CN1366610A - 多元导电率测定装置 - Google Patents

多元导电率测定装置 Download PDF

Info

Publication number
CN1366610A
CN1366610A CN01801058A CN01801058A CN1366610A CN 1366610 A CN1366610 A CN 1366610A CN 01801058 A CN01801058 A CN 01801058A CN 01801058 A CN01801058 A CN 01801058A CN 1366610 A CN1366610 A CN 1366610A
Authority
CN
China
Prior art keywords
electric conductivity
conductivity measuring
electrode
measuring apparatus
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01801058A
Other languages
English (en)
Other versions
CN1193225C (zh
Inventor
肥后裕仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Publication of CN1366610A publication Critical patent/CN1366610A/zh
Application granted granted Critical
Publication of CN1193225C publication Critical patent/CN1193225C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明的多元导电率测定装置至少具有2个包含有与被测定物质接触的至少2个电极的导电率测定单元,把该导电率测定单元进行电连接,使得能够把来自各个导电率测定单元的检测信号自身至少进行加法、减法运算的某一种处理,依据该装置,能够高可靠性,高精度而且高灵敏度地测定位置上或者时间上不同的多个测定点之间的导电率的微小差异或者变化。

Description

多元导电率测定装置
技术领域
本发明涉及具备多个导电率测定单元的多元导电率测定装置,特别是,涉及能够高精度地测定水溶液等被测定物质在某个处理系统中不同的位置或者不同时刻的导电率的差异或者变化的多元电导率测定装置。
背景技术
导电率特别地用作为用于测定能够在水溶液中移动的离子浓度测定的尺度,导电率测定装置在众多的水溶液中的离子浓度的测定中使用。一般,导电率测定装置通过测定检测用电极与从电源供给电流用的电极之间的电阻值,测定被测定水溶液中的离子浓度的增减。
作为以往的使用导电率测定装置的方法,对预定的测定点设置导电率测定装置,或者从预定的特定点向导电率测定装置引入试样水,把在该装置中测定的导电率利用在各种领域中的水溶液的动态观测,水质管理等中。在由该导电率测定装置进行的导电率测定中,通常,根据被测定物质的状态或者电极的状态,测定时的周围条件(例如环境温度或者来自周围设备的噪音的状况等)等,把其导电率测定装置的测定范围调整了以后,进行测定。另外,在该测定中,很多时候在导电率测定装置的电极上粘着或者吸附被测定物质中的有机物等,电极面的表面状态随着时间发生变化。因此,在测定中或多或少地将发生从所希望的测定基准点的偏移。从而,当前的状况是由导电率测定装置进行的导电率的测定数据作为管理或者控制使用的数据,只能处理为可靠性比较低的数据,只能满足于这样的二次数据的位置关系。
特别是,在从多个测定点采取导电率的测定数据,例如测定它们之间的水溶液的处理进行程度或者它们中间的水质的变化时,进而,实质上在相同的测定位置测定导电率随时间的变化时,如上所述需要在各个测定装置中调整测定范围,或者在时间上将产生偏移,因此当前难以进行高精度的测定。另外,在要测定导电率的变化或者多个测定位置的导电率的差异时,当其变化或者差异与所测定的导电率的绝对值相比较极其微小时,由于对于测定范围比较大的导电率的绝对值进行调整,因此非常难以进行微小的变化或者差异的测定,或者其测定数据的可靠性很低。但是当前,希望测定这种位置上或者时间上不同的2个或者多个测定点之间的微小差异或者变化的要求非常多,如果能够以高可靠性,高精度而且高灵敏度测定这样微小的差异和的变化,则其用途将非常广泛。但是,当前并没有见到能够满足这样要求的导电率测定装置。
发明的公开
因此,本发明的目的在于提供满足上述的要求,能够以高可靠性,高精度而且高灵敏度地测定位置或者时间不同的多个测定点之间的导电率的微小差异或者变化的多元导电率测定装置。
为了实现上述目的,本发明的多元导电率测定装置的特征在于,具有至少2个包含有与被测定物质接触的至少2个电极的导电率测定单元,把该导电率测定单元进行电连接使得至少能够把来自各个导电率测定单元的检测信号自身进行加法、减法运算的某种处理。
即,以往的导电率测定装置使用放大器等把来自一个导电率测定单元的检测信号放大,作为导电率的测定输出信号整形为适宜大小的信号,在设置多个导电率测定装置时,需要对于各个装置进行测定范围的调整。但是,在本发明的多元导电率测定装置中,在该装置内,对于来自各个导电率测定单元的检测信号自身进行加法、减法等电运算处理,处理后的信号根据需要被放大,输出为各个导电率测定单元之间的测定导电率的差异或者变化部分。从而,本发明的多元导电率测定装置与简单地设置多个以往的导电率测定装置,得到来自这些装置的测定数据的差异或者变化部分的结构明显的不同。
