CN1331211C - 利用检测闸门氧化硅层中氮化物含量的半导体元件制成方法 - Google Patents

利用检测闸门氧化硅层中氮化物含量的半导体元件制成方法 Download PDF

Info

Publication number
CN1331211C
CN1331211C CNB03142094XA CN03142094A CN1331211C CN 1331211 C CN1331211 C CN 1331211C CN B03142094X A CNB03142094X A CN B03142094XA CN 03142094 A CN03142094 A CN 03142094A CN 1331211 C CN1331211 C CN 1331211C
Authority
CN
China
Prior art keywords
thickness
silicon oxynitride
concentration
nitrogen
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB03142094XA
Other languages
English (en)
Other versions
CN1581464A (zh
Inventor
游智星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CNB03142094XA priority Critical patent/CN1331211C/zh
Priority to US10/796,614 priority patent/US7033846B2/en
Publication of CN1581464A publication Critical patent/CN1581464A/zh
Application granted granted Critical
Publication of CN1331211C publication Critical patent/CN1331211C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明涉及一种集成电路元件的制程方法,包括:引入测试晶片到生产流线的晶片群中去形成一各个制程实验室组,每个晶片都须尚未受闸门层介电质生长的制程步骤。此方法导入实验组晶片于闸门介电质生产的制程,即,闸门氧化程。此方法形成氮氧化硅薄膜到预定的厚度不多于40埃。利用预定的制程温度及引入含氮成份物质,含氧成份物质个别的或混合的,制程环境。此方法是将测试晶片从生产流程中取出,施此第二次氧化步骤于之前的氮氧化硅薄膜至增长出第二厚度,其值大受在氮氧化硅中氮浓度成份的影响。此方法决定厚度值差即第一预定值厚度与第二生成厚度值的差别。另加一步骤即以此值差投应于一群组氮浓度数值表去决定在该薄膜厚度,其氮浓度数值为何。

