含部分烯烃、芳烃、和含硫化合物。
由于大多数汽油例如汽车用汽油、赛车用汽油、航空汽油和船用汽油包含至少部分裂化汽油的掺合物,所以裂化汽油中的硫减少自然有助于降低这些汽油的硫含量。
有关汽油硫的公开讨论已不集中在是否应降低硫含量。低硫汽油减少汽车排气并改善空气质量已达成共识。因此真正的争论已集中于要求的降低量、需要低硫汽油的区域和实施期限。随着对汽车空气污染影响的继续关注,显然将需要进一步努力降低汽车燃料的硫含量。尽管目前汽油产品含有约330ppm的硫,但随着环境保护机构向安全降低量的继续努力,预计到2010年汽油的硫含量将必须低于50ppm。(参见Rock,K.L.,Putman H.M.,“Improvements in FCC Gasoline Desulfurizationvia Catalytic Distillation”,1998National Petroleum RefinersAssociation Annual Meeting(AM-98-37))。
鉴于对生产低硫含量车用燃料的要求日益增加,为符合联邦政府令已提出多种方法。
已提出的用于汽油脱硫的方法之一称为加氢脱硫法。虽然汽油的加氢脱硫过程可除去含硫化合物,但可导致汽油中所含的大部分(即使非全部)烯烃饱和。此烯烃的饱和作用极大地影响辛烷值(研究用和发动机辛烷值),使之下降。这些烯烃被饱和部分是由于除去噻吩类化合物(例如噻吩、苯并噻吩、烷基噻吩、烷基苯并噻吩和烷基二苯并噻吩)所需加氢脱硫条件,这些噻吩类化合物是一些最难脱除的含硫化合物。此外,除去噻吩类化合物所需加氢脱硫条件还可能使芳烃饱和。
除需要从裂化汽油中脱硫之外,石油工业还需要降低柴油机燃料的硫含量。通过加氢脱硫作用从柴油中脱硫的过程中,十六烷值得到改善,但耗氢成本很高。加氢脱硫和芳烃氢化反应都消耗氢气。
因此,需要一种方法,在不使芳烃氢化的情况下实现脱硫,从而为柴油机燃料的处理提供更经济的方法。
由于缺少成功的、经济可行的降低裂化汽油和柴油机燃料中硫含量的方法,显然仍需要对辛烷值影响最小同时实现高度脱硫的更好的裂化汽油和柴油机燃料的脱硫方法。
虽然我们的共同待审专利申请脱硫方法及用于脱硫的新吸附剂(1999年8月25日申请的USSN 382935)已提供一种适用于裂化汽油或柴油机燃料脱硫的吸附剂体系,利用负载于氧化锌、氧化硅、氧化铝载体上的还原钴金属,但仍需继续努力开发可实现要求的裂化汽油或柴油机燃料的脱硫并提供可改变操作的备选脱硫条件的其它体系。
现已发现:脱硫区的氢气含量提高时,吸附剂体系的寿命延长,但此延长的活性是以损失辛烷值为代价。
类似地,脱硫区的氢气含量降低时,辛烷值的损失最小,但此损失是以吸附剂寿命为代价。
因此,需要能选择要求的条件从而可优化裂化汽油或柴油机燃料脱硫条件的吸附剂体系。
本发明提供这样一种吸附剂体系。
本发明提供一种用于从裂化汽油和柴油机燃料的流体流中脱硫的新吸附剂体系。
本发明还提供适用于所述流体流脱硫的新吸附剂的生产方法。
本发明还提供从裂化汽油和柴油机燃料中脱除含硫化合物的方法,使其中烯烃和芳烃的饱和最小。
本发明还提供一种脱硫的裂化汽油,基于所述脱硫的裂化汽油的重量含有低于约100ppm的硫,并含有与制备其的裂化汽油中基本上相同量的烯烃和芳烃。
发明概述
本发明是基于以下发现:通过用钛酸锌作为活性组分与选自钴、镍、铁、锰、铜、钼、钨、银、锡和钒及其混合物的金属组合,其中所述金属的化合价处于基本还原价态,提供一种可在对被处理物流的辛烷值影响最小的情况下从裂化汽油或柴油机燃料流中脱除有机硫化合物的新吸附剂组合物。
本发明中所用金属可由所述金属本身、所述金属的氧化物或所述金属氧化物的前体衍生。
还发现:使用由所选还原价态金属和钛酸锌组成的本发明新吸附剂体系,提供一种能在较高氢气含量下在辛烷值无明显损失的情况下使裂化汽油或柴油机燃料流脱硫同时延长所述吸附剂的活性期限的吸附剂体系。
本发明的另一方面提供一种新吸附剂组合物的制备方法,包括:(a)形成氧化锌和二氧化钛的干混物;(b)制备包含所述氧化锌-二氧化钛干混物的含水浆液;(c)使所述含水浆液喷雾干燥产生基本上球形的颗粒;(d)在使所述氧化锌和二氧化钛转化成钛酸锌的条件下焙烧所述颗粒;(e)用金属或金属氧化物促进剂浸渍所得固体颗粒,其中所述金属选自钴、镍、铁、锰、铜、钼、钨、银、锡和钒及其组合;(f)使所得浸渍固体颗粒组合物干燥;(g)焙烧所述干燥的颗粒组合物;和(h)用适合的还原剂如氢气使所述焙烧产物还原,从而产生还原的促进剂金属含量足以从裂化汽油或柴油机燃料流中脱除硫的吸附剂组合物。
需要时,制备本发明吸附剂中可使用商购钛酸锌,在此情况下所述吸附剂制备方法中省去步骤(a-d)。
本发明的另一方面提供一种裂化汽油或柴油机燃料流的脱硫方法,包括在脱硫区用包含钛酸锌和还原价态金属的吸附剂组合物使裂化汽油或柴油机燃料脱硫,其中所述金属选自钴、镍、铁、锰、铜、钼、钨、银、锡、钒或其混合物;使所述脱硫的裂化汽油或柴油机燃料与所述硫化的吸附剂分离,使所述硫化吸附剂的至少一部分再生而产生再生的脱硫吸附剂;使所述再生吸附剂的至少一部分活化而产生还原价态金属-钛酸锌吸附剂;然后使所得还原价态金属-钛酸锌吸附剂的至少一部分返回所述脱硫区。