本发明的多元导电率测定装置中,各个导电率测定单元中的上述至少2个电极能够由导电率检测用电极和电流供给用电极构成。把电极构成为2极这一点从以往的装置就已经明确。在电流供给用电极上,例如供给交流电流。在配置多个电流供给用电极时,在至少一个电流供给用电极上,也可以供给被放大或者缩小了的交流电流。如果把供给到电流供给用电极上前面的交流电流放大,则实际上与在该供给电流上以预定倍率进行乘法运算相同,可以得到在从该导电率测定单元得到的检测信号上也实施了乘法运算相同的效果。如果把在交流供给用电极上供给的前面的交流电流缩小,则实质上与在该供给电流上以一定比例实施除法运算相同,可以得到在从该导电率测量单元得到的检测信号上也实施了除法运算相同的效果。如果把这样得到的检测信号自身进行加法或者减法运算,则在其加法或者减法运算中也包括乘法或者除法运算,在处理检测信号自身时,能够根据需要,实质上采用加法、减法、乘法、除法的任意组合。而且,把来自各个导电率检测单元的检测信号自身像上述那样处理了以后的信号能够根据需要进行放大使得输出信号成为最佳的大小,这种情况下,由于上述处理后的一个信号成为对象,因此可以只设置一个放大器。
另外,在本发明的多元导电率测定装置中,能够采用各个导电率测定单元分别具有3个电极,该3个电极由导电率检测用电极和隔开间隔分别配置在该导电率检测用电极两侧的2个交流电流供给用电极构成,在该2个交流电流供给用电极上供给同相的交流电流的结构。或者也能够采用各个导电率测定单元分别具有3个电极,该3个电极由导电率检测用电极,隔开间隔配置在该导电率检测用电极一侧的交流电流供给用电极,隔开间隔配置在上述导电率检测用电极相反一侧的接地电极构成的结构。通过采用这样的3电极结构,如后所述,能够进行抑制了来自周围的噪声等的恶劣影响的高精度测定。
另外,在本发明的多元导电率测定装置中,各个导电率测定单元中的上述至少2个电极最好采用分别在由导电金属构成的电极本体的表面上,通过氧化钛层形成了电极面构成的结构。如果依据这样的结构,则在被测定物质中包括有机物的情况下,为了去除该有机物等向电极面粘着或者吸附引起的对导电率测定的影响,能够有效地利用基于氧化钛的光催化活性的有机物分解性能或者超亲水性。为了在氧化钛层中发挥光催化活性,最好对于该氧化钛层配置光照射装置。例如,能够采用各个导电率测定单元具有在上述至少2个电极的电极面之间形成的被测定物质贮藏空间和在各个电极面上照射光的光照射装置的结构。
在该多元导电率测定装置中,由上述光照射装置照射的光最好具有引起上述氧化钛层的光催化活性的波长。例如,能够使用300~400nm左右的波长的光。作为光照射装置,既可以直接使用构成不可见光等的紫外线照射装置的光源,也可以使用把来自作为光照射装置的光源的光导入的导光体(例如光纤或者由导光性材料构成的管)。另外,在直接照射来自光源的光的同时,还可以添加来自导光体的光。
另外,还可以构成为使得由透光体形成上述被测定物质贮藏空间,来自光照射装置的光通过导光体(例如玻璃)照射到电极面上。这种情况下,在透光体的被测定物质贮藏空间一侧的表面(切液面)上,如果像可透光那样实施氧化钛喷涂,则根据氧化钛喷涂层的超亲水性或者有机物分解性能,还能够防止有机物向该透光体表面的粘着。
另外,上述电极例如能够用以下的方法制造。即,在由导电金属构成的电极本体的表面上通过溅射、电镀等表面处理设置氧化钛层形成电极面的方法,或者,用钛金属构成电极本体,在由钛金属构成的电极本体的表面上提供氧气形成由氧化钛层构成的电极面的方法。作为提供氧气形成氧化钛层的方法,除去基于电解的方法以外,还能够使用基于空气氧化的方法。
在上述那样的本发明的多元的导电率测定装置中,在该装置内,在来自各个导电率测定单元的检测信号自身上至少进行加法、减法运算的某一种处理,该处理后的信号输出为个检测信号。在该信号上根据需要加入放大等处理。这样输出的检测信号对应于在各个导电率测定单元设置位置的检测导电率之间的差异或者各个导电率测定单元设置位置的检测导电率之间的变化部分。2个检测导电率实质上能够以相同的条件或者在相同的测定范围进行测定,该条件或者测定范围不需要根据导电率绝对值的大小进行调整,可以根据上述差异或者变化部分的大小进行调整。从而,对于导电率绝对值的大小,即使上述差异或者变化部分的大小微小的情况下,也能够以高精度而且高灵敏度取出其微小的差异或者变化部分。而且,如上述,在电运算处理差分或者变化部分时的来自各个导电率测定单元的检测信号自身,在一个装置内由于实质上是以相同的调整条件取出的信号,因此在成为来自运算处理源的各个导电率测定单元的检测信号自身之间将不发生因测定范围调整的影响的差异。从而,在这一方面,也能够保证高精度地取出上述差分或者变化部分,成为可靠性非常高的数据。
这样,如果依据本发明的多元导电率测定装置,则在该装置内,由于能够把来自各个导电率测定单元的检测信号自身至少进行加法、减法运算的某一种处理,因此能够以高精度而且高灵敏度测定位置或者时间不同的多个测定点之间的导电率的微小的差异或者变化,对于导电率测定能够得到可靠性极高的数据。
附图的简单说明
图1是本发明一实施形态的多元导电率测定装置的电路图。
图2是本发明另一个实施形态的多元导电率测定装置的电路图。
图3是适用了本发明的多元导电率测定装置的水处理系统的概略结构图。
图4是示出在图3的水处理系统的测定中能够使用的本发明的多元导电率测定装置一例的电路图。
图5是示出使用时间延迟柱管的本发明的多元导电率测定装置一例的概略结构图。
图6是示出在本发明的多元导电率测定装置中能够使用的导电率测定单元一例的概略结构图。
图7是示出在本发明的多元导电率测定装置中能够使用的导电率测定单元的另一例的概略结构图。
图8是示出在本发明的多元导电率测定装置中能够使用的导电率测定单元的又一例的概略结构图。
图9是示出在本发明的多元导电率测定装置中能够使用的导电率测定单元的机械结构例的分解斜视图。
图10是示出在本发明的多元导电率测定装置中能够使用的导电率测定单元的电极的结构例的斜视图。