Description

利用检测闸门氧化硅层中氮化物含量的半导体元件制成方法
技术领域
本发明涉及半导体器件的工艺及集成电路的制造。具体地说,本发明涉及一种生成闸门氧化硅层,内含有氮化物并以检测氮化物浓度决定生成薄的闸门层于MOS结构,应用于逻辑元件。
背景技术
我们可认知此发明应有更广泛的运用价值,例如,此发明可用于各种元件,如动态随机存取存储器,静态随机存取存储器,(SRAM),专用集成电路(ASIC),微处理器,微控制器,Flash存储器及其他。
集成电路或“IC”,涉及将无数相连通的元件组制造于单一晶片上含有上百万的元件。现今的IC所提供的表现度及设计复杂度是远远超过以往的想象。为要取得复杂度的改善及增加线路密度(即,单位晶片面积内能被装入的元件数目),最小化元件的大小规格,又称为元件的“身量规格”(Geometry),因而IC变得愈来愈小。
增加线路的密度不但改变IC的复杂度及表现度,更提供了最低价的元件器给顾客。一座IC制造厂,须花费动辄百万或十亿美元的造价。各厂有其相对的晶片处理量,而每一片晶片又有其相对的元件数。因此,若我们能将各个IC做得愈小,更多的元件就将可作入单一晶片,于是增加该制造厂的元件产出量。
而要将元件做小,因每个制程有其极限,故是个很难的挑战。也就是说,一种制程组合方式通常只能做小到某种大小规格,再过,则须要改变制程或改变元件铺展的设计。有一种极限例子就是闸门氧化硅层阻挡住杂质促闸门外扩散至其下通道的能力,这种能力决定了三相晶体管元件的可靠度(reliability)。
同可作例证的是,离子渗入杂质能促闸门间游离入通道间造成负面影响。硼杂质常使用于渗入闸门,因其原子小且移动率快,常渗入闸门区内。这种硼迁移常始于闸门层,包括多晶硅层,穿过氧化硅层,到达通道(channel)区内。因硼乃带电杂质,它们通常影响三相晶体管元件的起始电压(ThveShold Voltage)值造成其值的平移,其他限制包括高的价电子滞留(T rapping)率,P-型通道次起始(sub-threshold))电压反转值的恶化(degradation),较差的三相晶体管的可靠度,极其他。
由上观之,改良制程以制造更佳半导体元件是件必要之事。
发明内容
本发明涉及及半导体器件的工艺及其集成电路的制造。具体说,本发明涉及一种生成闸门氧化硅层,内含氮化物,并以随时检测氮化物浓度方式在MOS元件结构中生成的薄的闸门层,可应用于存储元件。我们可认知此发明有更广泛的运用价值。例如,此发明可应用于各种元件,如静态随机存取存储器(SRAM),特殊用途集成电路元件体(ASIC),微处理器,微控制器,Elash存储器及其他。
在一具体实施例中,本发明提供一种制程方法用于生产制造集成电路元件体。
根据本发明,提供一种制造集成电路的工艺方法,包括下列步骤:
引入一测试晶片到生产线晶片群中去形成一组制程实验组,每个晶片都须尚未经闸门层介电质生成的制程步骤,导入此实验组于闸门介电层生成的流程,形成氮氧化硅的薄膜到预定厚度,该预定厚度不多于40埃,形成的温度及氮成份、氧成份气体的种类预先选定,
把测试晶片取出施于第二次氧化步骤,使氮氧化硅层膜增长出第二厚度,此第二厚度之值取决于氮成份在氮氧化硅层中的浓度;
量出预定厚度和第二厚度间之差值;
根据此差值到一氮分子浓度和厚度关系资料中,确定在氮氧化硅层中氮分子的浓度。
根据本发明,提供一种集成电路元件制程方法,其包括:
引入一测试晶片于一闸门介质形成的制程,形成一氮氧化硅层至预定的厚度小于40埃,在预定的制程温度,使用含氮成份物质于测试片上,
使之第二次氧化此氮氧化硅膜,形成增加了第二厚度的氧化膜,此第二厚度的生成,取决于氮成份物质在氮氧化硅中的含量浓度,
根据一氮分子浓度和厚度关系资料,利用第二厚度决定氮成份浓度在氮氧化硅膜中的浓度数值。
非常多的益处可由此发明取代传统方法。例如,此方法利用传统测量技术而简易好用。在其他含蓄体,此发明提高更高的良率,其以每晶片上晶粒数为单位。更加的,此方法提供一种制作程序和传统的制程技术和设备均为匹配。优先的,此方法应将可应用于不同的元件生产。譬如存储器,ASIC,微处理器和其他元件。从不同的含蓄体,此方法都将得到更多不同的优势。这些或其他优势,将于此节或特别的下节介绍。
有关此发明的目的、特征及优点如将于比照细节描述及随同的附图作更详尽描述如下:
附图说明
图1是依本发明一个实施例的半导体元件的简明切面图。
图2是依本发明的另一实施例的半导体元件的简明切面图。
图3是依本发明一个实施例的简明的检测图表。
图4是依本发明一个实施例的简明的检测图表。
图5是依本发明一个实施例的简明厚度图表投射相对氮化物含量,由图4的方法测量取得。
具体实施方式
本发明涉及半导体器件的工艺及集成电路的制造。具体地说,本发明涉及一种生成闸门氧化硅层,内含氮化物成份,并以检测氮化物浓度在MOS元件结构中生成闸门层,可应用于存储器生成。我们可认知此发明应有更广泛的运用价值,例如,此发明可应用于各类元件,如静态随机存取存储器(SRAM),特殊用途集成电路元件(ASIC),微处理器,微控制器,Flash存储器及其他。
图1是依本发明一个实施例的半导体元件的简明切面图100。此图仅作例子,不能仅依之而局限本发明申求有效的范围。本领域技术人员,可从此发明悟出许多其他的新变数,改造方式和新取代方法。