本发明新吸附剂适用于从裂化汽油或柴油机燃料中脱除噻吩类硫化合物而对所述物流的烯烃含量无明显不利影响,从而避免被处理物流的辛烷值显著下降。此外,使用此新吸附剂还导致所得处理后流体流的硫含量显著降低。
发明详述
本文所用术语“汽油”意指沸点为约37.78℃(100°F)至约204.44℃(400°F)的烃或其任何馏分的混合物。此类烃包括例如炼油厂的烃物流如石脑油、直馏石脑油、焦化石脑油、催化裂化汽油、减粘裂化石脑油、烷基化产品、异构化产品或重整产品。
本文所用术语“裂化汽油”意指沸点为约37.78℃(100°F)至约204.44℃(400°F)的烃或其任何馏分,是来自使较大的烃分子裂化成较小分子的热或催化过程的产品。热过程的例子包括焦化、热裂化和减粘裂化。催化裂化的例子是流化床催化裂化和重油裂化。某些情况下,实施本发明中用作原料时可在脱硫之前将所述裂化汽油分馏和/或加氢处理。
本文所用术语“柴油机燃料”意指由沸点为约148.89℃至约398.89℃(300°F至约750°F)的烃或其任何馏分的混合物组成的流体。此类烃物流包括轻循环油、煤油、喷气式发动机燃料、直馏柴油和加氢处理柴油。
本文所用术语“硫”意指要按本发明处理的裂化汽油中常存在的那些有机硫化合物如硫醇或那些噻吩类化合物,尤其包括噻吩、苯并噻吩、烷基噻吩、烷基苯并噻吩和烷基二苯并噻吩,以及柴油机燃料中常存在的更重分子量的噻吩类化合物。
本文所用术语“气态”意指其中所述裂化汽油或柴油机燃料主要处于汽相的状态。
本文所用术语“促进剂金属或促进剂金属氧化物或氧化物前体”意指金属、金属氧化物或金属氧化物前体,其中所述金属选自钴、镍、铁、锰、铜、钼、钨、银、锡和钒及其混合物,其化合价被还原时用于促进从与之接触的裂化汽油或柴油机燃料流中脱除有机硫化合物。
本文所用术语“基本上还原价态”意指所述吸附剂组合物的促进剂金属组分的化合价大部分处于2或更低的基本上还原价态。
本发明的钛酸锌载体材料通过包括以下步骤的方法制备:(a)形成氧化锌和二氧化钛的干混物;(b)制备包含所述氧化锌-二氧化钛干混物的含水浆液;(c)使所述浆液喷雾干燥产生包含氧化锌和二氧化钛的颗粒;(d)在使所述氧化锌和二氧化钛转化成钛酸锌的条件下焙烧所述颗粒。可任选地使用商购钛酸锌,在此情况下所述吸附剂制备方法中省去步骤(a-d)。
制备钛酸锌载体中,一般使用由约0.2至约2.5份氧化锌和约1份氧化钛形成的氧化锌和二氧化钛的干混物。一般地锌与钛之比在约0.2至约3的范围内。用于本发明的氧化锌典型地粒度在约0.01至约5μm的范围内。用于本发明的二氧化钛典型地粒度在约0.1至约2μm的范围内。
用氧化锌和二氧化钛的共混物制备基本上均匀的含水浆液。除氧化锌和二氧化钛的共混物之外,需要时还可向所述浆液体系中添加有机粘合剂或无机粘合剂。所述浆液通常这样制备:将氧化锌和氧化钛的干混物加至水溶液中同时混合以形成均匀浆液。所述浆液的固体浓度通常在约10至约40%(重)固体的范围内。
需要时可向所述浆液体系中添加有机粘合剂。所述有机粘合剂是选自羟丙基甲基纤维素、聚乙酸乙烯酯、纤维素、羟丙基纤维素、聚乙烯醇、淀粉、木素、磺酸酯、糖浆及其混合物的那些。
所述有机粘合剂通常以水溶液形式使用。使用时,所述粘合剂的存在量一般在基于水溶液的重量约0.2至约2.0%(重)有机粘合剂的范围内。
尽管配制本发明钛酸锌载体中不需要,但需要时所述浆液体系中也可使用无机粘合剂。所述无机粘合剂是水泥、粘土,包括选自膨润土、高岭土、镁橄榄石、蛭石、长石、波特兰水泥、硅酸钠、油页岩、硫酸钙及其混合物的那些。使用时,所述无机粘合剂一般在约1至约20%(重)的范围内,优选5至10%(重)。
制得后将所述浆液喷雾干燥产生球形颗粒。可采用本领域技术人员已知的任何适用于使浆液喷雾干燥的方法。通常在约125至约340℃范围内的温度下使所述浆液喷雾干燥。
喷雾干燥后,在足以使所述氧化锌和二氧化钛转化成钛酸锌的条件下焙烧所得颗粒状载体前体。此焙烧通常在约650至约1100℃范围内的温度下进行足够长时间以使所述氧化锌和二氧化钛转化成钛酸锌。此时间周期一般地约1至约4小时的范围内。
制备本发明新吸附剂体系中,用由至少一种金属、金属氧化物或金属氧化物前体组成的促进剂浸渍所述钛酸锌载体,所述金属选自钴、镍、铁、锰、铜、钼、钨、银、锡和钒。
用所选促进剂浸渍钛酸锌加入足量的金属,以致浸渍载体焙烧和其上的金属还原之后,将有足够的还原金属能在按本发明方法处理后从裂化汽油或柴油机燃料流中脱除硫。
用适合的金属促进剂浸渍所述颗粒状钛酸锌载体组合物后,使所得浸渍颗粒经过干燥和焙烧,然后用还原剂(优选氢气)使焙烧后的颗粒还原。
可通过用含有所述促进剂金属、金属氧化物和含金属化合物的溶液(水溶液或有机溶液)浸渍所述载体,将所述促进剂金属加入所述颗粒状载体中。一般用所述促进剂进行浸渍形成钛酸锌和促进剂金属、金属氧化物或金属前体的颗粒状组合物,然后将所得浸渍载体干燥和焙烧。
所述浸渍溶液是适用于浸渍所述钛酸锌的任何水溶液,该溶液的量适合使最终吸附剂组合物中促进剂的量提供被还原时足以在按本发明方法处理时可从裂化汽油或柴油机燃料流中脱除硫的还原金属含量。