图11是示出在本发明的多元导电率测定装置中能够使用的导电率测定单元部分的另一个机械结构例的分解斜视图。
用于实施发明的最佳形态
以下,参照附图说明本发明的理想实施形态。
图1示出本发明一实施形态的多元导电率测定装置的电路结构。图1中,多元导电率测定装置1至少具有2个包含有与被测定物质接触的至少2个电极(在本实施形态中以3电极结构示出)的导电率测定单元(在本实施形态中以2个单元结构示出)。各个导电率测定单元2、3(在图1中,表示为单元1、单元2)在本实施形态中,进行电连接使得来自各个导电率测定单元2、3的检测信号自身被进行加法处理。
各个导电率测定单元2、3电气上并联连接,在各个导电率测定单元2、3的电流供给用电极2a、3a上,供给来自作为电源的交流振荡器4的同相的交流电流。各个导电率测定单元2、3的导电率检测用电极2b、3b相互电连接,来自2个检测用电极2b、3b的检测信号自身的值进行相加。而且在本实施形态中,在一方的导电率测定单元2的电流供给用电极2a的前面,设置把被供给的交流电流的值以预定的倍率进行乘法运算或者以预定的倍率进行除法运算的乘法器或者除法器5,能够使在导电率测定单元2中成为检测对象的被测定物质的导电率的等级与导电率测定单元3的等级不同。即,把向电流供给用电极2a供给之前的交流电流以预定的倍率放大或者减小。如果这样做,则如后面所述,在某个处理系统中,对于处理前和处理后(例如浓缩后或者稀释后)的各个检测位置,能够分别以最佳灵敏度进行检测。
实施了上述电运算处理的信号,即,从导电率检测用电极2b、3b的连接点得到的信号通过一个放大器6作为输出信号放大为适当的电平。这时,在测定范围切换器7中,能够根据测定对象选择最佳的测定范围。
在本实施形态中,来自放大器6的信号由温度补偿器8进行了对于测定环境的温度补偿以后,由同步整流器9获得与交流振荡器4的输出一侧的同步。而且,该信号由带范围调整器10的放大器11进行放大使得成为在各种控制或者输出的显示中最佳电平的信号,作为实际的输出12取出。
图2示出本发明另一个实施形态的多元导电率测定装置的电路结构。在本实施形态的多元导电率测定装置21中,与图1所示的形态相比较,在另一个导电率测定单元3的电流供给用电极3a的前面预先设置把被供给的交流电流的值以预定的倍率进行乘法或者以预定的比例进行除法运算的乘法器或者除法器22,使导电率测定单元3中成为检测对象的被测定物质的导电率的等级成为与导电率测定单元2的等级不同。而且,在该乘法器或者除法器22中提供相位翻转功能。即,在把供给到电流供给用电极3a之前的交流电流以预定的倍率放大或者缩小的同时,还把该供给交流电流的相位进行翻转。如果这样做,则来自各个导电率测定单元23的检测信号自身实质上进行减法运算,被进行减法处理了的信号传送到放大器6。其它的结构实质上与图1所示的结构相同。
如上述那样构成的多元导电率测定装置,例如像图3所示那样使用。图3示出某个水处理系统31。对于原水32,具有收容浓缩或者稀释了的水的贮水罐33(例如,冷却塔,稀释容器等)。从贮水罐33,收容水34通过泵35传送到下一个处理系统或者操作系统。在这样的水处理系统31中,在想测定原水32与贮水罐33内的浓缩水或者稀释水(以下,称为浓缩水等34)之间的电导率的差异,或者其之间的电导率的变化时,如图3所示那样,经过吸收器36把原水32与浓缩水等34采样为试样水。被采样的原水32与浓缩水等34经过泵37、38,分别传送到导电率测定单元39、40(与上述的导电率测定单元2、3相当,通道1(ch1),通道2(ch2)),测定导电率。测定后的水被排放或者返回到适当的回收系统中。
这时,能够把来自各个导电率检测单元39、40的检测信号分别作为原水32或者浓缩水等34导电率的绝对值的值取出,而在本发明中,主要的是,来自两个导电率测定单元39、40的检测信号(图中的输出1、输出2)如上所述提供到电运算处理,作为2个检测位置中的导电率的差异或者变化部分进行检测。
在图3所示的检测系统中,例如构成图4所示的多元导电率测定装置41。在图4所示的多元导电率测定装置41中,来自交流振荡器42的交流电流供给到各个导电率测定单元39、40。在一方的导电率测定单元39中,供给在带倍率设定器39的相位翻转放大器44中以预定的倍率进行放大,而且反转了相位的交流电流。在另一方的导电率测定单元40中,供给通过放大器45以一定的倍率放大但是相位没有翻转的交流电流。各个导电率测定单元39、40的输出一侧相连接,由于上述一方的供给交流电流的相位翻转,因此进行获得来自两个导电率测定单元39、40的检测信号之差的减法处理。该被减法处理了的信号由带灵敏度(测定范围)切换器46的放大器47放大,作为所测定的一个输出信号48进行输出。从而,该输出信号48成为表示两个导电率测定单元39、40的检测电导率之间的差异或者变化部分。
这样,因为不是从由各个单位测定装置输出的检测值的绝对值运算差异或者变化部分,而是在一个多元导电率测定装置41内,对于来自各个导电率测定单元39、40的检测信号自身进行减法处理,因此能够高精度的仅抽出2个导电率测定单元39、40的检测导电率之间的差异或者变化部分。另外,该测定时的测定范围由于不是对于导电率的绝对值,而是可以对于要检测的导电率的差异或者变化部分进行调整,因此即使在相对于导电率的绝对值,差异或者变化部分微小的情况下,也能够与导电率的绝对值无关,能够调整到最佳的测定范围,能够进行极其高精度而且高灵敏度的测定。
另外,由于设置倍率设定器43,能够适宜地切换一方的导电率测定单元39一侧的供给电流的电平,因此对于浓缩系统或者稀释系统的任一个都能够进行最佳的灵敏度调整。而且,在输出一侧由于设置灵敏度(测定范围)切换器46,因此最终输出的信号的电平也能够调整到最佳电平,能够以最佳的灵敏度测定导电率测定的差异或者变化部分。其结果,能够以高精度而且高灵敏度获得可靠性极高的导电率测定的差异或者变化部分的数据。