如图所示,标记100包含各项特征如闸门体101,包括含硼成份杂质,连同极/集极区域完整定义一个MOS三相晶体管。此含硼成份杂质从闸门区扩散透过闸门之下。在系列制程热效应107下,上述扩散作用会频繁发生。含硼成份的杂质,通常很小,常聚集堆在通道区109中,由于有此硼杂质扩散的现象,制程的限制就很多。此限制包含须考虑发生正向起始电压(Threshold Voltage)的平移,次起始(Sub-threshold)切换值的增加,电子井陷的增加,及其他许多可靠度的问题。基于此,许多技术都研发来设法减少甚或阻止任何硼迁移到通道区的发生。这些技术都将在本文中被介绍、描述、尤其于以下文。
图2是依本发明另一实施例的半导体元件的简明切面图。此图仅作例证,不能依此而局限本发明有效的范围。本技术领域者,不难从此发明而认出许多其他新变数,改造方式和取代方法。如图所示,标志200包括形成氮氧化硅层201于闸门体之下。依之,含硼杂质被保留在闸门区203而大量减少进入通道区其直接位于闸门闸门区之下。通常我们很困难去控制多少量的含氮分子进入氮氧化硅层膜内。亦即,杂质浓度很难测量,而且只能被生产线外特别检测系统来测量,其造成负担和困难。依之,这样一来的层膜几乎无法在合理的准确度内测量它们的厚度尤其当膜是如此薄到传统使用闸门层的结构的厚度。因此,我们研发了一个技巧以检测氮成份在膜内的浓度,利用到下列方法且描述于下。
依本发明一个实施例,一种检测氮成份杂质浓度在闸门层膜中的方法。在此说明提供如下:
1、提供半导体基底晶元片于生产流程中,伴随生产晶片或不随生产晶片;
2、使用水蒸气(即,低于750℃)在基底上形成氧化层;
3、引入含一氧化氮NO(或二氧化氮NO2)的气体,在预先设定温度下,以将含氮分子注入到氧化层;
4、维持薄膜厚度在预先决定数值稍低于30埃(Augstrom),而其厚度在其他晶片有不同氮成份浓度者,都大致相同在同一范围;
5、在此已氮化(Nitrided)薄膜上进行快速热氧化,以使它长厚达到最后厚度,此长厚已知令受多少氮分子成份存留在氧化硅膜中的影响,此长厚的厚度最好大于第4点中的薄膜厚度。该快速热氧化可以在900℃的含氧分子成份的气体环境中进行。
6、利用精圆测量仪(ellipsometer)测量膜最后厚度;
7、利用氮含量检测分析制成交叉图表对应厚度增长(thickness difference)从最后厚度比照确定的厚度。
8、判定含氮分子在氧化硅膜内的浓度;
9、利用此检测步骤,结果调整必须改变的制程;
10、再作上步骤去判定适合的氮分子浓度;
11、若必须继续其他步骤;
上法是一连续步骤用来准备对应薄膜内氮分子浓度和热工时间(或厚度)的关系。此关系资料将用来判定在任一闸门介电质层中氮分子的浓度。此方法更多细节,陈述于下列图表中。
图3是依本发明一个实施例的简化图式的检测方法300。此图仅作例子,不能依此而局限本发明的有效范围。本技术领域者,不难从此发明而认出许多其他变数,改造方式和取代方法。首先,此方法准备一半导体基底片,用来作闸门层氧化形成。此方法形成利用到水蒸气(即少于750℃)在基底片上形成一预定厚度的闸门氧化层301。此方法亦引入一氧化氮NO(或二氧化氮NO2)等含氮物质在低温时注入此含氮分子于氧化层膜。此层膜收受第一次热工305而形成第一厚度A1321,其厚度受第一次热工预定温度的影响。在此,厚度是用一椭圆仪来测量,可像RudolphInstruments。所造的仪器,但也可以像其他。氮浓度的数值是由SIMS来决定,这些连续步骤,重复施作,以其他热工时间(即,307,309,311),形成其他厚度(即,A2 323,A3 325,A4 327)和相关的浓度(即,333,335,337)。
图4是依本发明一个实施例的简示图说明检测的方法。此图仅作例子,不能依此而局限本发明的有效范围。本技术领域者,不难从此发明而认出许多其他变数,改造方法和取代方法。参见图4,每一个基底(即,A1 321,A2 323,A3 325,A4 327)均接受快火热工氧化(Rapid therinal Oxidation)或慢火炉热氧化去形成在氮氧化硅上的厚度。最佳晶片上都相似。此制程的实施直到每个基底晶片都形成另加的氧化硅厚度a1,a2,a3,a4,其相对的总厚度则是B1403,B2405,B3407,B4409。使用更简便方式,以椭圆仪测量各晶片总厚度。
仅供于例证,我提供了下列的关系:
a1=B1-A1
在此,a1是从快火热工氧化或慢火炉热氧化后薄膜厚度;
B1是再氧化了氮氧化硅层后的总厚度;
A1是氮化氧化硅层后的总厚度;
此方法决定a1 411,a2 413,a3 415,a4 421。下一步骤,对照图5的图表,根据再氧化后层的厚度(另加的氧化硅厚度a1,a2,a3,a4)得到其相对的含氮浓度值。由图5作展示,它是一个简易厚度图投射出相对应的氮浓度使用到本发明领域内的图4方法。此图仅作例子,不能依此而局限本发明的有效范围,本技术领域者,不难从此发明而认出许多其他变数,改造方式和取代方法。如示,此垂直的轴表示厚度以埃作单位,而此水平轴,交叉于垂直轴,表示的是氮分子成份的浓度。此方法建立一方式能投照厚度的增加到相对应的浓度切深,依照以上描述的所有程序步骤。
即是,这方法决定测试片厚度于垂直轴上,而决定浓度切深于横轴上,而此法可供决定制程的氮浓度是否须调整改变。