一旦所述促进剂已掺入所述颗粒状钛酸锌中,就如下制备要求的还原价态吸附剂:使所得组合物干燥,焙烧,然后用适合的还原剂(优选氢气)使所得焙烧后的组合物还原,以产生有基本上还原价态促进剂金属的组合物,其中所述还原价态金属的含量足以从裂化汽油或柴油机燃料流体流中脱除硫。
本发明还原金属固体吸附剂是能与有机硫化合物如噻吩类化合物反应和/或化学吸附的组合物。还优选所述吸附剂从裂化汽油中脱除二烯烃和其它成胶化合物。
本发明还原金属固体吸附剂由处于基本上还原价态(优选2或更低)的选自钴、镍、铁、锰、铜、钼、钨、银、锡和钒及其混合物的金属组成。目前优选的还原金属是镍。本发明还原金属-钛酸锌固体吸附剂中还原金属的量是可从裂化汽油或柴油机燃料流体流中脱除硫的量。此量一般在所述吸附剂组合物总重的约5至约50%(重)的范围内。优选所述还原促进剂金属的存在量为所述吸附剂组合物中约15至约40%(重)促进剂金属的范围内。
本发明一优选实施方案中,所述还原金属为镍,其存在量在约10至约30%(重)的范围内,所述镍已基本上还原至零价。
本发明另一优选实施方案中,使用还原之前其上有约12%(重)镍的钛酸锌载体。
本发明另一优选实施方案中,所述钛酸锌载体有还原之前为约24%(重)的镍含量。
可见适用于本发明脱硫方法的吸附剂组合物可通过使用氧化锌和氧化钛时包括以下步骤的方法制备:
(a)形成氧化锌和二氧化钛的干混物;
(b)制备包含所述氧化锌-二氧化钛干混物的含水浆液;
(c)使所述浆液喷雾干燥产生包含氧化锌和二氧化钛的颗粒;
(d)在使所述氧化锌和二氧化钛转化成钛酸锌的条件下焙烧所述颗粒;
(e)用选自钴、镍、铁、锰、铜、钼、钨、银、锡和钒的至少一种金属作为金属组分的促进剂浸渍所得固体颗粒;
(f)使所得浸渍固体颗粒组合物干燥;
(g)焙烧所述干燥的颗粒组合物;和
(h)用适合的还原剂如氢气使所述焙烧产物还原,从而产生还原的促进剂金属含量足以在与所得含基本上还原价态金属的吸附剂接触时从裂化汽油或柴油机燃料流中脱除硫的吸附剂组合物。
用所述新吸附剂使裂化汽油或柴油机燃料脱硫提供脱硫的裂化汽油或柴油机燃料的方法包括:
(a)在脱硫区用含有还原促进剂金属的固体吸附剂使裂化汽油或柴油机燃料脱硫;
(b)使脱硫的裂化汽油或脱硫的柴油机燃料与所得硫化的含还原促进剂金属的固体吸附剂分离;
(c)使所述硫化的含还原促进剂金属的固体吸附剂的至少一部分再生而产生再生的脱硫的含促进剂金属的固体吸附剂;
(d)使所述再生的脱硫的含促进剂金属的固体吸附剂的至少一部分还原而产生含还原促进剂金属的固体吸附剂;然后
(e)使所述再生的含还原促进剂金属的固体吸附剂的至少一部分返回所述脱硫区。
本发明的脱硫步骤(a)在包括总压、温度、重时空速和氢气流量的一组条件下进行。这些条件是这样的以致所述含还原金属的固体吸附剂可使所述裂化汽油或柴油机燃料脱硫产生脱硫的裂化汽油或脱硫的柴油机燃料和硫化的吸附剂。
进行本发明方法的脱硫步骤中,优选所述裂化汽油或柴油机燃料进料处于汽相。实施本发明中优选所述进料全部处于汽态或气态,但这不是必需的。
所述总压可在约1.03×105Pa(绝压)至约1.03×107Pa(绝压)(15至约1500psia)的范围内。但优选总压在约3.44×105Pa(绝压)至约3.44×106Pa(绝压)(50至约500psia)的范围内。
一般地,温度应足以使所述裂化汽油或柴油机燃料基本上处于汽相。虽然此温度可在约37.78至约537.78℃(100至约1000°F)的范围内,但处理裂化汽油时温度优选在约204.44至约426.67℃(400至约800°F)的范围内,进料为柴油机燃料时温度优选在约260至约482.22℃(500至约900°F)的范围内。
重时空速(WHSV)定义为烃进料的重量(磅)/脱硫区中吸附剂的重量(磅)/小时。实施本发明中,此WHSV应在约0.5至约50、优选约1至约20hr-1的范围内。
进行所述脱硫步骤时,优选使用干涉用所述含还原的促进剂金属的固体吸附剂处理的流体中所述烯烃和芳烃化合物的任何可能的化学吸附或反应的试剂。该试剂优选为氢气。
所述脱硫区内的氢气流量一般使氢气与烃进料之摩尔比在约0.1至约10的范围内,优选在约0.2至约3.0的范围内。
所述脱硫区可以是其中可发生裂化汽油或柴油机燃料进料脱硫的任何区域。适合的脱硫区的例子是固定床反应器、移动床反应器、流化床反应器和迁移式反应器。优选流化床反应器或固定床反应器。
需要时,在所述汽化流体脱硫过程中可使用稀释剂如甲烷、二氧化碳、烟道气、和氮气。因此,实现裂化汽油或柴油机燃料的理想脱硫中使用高纯氢气对于本发明方法而言不是必需的。
采用流化系统时,优选使用粒度在约20至约1000μm范围内的还原金属固体吸附剂。优选所述吸附剂的粒度为约40至约500μm。用固定床系统实施本发明脱硫方法时,所述吸附剂的粒度应在约0.079cm至约1.27cm(1/32至约1/2in.)直径的范围内。
还优选使用表面积为约1至约1000m2/g固体吸附剂的含还原金属的固体吸附剂。
所述气态或汽化的脱硫流体与硫化吸附剂的分离可通过本领域已知的可分离固体与气体的任何装置完成。此类装置的例子是旋风分离装置、沉降室或用于分离固体和气体的其它撞击装置。然后可回收所述脱硫的气态裂化汽油或脱硫的柴油机燃料,优选使之液化。