在图3所示的测定系统中,测定夹持某个水处理系统的不同两个位置之间的导电率测定的差异或变化部分,而本发明例如也能够测定在某个被测定物质的流动方向中的导电率测定随时间的变化。
例如如图5所示,对于在流水管52内流动的水的流动方向,要测定不同配置之间的导电率测定的变化时,可以配置多元导电率测定装置51使得在上游一侧的位置53例如经过汾丘里管54能够采样样品水。首先在一方的导电率测定单元55中检测出该样品水的导电率以后,把其样品水通过时间延迟柱管56传送到另一方的导电率测定单元57,在那里再次测定样品水的导电率,把测定后的样品水返回到流水管52的下游一侧的位置58。时间延迟柱管56例如把细管卷成螺旋形,使得能够调节从流入端到流出端的通水时间,在本实施形态中,实质上对应于流水管52的上游一侧的位置53到下游一侧的位置58的通水时间。
通过设置这样的时间延迟柱管56,把对于相同的样品水的导电率的检测定时在时间上错开,能够观测在其之间的导电率发生怎样地变化。而且,通过使用本发明的多元导率测定装置51,能够以高可靠性,高精度而且高灵敏度地检测导电率的变化部分。
在本发明中,各个导电率测定单元自身的构造不特别限定,也可以是至少具有2个与被测定物质接触的电极的导电率测定单元。各个导电率测单元中的至少2个电极由导电率检测用电极和电流供给用电极构成,在3电极结构的情况下,还可以把一个作为接地电极。在电流供给用电极上最好供给交流电流,而也能够是供给直流电流的结构。
图6示出能够适用于本发明的2电极结构的导电率测定单元的概略结构。图6所示的导电率测定单元61对于在测定管62中流过的或者贮藏在测定管62的作为被测定物质的被测定流体63,间隔设置电源电极64和导电率检测用电极65。在电源电极64上例如从电源(省略图示)经过放大器66加入交流恒定电压,来自导电率检测用电极65的检测电流提供给上述的加法或者减法处理。
在上述的2电极结构的导电率测定单元61中,测定管62至少在上述导电率测定部位由绝缘体(例如氯乙烯管)构成,通常,在延伸设置部位的某一个位置,大多实质上成为接地状态,因此,由于其接地状态,有时将受到来自周围环境的噪声。
为了去除这种噪声的影响,例如最好使用图7或者是图8所示的3级结构的导电率测定单元。在图7所示的导电率测定单元71中,对于在被绝缘的测定管72中流过,或者贮藏在测定管72中的作为被测定物质的被测定流体73,设置与该被测定流体73接触的3个电极74、75、76。3个电极由用于检测导电率的导电率检测用电极74和隔开间隔配置该导电率检测用电极两侧的2个交流电流供给用电极75、76构成。在2个交流电流供给用电极75、76上经过放大器77,以等电位的恒定电压供给同相的交流电流。来自导电率检测用电极74的检测电流提供到上述加法或者减法运算处理。
在图7所示的导电率测定单元71中,导电率检测用电极74通过配置在其两侧的被供给了同相的交流电流的2个交流电流供给用电极75、76,对于存在于测定管72的延伸设置部位的某一个部位的接地点,成为电绝缘。即,在2个交流电流供给用电极75、76上,以同相供给恒定电压交流电流,导电率检测用电极74与交流电流供给用电极75、76之间的电位差始终保持预定的一定值,因此实质上在导电率检测用电极74与外部接地点之间成为不存在电阻的状态。从而,图6所示的单元结构中,由导电率检测用电极与外部接地点之间的电阻值或者其电阻值的变动引起的对于来自导电率检测用电极的输出电流的影响实质上完全不存在。换言之,完全不存在从导电率检测用电极74向外部接地点的漏电流。其结果,来自导电率检测用电极74的输出电流长时以没有干扰的状态取出,防止由于干扰引起的分散或者变动,长时稳定地进行高精度导电率检测。
在图8所示的导电率测定单元81中,对于在被绝缘的测定管82中流过的,或者贮藏在测定管82中的作为被测定物质的被测定流体83,设置与该被测定流体83接触的3个电极84、85、86。3个电极由用于检测导电率的导电率检测用电极84,隔开间隔配置在该导电率检测用电极一侧的交流电流供给用电极85和隔开间隔配置在导电率检测用电极84另一侧的接地电极86构成。在交流电流供给用电极85上,经过放大器87以恒定电压供给预定的交流电流,来自导电率检测用电极84的输出电流提供到上述的加法或者减法运算处理。
在图8所示的导电率测定单元81中,仅对于交流电流供给用电极85以恒定电压供给交流电流,接地电极86通过接地强制地成为电位0,这些电极85、86配置在导电率检测用电极84的两侧。从而,在电极85、86之间,通过导电率检测用电极84,在电路上成为所谓的电阻分割的状况。在该电极85、86之间的电路中,在电极85上供给预定的恒定电压交流电流,电极86通过接地其电位强制地长时为0,该状态长时稳定。即,即使测定管82的某一个延伸设置部位处于被接地的状态,在其接地点与导电率检测用电极84之间也没有电阻等进入的余地,由此从导电率检测用电极84取出的电流不会偏移或者变动。从而,来自导电率检测用电极84的输出电流长时以没有干扰的状态取出,防止由于干扰引起的分散或者变动,长时稳定地进行高精度的导电率测定。
在本发明中,不特别限定导电率测定单元的机械结构,例如能够采用图9所示的构造。在图9所示的导电率测定单元91中,例如最好使用在图9所示的由导电金属构成的电极本体92的表面上,通过氧化钛层93形成了电极面的导电率测定用电极94。氧化钛层93在由导电金属构成的电极本体92的表面上,通过溅射、电镀等表面处理形成,或者由钛金属构成电极本体92,通过把其表面氧化形成。氧化通过电解或者空气氧化进行。
导电率测定用电极94用作为与图6~图8所示的3个电极相当的电极,如图9所示,在由绝缘体构成的电极夹95上,在使电极面露出的状态下埋设。在图9所示的导电率测定单元91中,3个电极94配置成一列,两侧的电极94a、电极94b构成与电源相连接的交流电流供给用电极,中央的电极94c构成起到导电率检测用的传感器功能的导电率检测用电极。