Claims (7)

1、一种制造集成电路的工艺方法,包括下列步骤:
引入一测试晶片到生产线晶片群中去形成一组制程实验组,每个晶片都须尚未经闸门层介电质生成的制程步骤,导入此实验组于闸门介电层生成的流程,形成氮氧化硅的薄膜到预定厚度,该预定厚度不多于30埃,形成的温度及氮成份、氧成份气体的种类预先选定,
把测试晶片取出施于第二次氧化步骤,使氮氧化硅层的薄膜增长出第二厚度,氮成份在氮氧化硅层中的浓度与此第二厚度值有关;
量出预定厚度和第二厚度间之差值;
根据此差值到一氮分子浓度和厚度关系资料中,确定在氮氧化硅层中氮分子的浓度。
2、如权利要求1所述的工艺方法,其特征在于,第二氧化步骤是以快火热工氧化于含氧成份的气体中而完成。
3、如权利要求2所述的工艺方法,其特征在于,第二厚度值是要比预定厚度值大。
4、如权利要求1所述的工艺方法,其特征在于,其第二氧化步骤是以高于900℃,操作于含氧分子成份的气体环境中。
5、如权利要求1所述的工艺方法,其特征在于,建立上述氮分子浓度和厚度关系资料,以标示厚度差值与氮浓度值之间的关系。
6、如权利要求1所述的工艺方法,其特征在于,是以至少椭圆仪来决定该厚度和该第二厚度。
7、一种集成电路元件制程方法,其包括:
引入一测试晶片于一闸门介质形成的制程,在预定的制程温度,使用含氮成份物质于该测试晶片上,形成一氮氧化硅层至预定的厚度,该厚度小于30埃,
第二次氧化此氮氧化硅层,使氮氧化硅层增长出第二厚度,氮成份物质在氮氧化硅层中的浓度与此第二厚度有关,
根据一氮分子浓度和厚度关系资料,利用第二厚度决定氮成份浓度在氮氧化硅层中的浓度数值。
CNB03142094XA 2003-08-06 2003-08-06 利用检测闸门氧化硅层中氮化物含量的半导体元件制成方法 Expired - Lifetime CN1331211C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB03142094XA CN1331211C (zh) 2003-08-06 2003-08-06 利用检测闸门氧化硅层中氮化物含量的半导体元件制成方法
US10/796,614 US7033846B2 (en) 2003-08-06 2004-03-08 Method for manufacturing semiconductor devices by monitoring nitrogen bearing species in gate oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB03142094XA CN1331211C (zh) 2003-08-06 2003-08-06 利用检测闸门氧化硅层中氮化物含量的半导体元件制成方法

Publications (2)

Publication Number Publication Date
CN1581464A CN1581464A (zh) 2005-02-16
CN1331211C true CN1331211C (zh) 2007-08-08

Family

ID=34109564

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB03142094XA Expired - Lifetime CN1331211C (zh) 2003-08-06 2003-08-06 利用检测闸门氧化硅层中氮化物含量的半导体元件制成方法

Country Status (2)