所述气态裂化汽油或气态柴油机燃料是包含部分烯烃、芳烃和含硫化合物以及烷属烃和环烷烃的组合物。
气态裂化汽油中烯烃的量一般在所述气态裂化汽油的约10至35%(重)的范围内。柴油机燃料基本上不含烯烃。
气态裂化汽油中芳烃的量一般在所述气态裂化汽油的约20至约40%(重)的范围内。气态柴油机燃料中芳烃的量一般在约10至约90%(重)的范围内。
用本发明吸附剂体系处理之前,裂化汽油或柴油机燃料中硫的量基于所述气态裂化汽油的重量可在约100至约10000ppm硫的范围内,柴油机燃料的硫含量可在约100至约50000ppm的范围内。
按本发明脱硫方法处理之后,裂化汽油或柴油机燃料中硫的量低于100ppm。
进行本发明方法中,需要时可在用于再生所述硫化吸附剂的再生器之前插入汽提装置,用于从所述硫化吸附剂中除去一部分(优选全部)烃,或在所述氢气还原区之前插入汽提装置用于在所述再生吸附剂进入吸附剂活化区之前从该体系中脱除氧气和二氧化硫。所述汽提包含一组条件,包括总压、温度和汽提剂分压。
使用时,汽提器中的总压优选在约1.72×105至约3.44×106Pa(绝压)(25至约500psia)的范围内。
汽提器的温度可在约37.78至约537.78℃(100至约1000°F)的范围内。
汽提剂是有助于从所述硫化的固体吸附剂中脱除烃的组合物。优选的汽提剂为氮气。
吸附剂再生区采用这样一组条件以使至少一部分硫化吸附剂脱硫。
再生区的总压一般在约6.895×104至约1.03×107Pa(绝压)(10至约1500psia)的范围内。优选总压在约1.72×105至约3.44×106Pa(绝压)(25至约500psia)的范围内。
脱硫剂的分压一般在所述总压的约1至约25%的范围内。
所述脱硫剂是有助于产生气态含氧硫化合物如二氧化硫并烧掉可能存在的任何残余烃沉积物的组合物。
目前,优选的脱硫剂是含氧气体如空气。
再生区的温度一般为约37.78至约815.55℃(100至约1500°F),优选温度在约426.67℃至约648.89℃(800至约1200°F)的范围内。
所述再生区可以是其中可发生硫化吸附剂的脱硫或再生的任何容器。
然后在活化区用还原剂使所述脱硫吸附剂还原,以使所述吸附剂组合物的至少一部分促进剂金属还原产生其中还原金属量足以从裂化汽油或柴油机燃料流中脱除硫组分的还原金属固体吸附剂。
一般地,实施本发明方法时,所述脱硫的含促进剂的固体吸附剂的还原在约37.78至约815.55℃(100至约1500°F)范围内的温度和约1.03×105Pa至1.03×107Pa(15至1500psia)范围内的压力下进行。此还原的持续时间足以在所述吸附剂体系中获得要求的促进剂还原量。此还原一般可在约0.01至约20小时的时间内完成。
所述再生的颗粒状吸附剂活化后,可使所得活化(还原)吸附剂的至少一部分返回所述脱硫装置。
在固定床系统中进行本发明方法时,所述脱硫、再生、汽提、和活化步骤在单一区域或容器中完成。
实施本发明所得脱硫的裂化汽油可用于配制汽油掺合物提供适用于商业消费的汽油产品。
实施本发明所得脱硫的柴油机燃料同样可用于要求低硫燃料的商业消费。
实施例
以下实施例用于说明本发明,教本领域技术人员利用本发明。这些实施例不以任何方式限制本发明。
实施例I
将6.5%(重)二氧化钛、13.5%(重)氧化锌和80%(重)水混合制得的浆液用Niro喷雾干燥器喷雾干燥。所得平均粒度90μm的产物在899℃下焙烧3小时。
将100g所得焙烧后的钛酸锌产物用溶于16.7g去离子水中的59.4gNi(NO3)2·6H2O浸渍。然后将浸镍的钛酸锌在148.89℃(300°F)干燥2小时,在635℃(1175°F)焙烧1小时。
使所得焙烧后的氧化镍-钛酸锌吸附剂在反应器中在371.11℃(700°F)下在1.03×105Pa(绝压)(15psia)的总压和1.03×105Pa(15psi)的氢气分压下还原2.5hr产生还原镍-钛酸锌固体吸附剂,其中所述吸附剂组合物的镍组分基本上被还原。
使包含钛酸锌和镍化合物的焙烧后的固体颗粒组合物还原以获得要求的有还原价态镍的吸附剂在实施例II所述反应器中进行。或者,此颗粒组合物形成要求吸附剂的还原或活化可在单独的活化或氢化区进行,然后送至进行原料脱硫的装置。
实施例II
如下测试实施例I中制备的颗粒状镍-钛酸锌吸附剂的脱硫能力。
将下面所示量的实施例I的未还原吸附剂装入2.54cm(1in)石英管反应器中。此固体镍-钛酸锌吸附剂放在反应器中间的玻璃料上,如实施例I中所述用氢气还原。泵入气态裂化汽油使之向上通过所述反应器,所述气态裂化汽油含有约340ppm硫(基于所述气态裂化汽油重量的含硫化合物的重量份数),基于含硫化合物的重量有约95%(重)噻吩类化合物(例如烷基苯并噻吩、烷基噻吩、苯并噻吩和噻吩)。流量为13.4ml/hr。产生硫化的固体吸附剂和脱硫的气态裂化汽油。
得到以下结果:
在表1中所示条件下汽油中的硫从340ppm降至90-130ppm。