电极夹95固定在基体96的预定位置。在基体96上,设置使被测定流体(例如水溶液)流入的流入口97以及流出的流出口98,导电率测定用的流通孔99以及流通孔100。在电极夹95上,设置流通孔101和流通孔102,配置成使得流通孔101与基体的流通孔99连接,流通孔102与基体的流通孔100连接。从流入口97流入的被测定流体通过基体96的内部通路103,流通孔99,电极夹95的流通孔101,流入到形成在各个电极94的电极面一侧的被测定物质贮藏空间104中。被测定物质贮藏空间104形成被测定流体的导电率测定用的流通路径。来自被测定物质贮藏空间104的流体通过电极夹95的流通孔102,基体96的流通孔100,内部通路105,从流出口98流出口。
在基体96上,在与各电极94a、94b、94c对应的位置上穿设贯通孔106a、106b、106c,通过贯通孔106a、106b、106c引出所需要的电布线。
被测定物质贮藏空间104在本实施形态中,由片形的填料107,在电极夹95上经过填料107隔开间隔相对配置的作为透光体的透明玻璃板108形成。在该玻璃板108的被测定物质贮藏空间104一侧的表面上,最好也以不损害透光性的程度实施氧化钛喷涂。测定在该被测定物质贮藏空间104内流过的流体的导电率。
电极夹95、填料107以及玻璃板108用螺栓109通过壳体110固定在基体96的一个面一侧。在壳体110上开设透光用的窗口111。通过该窗口111,照射来自配置在外部的光照射装置112的光。所照射的光从窗口111通过玻璃板108,照射到形成各个电极94a、94b、94c的电极面的氧化钛层93上。所照射的光选择具有在氧化钛层93中发挥光催化活性的波长的光。例如,能够使用特定波长(例如300~400nm波长的光)的紫外线,作为光照射装置112,能够使用例如发出紫外线的不可见光的装置。
另外,如果依据这样的导电率测定装置91,则通过来自光照射装置112的光照射,各个电极94a、94b、94c的表面上设置的氧化钛层93发挥光催化活性,即使在流过被测定物质贮藏空间104的被测定液体中包括有机物的情况下,由于该有机物根据光催化活性分解。从而,即使在导电率测定时在电极面进行离子交换,也能够防止非导电性的有机物粘着或者吸附在电极面上。其结果,不需要进行电极面定期的清洗,即使不清洗,也能够长时稳定地高精度的测定导电率。另外,还确保其高精度测定的再现性。
另外,如果在玻璃板108的被测定物质贮藏空间104一侧的表面上实施氧化钛喷涂,则在该面一侧也防止有机物的粘着或者吸附,还防止有机物向被测定物质贮藏空间104内的积蓄等,维持良好的测定精度。
导电率测定单元部分不限定于图9所示的构造,例如也能够像图11那样构成。在图11所示的导电率测定单元中,设置3个电极122a、122b、122c,例如两侧的电极122a、122b构成连接到电源的电源用电极,配置在其之间的电极122c构成起到导电率检测用的传感器功能的检测用电极。各电极122a、122b、122c的中央部分开设贯通孔123a、123b、123c,在各个孔123a、123b、123c的内面上设置着氧化钛层。在各个电极122a、122b、122c的两侧,配置由透光性的绝缘材料(例如四氟化乙烯)构成的隔片124a、124b、124c、124d,各个电极与各个隔片交互叠层。在隔片124a、124b、124c、124d的中央部分也开设贯通孔125a、125b、125c、125d。在两侧隔片124a、124d的外侧,配置着支撑体126a、126b,从两侧夹持电极122a、122b、122c与隔片124a、124b、124c、124d的叠层体。支撑体126a、126b的中央部分也开设贯通孔127a、127b,在各个孔127a、127b上,分别插入、固定导入被测定流体的管路128a的一端以导出被测定流体的管路128b的一端。
根据通过电极122a、122b、122c与隔片124a、124b、124c、124d的叠层连接的孔125a、123a、125b、123c、125c、123b、125d,形成被测定流体的流通路径。通过管路128b导入的被测定流体沿着该流通路径内部流过以后,通过管路128b排出。这些管路128a、128b由透光性的材料(例如四氟化乙烯)构成,从作为光照射装置的不可见光129照射预定波长的紫外光。照射的紫外光在通过管路128a、128b的同时由于在管路内部反复进行扩散反射,因此沿着管路128a、128b导行紫外光,从两侧的孔127a、127b部分向由电极122a、122b、122c内的氧化钛层构成的内面导光。另外,由于各个隔片124a、124b、124c、124d也由透光性的材料构成,因此来自不可见光129的紫外光通过各个隔片,利用其扩散、反射的同时向电极122a、122b、122c的内面照射。特别是比较薄地形成各电极或者各隔片(例如,把各电极的厚度取为0.2mm左右,把各隔片的厚度取为1mm左右),通过由各个电极和各个隔片形成的流通路径比较短,因此即使不使用光纤那样特别的导光体,通过沿着上述那样透光性的管路128a、128b进行的导光,以及经过透光性的隔片124a、124b、124c、124d的导光,在预定的电极面上照射用于测定的充分的光量。从而,在本实施形态中,能够更简单地构成小型的装置。
产业上的可利用性
如果依据本发明的多元导电率测定装置,则能够以高可靠性,高精度而且高灵敏度测定在位置上或者时间上不同的多个测定点之间的导电率的微小差异或者变化。从而,本发明的多元导电率测定装置特别是在水处理系统中的多个测定点之间的导电率的微小差异或者变化的测定方面极其有用,能够以高精度而且高灵敏度得到可靠性高的测定值。