Country Link
US (1) US7033846B2 (zh)
CN (1) CN1331211C (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564552B2 (en) * 2004-05-14 2009-07-21 Kla-Tencor Technologies Corp. Systems and methods for measurement of a specimen with vacuum ultraviolet light
US7359052B2 (en) * 2004-05-14 2008-04-15 Kla-Tencor Technologies Corp. Systems and methods for measurement of a specimen with vacuum ultraviolet light
US7349079B2 (en) * 2004-05-14 2008-03-25 Kla-Tencor Technologies Corp. Methods for measurement or analysis of a nitrogen concentration of a specimen
US7408641B1 (en) 2005-02-14 2008-08-05 Kla-Tencor Technologies Corp. Measurement systems configured to perform measurements of a specimen and illumination subsystems configured to provide illumination for a measurement system
US7700376B2 (en) * 2005-04-06 2010-04-20 Applied Materials, Inc. Edge temperature compensation in thermal processing particularly useful for SOI wafers
CN100461362C (zh) * 2005-09-23 2009-02-11 中芯国际集成电路制造(上海)有限公司 提高超薄等离子体氮氧化硅电性测试准确性的方法
CN100378984C (zh) * 2005-09-23 2008-04-02 中芯国际集成电路制造(上海)有限公司 恒温电迁移测试结构及其圆角光学邻近修正方法
CN101303991B (zh) * 2007-05-10 2010-08-11 中芯国际集成电路制造(上海)有限公司 栅介质层测试控片及其形成方法
CN103426784B (zh) * 2012-05-24 2017-02-08 上海华虹宏力半导体制造有限公司 超薄栅极氮氧化硅薄膜的氮含量测量方法
TWI566310B (zh) * 2013-08-13 2017-01-11 聯華電子股份有限公司 控制臨界電壓的方法及半導體元件的製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508532A (en) * 1994-06-16 1996-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with braded silicon nitride
CN1261726A (zh) * 1999-01-06 2000-08-02 国际商业机器公司 氮氧化物栅介质及其制作方法
US6399445B1 (en) * 1997-12-18 2002-06-04 Texas Instruments Incorporated Fabrication technique for controlled incorporation of nitrogen in gate dielectric
CN1400634A (zh) * 2001-08-06 2003-03-05 旺宏电子股份有限公司 以单一晶片制程制作一闸极介电层的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087440B2 (en) * 2003-05-23 2006-08-08 Texas Instruments Corporation Monitoring of nitrided oxide gate dielectrics by determination of a wet etch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508532A (en) * 1994-06-16 1996-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with braded silicon nitride
US6399445B1 (en) * 1997-12-18 2002-06-04 Texas Instruments Incorporated Fabrication technique for controlled incorporation of nitrogen in gate dielectric
CN1261726A (zh) * 1999-01-06 2000-08-02 国际商业机器公司 氮氧化物栅介质及其制作方法
CN1400634A (zh) * 2001-08-06 2003-03-05 旺宏电子股份有限公司 以单一晶片制程制作一闸极介电层的方法

Also Published As

Publication number Publication date
US20050032251A1 (en) 2005-02-10
US7033846B2 (en) 2006-04-25
CN1581464A (zh) 2005-02-16

Similar Documents

Publication Publication Date Title
CN1331211C (zh) 利用检测闸门氧化硅层中氮化物含量的半导体元件制成方法
Regolini et al. Passivation issues in active pixel CMOS image sensors
CN104237764B (zh) Mos器件热载流子注入寿命退化的测试方法和装置
Ference et al. The combined effects of deuterium anneals and deuterated barrier-nitride processing on hot-electron degradation in MOSFET's
Druijf et al. Nature of defects in the Si‐SiO2 system generated by vacuum‐ultraviolet irradiation
CN101620994B (zh) 掺杂栅介质层、多晶硅层及叠层顶层的最小厚度确定方法
US6249117B1 (en) Device for monitoring and calibrating oxide charge measurement equipment and method therefor
US6313648B1 (en) Method for quantitating impurity concentration in a semiconductor device
Tenney et al. Composition of Phosphosilicate Glass by Infrared Absorption
CN100334703C (zh) 校准和使用半导体处理系统的方法
CN102194650B (zh) 用于评价改善负偏压下温度不稳定性效应工艺效果的方法
CN100389489C (zh) 利用注入晶片的注入机的低能量剂量监测
CN105810613B (zh) 高电流注入机台监控方法
CN100490081C (zh) 栅极和栅极介电层的形成方法
McGillivray et al. Improved measurements of doping profiles in silicon using CV techniques
EP4358118A1 (en) Method for forming thermally oxidized film of semiconductor substrate and method for manufacturing semiconductor device
Croci et al. Extraction and evolution of Fowler-Nordheim tunneling parameters of thin gate oxides under EEPROM-like dynamic degradation
JP2951142B2 (ja) メモリセル容量の評価用半導体装置および評価方法
WO2001070438A1 (en) Device for monitoring and calibrating oxide charge measurement equipment and method therefor
Paulson et al. Performance and Reliability of Scaled Gate Dielectrics
Kerber A comprehensive method combining deep-depletion profiling and capacitance transients to evaluate energy and depth distribution of MOS bulk defects
Dixit et al. Stoichiometry and Masking Ability of LPCVD Silicon Nitride Against Arsenic Diffusion
Khorasani Carrier lifetime measurement for characterization of ultraclean thin p/p+ silicon epitaxial layers
Kapoor et al. MNOS memory technology with oxynitride thin films
Michelson Statistically calculating reject limits at parametric test

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20111121

Address after: 201203 No. 18 Zhangjiang Road, Shanghai

Co-patentee after: Semiconductor Manufacturing International (Beijing) Corp.

Patentee after: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) Corp.

Address before: 201203 No. 18 Zhangjiang Road, Shanghai

Patentee before: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) Corp.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070808