试验1后,使所述硫化吸附剂经受包括温度482.22℃(900°F)、总压1.03×105Pa(绝压)(15psia)、和氧气分压4.13×103至2.13×104Pa(0.6-3.1psi)的脱硫条件1-2小时,产生脱硫的含镍吸附剂。以下将该条件称为“再生条件”。然后使该吸附剂经受包括温度371.11℃(700°F)、总压1.03×105Pa(绝压)(15psia)、和氢气分压1.03×105Pa(15psi)的还原条件1.0小时。以下将该条件称为“还原条件”。
然后将所得还原镍金属固体吸附剂组合物用于试验2和3。每次试验后使硫化的吸附剂经受上述“再生”和“还原”条件。试验2和3中,所述进料的硫含量降至40-85ppm。
这些试验中所用进料的发动机辛烷值(MON)为80。试验3的复合MON为80.6。可见与进料的MON值相比,辛烷值增加。这些试验的结果示于表1中。
实施例III
将6.5%(重)二氧化钛、13.5%(重)氧化锌和80%(重)水混合制得的浆液用Niro喷雾干燥器喷雾干燥。所得平均粒度90μm的产物在899℃下焙烧3小时。
将100g所得焙烧后的钛酸锌产物用溶于16.7g去离子水中的59.4gNi(NO3)2·6H2O浸渍。然后将浸镍的钛酸锌在148.89℃(300°F)干燥2小时,在635℃(1175°F)焙烧1小时。
将50g所得浸镍钛酸锌吸附剂用加热至82.2℃(180°F)的溶于4g去离子水中的29.7g六水合硝酸镍二次浸渍。所述二次浸渍后,再将所述浸渍吸附剂在148.89℃(300°F)干燥1小时,在635℃(1175°F)焙烧1小时。
实施例IV
如下测试实施例III中制备的颗粒状固体吸附剂的脱硫能力。
将下面所示量的实施例III的吸附剂装入2.54cm(1in)石英管反应器中。此固体氧化镍-钛酸锌吸附剂放在反应器中间的玻璃料上,在1.03×105Pa(15psi)的分压和1.03×105Pa(绝压)(15psia)的总压下用氢气还原0.02小时,然后泵入气态裂化汽油使之向上通过所述反应器,所述气态裂化汽油含有约340ppm硫(基于所述气态裂化汽油重量的含硫化合物的重量份数),基于含硫化合物的重量有约95%(重)噻吩类化合物(例如烷基苯并噻吩、烷基噻吩、苯并噻吩和噻吩)。流量为13.4ml/hr。产生硫化的固体吸附剂和脱硫的气态裂化汽油。
得到以下结果:
所述进料的硫含量降至5ppm。
试验1后,使所述硫化吸附剂经受包括温度482.22℃(900°F)、总压1.03×105Pa(绝压)(15psia)、和氧气分压4.13×103至2.13×104Pa(0.6-3.1psi)的脱硫条件1-2小时,产生脱硫的含镍吸附剂。以下将该条件称为“再生条件”。然后使该吸附剂经受包括温度371.11℃(700°F)、总压1.03×105Pa(绝压)(15psia)、和氢气分压1.03×105Pa(15psi)的还原条件0.02小时。以下将该条件称为“还原条件”。
然后将所得还原镍金属固体吸附剂组合物用于试验2。此试验又导致硫含量从340ppm降至5ppm,表明所述吸附剂可在不损失其脱硫活性的情况下再生。
试验2后,使硫化的吸附剂经受所述脱硫条件和所述还原条件。但在此情况下在1.03×105Pa(15psi)的分压和1.03×105Pa(绝压)(15psia)的总压下用氢气还原0.5小时。
然后将此再生和还原的吸附剂用于试样3中,导致脱硫至5-10ppm。
试验3后,使硫化的吸附剂经受所述脱硫条件和还原条件。然后将此还原镍金属固体吸附剂用于试验4,观察到脱硫至5ppm。
试验4后,使硫化的吸附剂经所述再生条件。然后将此氧化镍-钛酸锌吸附剂用于试验5。在试验5中,当氢气分压为零而不进行还原时,几乎未观察到从进料中脱硫,表明有效地从汽油进料中脱除硫需要基本上还原的金属吸附剂。
试验6是试验3的重复,试验7和8是试验2的重复,证明所述吸附剂可反复再生而其从汽油中脱除硫的有效性无明显损失。试验9中,氢气分压降至4.27×104Pa(6.2psi),导致硫含量从进料中的340ppm降至脱硫汽油产品中的约35-110ppm。
这些试验中所用进料的发动机辛烷值(MON)为80,研究用辛烷值(RON)为91.1。试验1和2产品的复合MON和RON分别为80.8和90.9。试验3和4的复合MON和RON分别为80.8和91.2。可见与进料的MON和RON值相比,RON无明显损失而MON稍微增加。
这些试验中所用进料的烯烃含量为24.9%(重),而试验6、7和9的产品的烯烃含量分别为20.7、20.7和20.5%(重)。表明本发明吸附剂的独特特征在于:在总压为1.03×105Pa(绝压)(15psia)下脱硫过程中氢气分压从4.27×104Pa(6.2psi)(试验9)增至9.1×104Pa(13.2psi)(试验6和7)未影响产品的烯烃含量。
试验6、7和9的脱硫产品的发动机辛烷值分别为80.2、79.9和80.4,进一步证明试验6和7相对于试验9中增加氢气分压时几乎未损失或未损失辛烷值。
这些试验的结果示于表2中。
Figure G00814798120041105D000161
本文所公开的具体实施例应视为初步说明。无疑本领域技术人员可做各种改变;这种改变只要落入所附权利要求书的精神和范围内,均应理解为构成本发明的一部分。