Claims (14)

1.一种多元导电率测定装置,特征在于:
至少具有2个包含有与被测定物质接触的至少2个电极的导电率测定单元,把该导电率测定单元进行电连接使得能够至少把来自各个导电率测定单元的检测信号自身进行加法、减法运算的某一种处理。
2.如权利要求1所述的多元导电率测定装置,特征在于:
各个导电率测定单元中的上述至少2个电极由导电率检测用电极和电流供给用电极构成。
3.如权利要求2所述的多元导电率测定装置,特征在于:
在电流供给用电极上供给交流电流。
4.如权利要求3所述的多元导电率测定装置,特征在于:
在至少1个电流供给用电极上供给被放大或者缩小了的交流电流。
5.如权利要求1所述的多元导电率测定装置,特征在于:
来自各个导电率测定单元的检测信号的上述处理后的信号由一个放大器放大。
6.如权利要求1所述的多元导电率测定装置,特征在于:
各个导电率测定单元分别具有3个电极,该3个电极由导电率检测用电极,隔开间隔分别配置在该导电率检测用电极两侧的2个交流电流供给用电极构成,在该2个交流电流供给用电极上供给同相的交流电流。
7.如权利要求1所述的多元导电率测定装置,特征在于:
各个导电率测定单元分别具有3个电极,该3个电极由导电率检测用电极,隔开间隔配置在该导电率检测用电极一侧的交流电流供给用电极和隔开间隔配置在上述导电率检测用电极另一侧的接地电极构成。
8.如权利要求1所述的多元导电率测定装置,特征在于:
各个导电率测定单元中的上述至少2个电极分别由在用导电金属构成的电极本体的表面上通过氧化钛层形成了电极面的部分构成。
9.如权利要求8所述的多元导电率测定装置,特征在于:
各个导电率测定单元具有形成在上述至少2个电极的电极面之间的被测定物质贮藏空间和在各个电极面上照射光的光照射装置。
10.如权利要求9所述的多元导电率测定装置,特征在于:
由光照射装置照射的光具有引起上述氧化钛层的光催化活性的波长。
11.如权利要求9所述的多元导电率测定装置,特征在于:
光照射装置由光源构成。
12.如权利要求9所述的多元导电率测定装置,特征在于:
光照射装置由导入来自光源的光的导光体构成。
13.如权利要求9所述的多元导电率测定装置,特征在于:
由透光体形成被测定物质贮藏空间,来自光照射装置的光通过透光体照射在电极面上。
14.如权利要求13所述的多元导电率测定装置,特征在于:
在透光体的被测定物质贮藏空间一侧的表面上实施可透光的氧化钛喷涂。
CNB01801058XA 2000-02-23 2001-02-15 多元导电率测定装置 Expired - Fee Related CN1193225C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP45374/00 2000-02-23
JP45374/2000 2000-02-23
JP2000045374 2000-02-23

Publications (2)

Publication Number Publication Date
CN1366610A true CN1366610A (zh) 2002-08-28
CN1193225C CN1193225C (zh) 2005-03-16

Family

ID=18567969

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB01801058XA Expired - Fee Related CN1193225C (zh) 2000-02-23 2001-02-15 多元导电率测定装置

Country Status (7)

Country Link
US (1) US6690172B2 (zh)
EP (1) EP1174710A4 (zh)
KR (1) KR100710101B1 (zh)
CN (1) CN1193225C (zh)
AU (1) AU3230201A (zh)
TW (1) TW505789B (zh)
WO (1) WO2001063268A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651511B2 (en) 2006-12-06 2017-05-16 Abb Limited Conductivity sensor
CN110678761A (zh) * 2017-07-07 2020-01-10 株式会社岛津制作所 导电率检测器以及求相位调整值的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270183A (ja) * 2002-03-20 2003-09-25 Japan Organo Co Ltd 高感度測定装置
USRE49221E1 (en) 2002-06-14 2022-09-27 Parker Intangibles, Llc Single-use manifolds for automated, aseptic handling of solutions in bioprocessing applications
US7372005B2 (en) * 2004-09-27 2008-05-13 Aos Holding Company Water storage device having a powered anode
US7857506B2 (en) * 2005-12-05 2010-12-28 Sencal Llc Disposable, pre-calibrated, pre-validated sensors for use in bio-processing applications
WO2007116223A1 (en) * 2006-04-11 2007-10-18 Smart Cellar Limited Fluid property measurement
GB0706322D0 (en) * 2007-03-30 2007-05-09 Futuretec Technologies Ltd Fluid property measurement
US7505857B2 (en) * 2006-08-22 2009-03-17 H2Observe, Llc Water quality monitoring device and method
US20090123340A1 (en) * 2007-05-04 2009-05-14 H2Observe, Llc Water quality monitoring device and method
CN101809376B (zh) 2007-08-28 2013-05-22 Aos控股公司 具有罐子状况监控特征的存储型热水器
JP5894925B2 (ja) * 2010-10-20 2016-03-30 パナソニックヘルスケアホールディングス株式会社 微生物数測定装置
JP5695078B2 (ja) * 2010-11-17 2015-04-01 パナソニックヘルスケアホールディングス株式会社 微生物数測定装置
RU2520578C1 (ru) * 2012-11-08 2014-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Братский государственный университет" Способ согласования неоднородной четырехпроводной несимметричной линии электропередачи с электрической нагрузкой
RU2551362C2 (ru) * 2013-08-06 2015-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Братский государственный университет" Способ согласования четырехпроводной несимметричной высоковольтной линии электропередачи с электрической нагрузкой
DE102013108505A1 (de) * 2013-08-07 2015-03-05 Emitec Denmark A/S Verfahren zum Bestimmen der Qualität von Reduktionsmittel
RU2557797C2 (ru) * 2013-11-05 2015-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Братский государственный университет" Способ согласования протяженной четырехпроводной неоднородной несимметричной высоковольтной линии электропередачи со сверхпроводящей вставкой с электрической нагрузкой
US9885677B2 (en) * 2014-05-23 2018-02-06 Intel Corporation Liquid quality meter apparatus
CA3142793A1 (en) 2019-06-11 2020-12-17 Fresenius Medical Care Holdings, Inc. Systems and methods for measuring electrical characteristic of medical fluids