Claims (8)

1.一种裂化汽油或柴油机燃料流的脱硫方法,包括:
(a)使所述裂化汽油或柴油机燃料流与一种吸附剂组合物接触,所述接触在脱硫区中在这样的条件下进行以致形成脱硫的所述裂化汽油或柴油机燃料流体流和硫化的吸附剂,所述吸附剂组合物包括:
钛酸锌载体和金属促进剂,其中所述金属选自钴、镍、铁、钼、钨或其混合物,其中促进剂金属以基本上零价态存在,此促进剂金属以在脱硫条件下与所述吸附剂组合物接触时从裂化汽油或柴油机燃料流中脱除硫的量存在;
(b)使所得脱硫的裂化汽油或柴油机燃料流与所述硫化的吸附剂分离;
(c)在再生区使分离出的硫化吸附剂的至少一部分再生除去吸收在其上的至少一部分硫;
(d)在活化区使所得脱硫吸附剂还原使其中含有还原价态的促进剂金属,裂化汽油或柴油机燃料流与之接触时能从中脱除硫;然后
(e)使所得脱硫的还原吸附剂的至少一部分返回所述脱硫区。
2.权利要求1的方法,其中所述脱硫在37.7至537.7℃(100至1000°F)范围内的温度和0.10至10.34MPa(15至1500psia)范围内的压力下进行足够长时间,足以从所述燃料流中脱除硫。
3.权利要求1的方法,其中所述再生在37.7至815.5℃(100至1500°F)范围内的温度和0.07至10.34MPa(10至1500psia)范围内的压力下进行足够长时间,足以从所述硫化吸附剂中除去至少一部分硫。
4.权利要求3的方法,其中所述再生区用空气作为再生剂。
5.权利要求1的方法,其中在活化区用氢气使再生后的吸附剂的还原在37.7至815.5℃(100至1500°F)范围内的温度和0.10至10.34MPa(15至1500psia)范围内的压力下保持足够长时间,以使所述吸附剂的促进剂金属组分的化合价还原为基本上为零价。
6.权利要求5的方法,其中所述促进剂金属已基本上还原至零价的镍。
7.权利要求1的方法,其中在进入所述再生区之前汽提分离出的硫化吸附剂。
8.权利要求1的方法,其中在进入所述活化区之前汽提再生后的吸附剂。
CN008147981A 1999-11-01 2000-10-18 脱硫方法及用于脱硫的吸附剂 Expired - Lifetime CN1382201B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/431,370 US6338794B1 (en) 1999-11-01 1999-11-01 Desulfurization with zinc titanate sorbents
US09/431,370 1999-11-01
PCT/US2000/041270 WO2001032805A1 (en) 1999-11-01 2000-10-18 Desulfurization and novel sorbents for same