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1517697A (en) * 1974-08-02 1978-07-12 Kent Ltd G Measuring cells for measuring electrical conductivity of liquids
US4262253A (en) * 1978-04-26 1981-04-14 Phillips Petroleum Company Constant alternating current conductivity detector for a chromatograph
DE2924140C2 (de) * 1979-06-15 1985-03-07 Siemens AG, 1000 Berlin und 8000 München Einrichtung zur Anzeige eines Kühlwassereinbruchs in einem Kesselspeisewasser-Kreislauf
US4757252A (en) * 1985-10-25 1988-07-12 Drexelbrook Controls, Inc. Probe system for measuring the condition of materials
JPH0634700Y2 (ja) * 1987-06-11 1994-09-07 横河電機株式会社 導電率計測定回路
JPH0718902B2 (ja) * 1988-10-19 1995-03-06 株式会社日立製作所 電気伝導度検出器
US5223796A (en) * 1991-05-28 1993-06-29 Axiomatics Corporation Apparatus and methods for measuring the dielectric and geometric properties of materials
JPH0634700A (ja) * 1992-05-21 1994-02-10 Sony Tektronix Corp 素子特性測定装置の試験信号制御方法
JP3229771B2 (ja) * 1995-04-08 2001-11-19 株式会社堀場製作所 導電率または比抵抗を測定するための装置
JPH0989827A (ja) * 1995-09-19 1997-04-04 Kubota Corp 電気センサー
JPH11198633A (ja) * 1998-01-12 1999-07-27 Calsonic Corp 自動車用空気調和装置
US6290839B1 (en) * 1998-06-23 2001-09-18 Clinical Micro Sensors, Inc. Systems for electrophoretic transport and detection of analytes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651511B2 (en) 2006-12-06 2017-05-16 Abb Limited Conductivity sensor
CN110678761A (zh) * 2017-07-07 2020-01-10 株式会社岛津制作所 导电率检测器以及求相位调整值的方法
CN110678761B (zh) * 2017-07-07 2022-03-08 株式会社岛津制作所 导电率检测器以及求相位调整值的方法

Also Published As

Publication number Publication date
KR20020001836A (ko) 2002-01-09
US6690172B2 (en) 2004-02-10
TW505789B (en) 2002-10-11
WO2001063268A1 (fr) 2001-08-30
AU3230201A (en) 2001-09-03
EP1174710A4 (en) 2005-05-04
US20030098690A1 (en) 2003-05-29
KR100710101B1 (ko) 2007-04-23
CN1193225C (zh) 2005-03-16
EP1174710A1 (en) 2002-01-23

Similar Documents

Publication Publication Date Title
CN1193225C (zh) 多元导电率测定装置
JPH0736274Y2 (ja) 改良フローセル
CN101609113A (zh) 基于双屏蔽结构和串联谐振的非接触电导测量装置和方法
CN107389387A (zh) 便携式痕量汞分析仪
CN104458848B (zh) 一种pH指示与自校准的梳状纳米传感器及其制备方法
Stojanovic et al. Liquid chromatography-electrochemical detection of inorganic arsenic using a wall jet cell with conventional and microsized platinum disk electrodes
Bai et al. Electrochemical microsensor based on gold nanoparticles modified electrode for total phosphorus determinations in water
Yang et al. Fast-scan anodic stripping voltammetry for detection of Pb (II) at picomolar level
CN1818633A (zh) 一种便携式光离子化检测器的电离室
CN102269726B (zh) 工业型电容耦合式非接触电导在线测量装置及方法
CN1193226C (zh) 导电率测定装置
Xie et al. A newly competitive electrochemical sensor for sensitive determination of chrysin based on electrochemically activated Ta2O5 particles modified carbon paste electrode
CN116296620B (zh) 一种烟气分析仪的气路采集系统、装置及方法
CN101853771A (zh) 吸气冷凝器结构离子迁移谱仪
Baca et al. Anodic stripping voltammetry combined on-line with inductively coupled plasma-MS via a direct-injection high-efficiency nebulizer
Williams et al. Field-based heavy metal analyser for the simultaneous determination of multiple cations on-site
Bai et al. Microfluidic chip with interdigitated ultra‐microelectrode array for total phosphorus detection
CN211825811U (zh) 一种高精度总线气体探测模组
Gianti et al. Low‐cost fabrication of indium tin oxide (ITO) FETs for sodium detection in electrolytes and human urine
CN104977334A (zh) 一种测量生物需氧量的实验装置和方法
Zheng et al. Elemental Analysis of Environmental Waters by Solution Cathode Glow Discharge—Atomic Emission Spectrometry (SCGD-AES) with a Multifunctional Injection System
JP2001311710A (ja) 多元電気伝導度測定装置
Pretty et al. Signal enhancement of lead and thallium in inductively coupled plasma atomic emission spectrometry using on-line anodic stripping voltammetry
Nelson et al. Electrochemical deposition of lead for water quality sensing
CN103278494A (zh) 一种光电复合检测溶氧的方法及实验装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050316