Publications (2)

Publication Number Publication Date
CN1382201A CN1382201A (zh) 2002-11-27
CN1382201B true CN1382201B (zh) 2012-08-08

Family

ID=23711647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN008147981A Expired - Lifetime CN1382201B (zh) 1999-11-01 2000-10-18 脱硫方法及用于脱硫的吸附剂

Country Status (13)

Country Link
US (2) US6338794B1 (zh)
EP (1) EP1235887A4 (zh)
JP (1) JP4530599B2 (zh)
KR (1) KR20020080331A (zh)
CN (1) CN1382201B (zh)
AU (1) AU778467B2 (zh)
BR (1) BR0015428A (zh)
CA (1) CA2385267A1 (zh)
GE (1) GEP20074076B (zh)
MX (1) MXPA02004332A (zh)
NO (1) NO20022075L (zh)
NZ (1) NZ518237A (zh)
WO (1) WO2001032805A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845397C2 (de) * 1998-10-02 2000-09-14 Daimler Chrysler Ag Verfahren zur Entschwefelung eines motorischen Kraftstoffs an Bord eines Kraftfahrzeugs
US6809063B2 (en) * 1999-08-24 2004-10-26 The Sulfa Treat Company Compressed metal oxide composition
US6664210B1 (en) * 1999-08-24 2003-12-16 M-I Llc Compressed metal oxide product
US6184176B1 (en) * 1999-08-25 2001-02-06 Phillips Petroleum Company Process for the production of a sulfur sorbent
US6271173B1 (en) * 1999-11-01 2001-08-07 Phillips Petroleum Company Process for producing a desulfurization sorbent
US6274533B1 (en) * 1999-12-14 2001-08-14 Phillips Petroleum Company Desulfurization process and novel bimetallic sorbent systems for same
US6649555B2 (en) * 2001-12-19 2003-11-18 Conocophillips Company Reactivation of deactivated sorbents
US6635795B2 (en) * 2001-12-19 2003-10-21 Conocophillips Company Desulfurization with improved sorbent regeneration
US6544410B1 (en) * 2001-12-19 2003-04-08 Phillips Petroleum Company Desulfurization with improved sorbent regeneration
US7192516B2 (en) * 2003-04-17 2007-03-20 Trans Ionics Corporation Desulfurization of petroleum streams using metallic sodium
US7341977B2 (en) * 2003-06-20 2008-03-11 Nanoscale Corporation Method of sorbing sulfur compounds using nanocrystalline mesoporous metal oxides
US7309416B2 (en) * 2003-07-11 2007-12-18 Aspen Products Group, Inc. Methods and compositions for desulfurization of hydrocarbon fuels
US7416655B2 (en) 2003-10-10 2008-08-26 Instituto Mexicano Del Petroleo Selective adsorbent material and its use
US6939278B2 (en) * 2003-11-06 2005-09-06 Carol A. Atwell Combined exerciser and therapist table
US7938955B2 (en) * 2004-12-28 2011-05-10 Japan Energy Corporation Method for producing super-low sulfur gas oil blending component or super-low sulfur gas oil composition, and super-low sulfur gas oil composition
US7473350B2 (en) * 2005-01-13 2009-01-06 China Petroleum & Chemical Corporation Control methodology for desulfurization process
US20060277820A1 (en) * 2005-06-13 2006-12-14 Puri Suresh K Synergistic deposit control additive composition for gasoline fuel and process thereof
US20060277819A1 (en) * 2005-06-13 2006-12-14 Puri Suresh K Synergistic deposit control additive composition for diesel fuel and process thereof
US7597798B2 (en) 2005-06-17 2009-10-06 Exxonmobil Research And Engineering Company Method for reducing the amount of high molecular weight organic sulfur picked-up by hydrocarbon streams transported through a pipeline
US8222180B2 (en) * 2005-08-01 2012-07-17 Indian Oil Corporation Limited Adsorbent composition for removal of refractory sulphur compounds from refinery streams and process thereof
CN101314726B (zh) * 2007-05-31 2013-01-09 中国石油化工股份有限公司 一种降低催化裂化产物硫含量的吸附剂
US8133302B2 (en) * 2007-06-14 2012-03-13 Exxonmobil Upstream Research Company Process for purification of hydrocarbons
US8343336B2 (en) * 2007-10-30 2013-01-01 Saudi Arabian Oil Company Desulfurization of whole crude oil by solvent extraction and hydrotreating
US7682424B2 (en) * 2008-01-31 2010-03-23 Conocophillips Company Contaminant removal from a gas stream
GB0804570D0 (en) * 2008-03-12 2008-04-16 Johnson Matthey Plc Desulphurisation materials
GB0804572D0 (en) * 2008-03-12 2008-04-16 Johnson Matthey Plc Preparation of desulphurisation materials
CN102029140B (zh) * 2009-09-28 2012-07-18 中国石油化工股份有限公司 一种具有核/壳结构的脱硫剂及制备方法
US8389782B2 (en) 2010-08-31 2013-03-05 Chevron U.S.A. Inc. Biofuel production through catalytic deoxygenation
US8815085B2 (en) 2010-09-24 2014-08-26 Chevron U.S.A. Inc. Process for reducing the total acid number of a hydrocarbon feed
EP2747870A4 (en) * 2011-08-22 2015-08-12 Univ Columbia METHOD AND SYSTEMS FOR PRODUCING A MOISTURIZING VARIATION SOLVENT FOR CARBON DIOXIDE DEPOSITION FROM AIR
CN102430412B (zh) * 2011-09-16 2013-07-31 中国海洋石油总公司 一种催化裂化汽油高选择性吸附脱硫剂的制备方法
US9068128B2 (en) * 2011-10-18 2015-06-30 Baker Hughes Incorporated Method for reducing hydrogen sulfide evolution from asphalt and heavy fuel oils
WO2013065007A1 (en) 2011-11-03 2013-05-10 Indian Oil Corporation Ltd. Nano structured adsorbent for removal of sulphur from diesel and gasoline like fuels and process for preparing the same
CN106824147B (zh) * 2017-02-23 2020-08-28 中国石油大学(北京) 一种油品中硫的靶向锚定与分离剂的再生方法
CN110790618B (zh) * 2019-11-01 2020-12-08 南京理工大学 一种发射药表面残留硫脱除方法
US20240051842A1 (en) * 2021-04-16 2024-02-15 Sri Lanka Institute Of Information Technology A method of making silver-iron titanate nanoparticles and uses thereof
MX2024008879A (es) * 2022-01-18 2024-07-29 Basf Se Articulos de polimero artificial conformados con particulas de oxido de metal hibridas.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725415A (en) * 1986-06-02 1988-02-16 Phillips Petroleum Company Selective removal of hydrogen sulfide over zinc titanate and alumina
CN1040610A (zh) * 1988-08-20 1990-03-21 北京大学 烃类加氢脱硫催化剂
US5045522A (en) * 1990-03-27 1991-09-03 Phillips Petroleum Company Absorption composition comprising zinc titanate for removal of hydrogen sulfide from fluid streams
US5151257A (en) * 1990-03-27 1992-09-29 Phillips Petroleum Company Removal of hydrogen sulfide from fluid streams
US5714431A (en) * 1994-10-19 1998-02-03 Research Triangle Institute Zinc titanate sorbents
US5798088A (en) * 1993-03-30 1998-08-25 Research Triangle Institute Method for producing elemental sulfur from sulfur-containing gases

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1151157A (en) * 1915-01-13 1915-08-24 Eugene A Bradley Camera view-finder.
US4313017A (en) * 1980-02-05 1982-01-26 Phillips Petroleum Co. Selective hydrogenation of polynuclear aromatic reactants
US4376698A (en) * 1980-02-18 1983-03-15 Phillips Petroleum Company Catalytic hydrodesulfurization of organic compounds employing promoted zinc titanate
US4313820A (en) 1980-02-28 1982-02-02 Phillips Petroleum Co. Hydrodesulfurization of organic sulfur compounds and hydrogen sulfide removal with incompletely sulfided zinc titanate materials
US4347811A (en) 1980-02-28 1982-09-07 Phillips Petroleum Company Method and apparatus for removing hydrogen sulfide from fuel for an internal combustion engine
US4419968A (en) 1980-02-28 1983-12-13 Phillips Petroleum Company Method and apparatus for removing hydrogen sulfide from fuel for an internal combustion engine
US4287050A (en) 1980-02-28 1981-09-01 Phillips Petroleum Co. Catalytic hydrodesulfurization of organic compounds employing alumina promoted with zinc titanate, cobalt and molybdenum as the catalytic agent
US4371507A (en) 1980-09-23 1983-02-01 Phillips Petroleum Company Catalytic hydrogenation of olefins, hydrodesulfurization of organic sulfur compounds and/or selective removal of hydrogen sulfide from fluid streams
US4652546A (en) * 1984-08-27 1987-03-24 Phillips Petroleum Company Hydrogel derived catalyst of zinc titanate and alumina promoted with cobalt and molybdenum for hydrodesulfurization or hydrodenitrogenation
US4522709A (en) * 1984-08-27 1985-06-11 Phillips Petroleum Company Catalytic hydrodesulfurization or hydrodenitrogenation
US4693991A (en) * 1986-05-02 1987-09-15 Phillips Petroleum Company Hydrotreating catalyst composition
US4655906A (en) * 1986-05-02 1987-04-07 Phillips Petroleum Company Hydrotreating process employing a novel catalytic composition
USRE33393E (en) * 1986-06-02 1990-10-16 Phillips Petroleum Company Selective removal of hydrogen sulfide over zinc titanate and alumina
US4762814A (en) * 1986-11-14 1988-08-09 Phillips Petroleum Company Hydrotreating catalyst and process for its preparation
US4707246A (en) * 1986-11-14 1987-11-17 Phillips Petroleum Company Hydrotreating catalyst and process
JPH0776348B2 (ja) * 1987-05-26 1995-08-16 財団法人電力中央研究所 高温還元性ガスの精製方法
US4977123A (en) 1988-06-17 1990-12-11 Massachusetts Institute Of Technology Preparation of extrusions of bulk mixed oxide compounds with high macroporosity and mechanical strength
US4990318A (en) * 1989-06-07 1991-02-05 Phillips Petroleum Company Selective removal of hydrogen sulfide over a nickel-promoted absorbing composition
US5254516A (en) 1992-03-26 1993-10-19 Research Triangle Institute Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance
IN191756B (zh) * 1995-06-07 2003-12-27 Phillips Petroleum Co
US5801115A (en) * 1995-09-05 1998-09-01 Kataleuna Gmbh Catalyst composition and methods for using and preparing same
JP4096128B2 (ja) * 1997-08-21 2008-06-04 大阪瓦斯株式会社 脱硫剤の製造方法および炭化水素の脱硫方法
JP4065590B2 (ja) * 1997-12-12 2008-03-26 新日本石油株式会社 チオフェン系硫黄化合物の吸着除去方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725415A (en) * 1986-06-02 1988-02-16 Phillips Petroleum Company Selective removal of hydrogen sulfide over zinc titanate and alumina
CN1040610A (zh) * 1988-08-20 1990-03-21 北京大学 烃类加氢脱硫催化剂
US5045522A (en) * 1990-03-27 1991-09-03 Phillips Petroleum Company Absorption composition comprising zinc titanate for removal of hydrogen sulfide from fluid streams
US5151257A (en) * 1990-03-27 1992-09-29 Phillips Petroleum Company Removal of hydrogen sulfide from fluid streams
US5798088A (en) * 1993-03-30 1998-08-25 Research Triangle Institute Method for producing elemental sulfur from sulfur-containing gases
US5714431A (en) * 1994-10-19 1998-02-03 Research Triangle Institute Zinc titanate sorbents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
USRE.33393A 1990.10.16

Also Published As

Publication number Publication date
EP1235887A4 (en) 2003-05-14
GEP20074076B (en) 2007-03-26
NO20022075L (no) 2002-07-01
US6338794B1 (en) 2002-01-15
EP1235887A1 (en) 2002-09-04
WO2001032805A1 (en) 2001-05-10
BR0015428A (pt) 2002-07-16
MXPA02004332A (es) 2002-11-07
NZ518237A (en) 2003-10-31
NO20022075D0 (no) 2002-04-30
AU2114701A (en) 2001-05-14
JP2003513772A (ja) 2003-04-15
CA2385267A1 (en) 2001-05-10
JP4530599B2 (ja) 2010-08-25
KR20020080331A (ko) 2002-10-23
CN1382201A (zh) 2002-11-27
US20020043484A1 (en) 2002-04-18
AU778467B2 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
CN1382201B (zh) 脱硫方法及用于脱硫的吸附剂
CN1331591C (zh) 脱硫方法及用于脱硫的新吸附剂
CN1382199B (zh) 脱硫方法及用于脱硫的双金属吸附剂体系
US6992041B1 (en) Deep desulfurization catalyst, method for preparing the same and method for desulfurization using the same
WO2001014052A1 (en) Sorbent composition, process for producing same and use in desulfurization
US6635795B2 (en) Desulfurization with improved sorbent regeneration
US6869522B2 (en) Desulfurization process
CN1638860B (zh) 脱硫及用于此的新型组合物
US6544410B1 (en) Desulfurization with improved sorbent regeneration
US7427581B2 (en) Desulfurization process and novel bimetallic sorbent systems for same
US6649555B2 (en) Reactivation of deactivated sorbents
US20030111389A1 (en) Desulfurization of middle distillates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20090227

Address after: Postcode 6, Huixin East Street, Beijing, Chaoyang District: 100029

Applicant after: Sinopec Corp.

Address before: Oklahoma

Applicant before: ConocoPhillips

ASS Succession or assignment of patent right

Owner name: CHINA PETROLEUM + CHEMICAL CORPORATION

Free format text: FORMER OWNER: COPHI CO., LTD.

Effective date: 20090227

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20120808

CX01 Expiry of patent term