CN1319916C - 从与链烷烃的混合物中分离烯烃的方法 - Google Patents

从与链烷烃的混合物中分离烯烃的方法 Download PDF

Info

Publication number
CN1319916C
CN1319916C CNB2003801040773A CN200380104077A CN1319916C CN 1319916 C CN1319916 C CN 1319916C CN B2003801040773 A CNB2003801040773 A CN B2003801040773A CN 200380104077 A CN200380104077 A CN 200380104077A CN 1319916 C CN1319916 C CN 1319916C
Authority
CN
China
Prior art keywords
formula
film
repeating unit
propylene
accounts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2003801040773A
Other languages
English (en)
Other versions
CN1717378A (zh
Inventor
I·C·罗曼
J·W·西蒙斯
O·M·伊金纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN1717378A publication Critical patent/CN1717378A/zh
Application granted granted Critical
Publication of CN1319916C publication Critical patent/CN1319916C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种使用聚酰亚胺膜从烯烃和链烷烃的混合物中分离或富集烯烃的方法。该方法非常适用于从丙烯/丙烷的混合物中分离丙烯。该新方法的膜对实际的工业生产条件下气体混合物中烃组分的塑化作用表现出良好的耐受性。

Description

从与链烷烃的混合物中分离烯烃的方法
                   发明领域
本发明涉及使用选择性渗透膜分离或富集烯烃和链烷烃混合物的方法。更特别地,本发明涉及使用某些聚酰亚胺膜从例如炼油工业、石化工业等产生的烯烃与链烷烃的气体或液体混合物中选择性地分离烯烃的方法。
                   发明背景
烯烃,特别是乙烯和丙烯,是重要的化工原料。典型地,它们以含有饱和烃和其它组分的混合物的形式发现于自然界中或作为主要产物或副产物而被生产。在原料烯烃可以使用之前,它们通常必须从这些混合物中分离出来。
目前,烯烃/链烷烃混合物的分离通常通过蒸馏完成。但是,组分的相似挥发性使得这一工艺成本高且复杂,需要昂贵的蒸馏塔和高耗能的加工。Jrvelin报道说,丙烯/丙烷混合物的分馏是美国实施的最为耗能的蒸馏过程(Harri Jrvelin和James R.Fair,“Adsorptive separation of propylene/propane mixtures”,“Ind.Eng.Chem.Research”,32(1993),2201-2207)。需要更为节能的分离工艺。
人们已经考虑由膜替代蒸馏使烯烃与链烷烃分离。但是,主要由于组分的分子尺寸相似而使分离变得困难。另一个困难在于原料物流的条件通常接近混合物的气/液相边界。同样,膜必须在高压和高温的条件下在烃环境中操作。这样苛刻的条件会对许多膜材料的耐受性和分离性能的稳定性产生负面影响。例如,一些杂质使选择性渗透膜材料塑化并会造成选择性和/或渗透速率的损失。非常需要一种具有足够高的烯烃/链烷烃选择性、并在高压和高温的条件下与烃物流的长期接触过程中具有足够耐受性的膜。
已有用于从烯烃和饱和烃的混合物中分离烯烃的膜材料的报道,但没有任何一种材料可以容易地或经济地制成在工业工艺条件下独特地同时具有高选择性和耐受性的膜。
例如,已有人研究了多种具有良好的丙烯/丙烷选择性的无机和聚合物/无机膜材料。参见M.Teramoto、H.Matsuyama、T.Yamashiro和Y.Katayama的“Separation of ethylene from ethane bysupported liquid membranes containing silver nitrate ascarrier”(J.Chem Eng.Japan,19(1986),1)和R.D.Hughes、J.A.Mahoney和E.F.Steigelmann的“Olefin separation byfacilitated transport”(N.N.Li,J.M.Calo(高辑),“MembraneHandbook”,Van Nostrand,New York,1992)。这样的材料难于制成工业上实用的膜。液体促进输送(facilitated-transport)膜已在实验室中被证明具有吸引人的分离性能,但难以放大,并已发现在典型的工业丙烯/丙烷物流环境中性能会下降。
固体聚合物-电解质促进输送膜看起来更易于加工为稳定的薄膜的膜。参见Ingo Pinnau和L.G.Toy的“Solid polymer electrolytecomposite membranes for olefin/paraffin separation”(J.Membrane Science,184(2001),39-48)。这样的膜可参见美国专利No.5,670,051(Pinnau等,1997),其中四氟硼酸银/聚(环氧乙烷)膜所表现的乙烯/乙烷选择性大于1000。但是,这些膜因为其在烯烃/链烷烃工业环境中差的化学稳定性而受到很大限制。
中空碳纤维膜在实验室测试中表现出应用前景(“Propylene/Propane Separation”,来自Carbon Membranes,Ltd.,Israel的产品信息),但易于因工业物流中存在的可凝聚有机物而降解。而且,碳膜易碎且难以形成为工业应用的膜组件。
基于橡胶状聚合物的膜的典型烯烃/链烷烃选择性对于经济上可使用的分离而言太低。例如,Tanaka等报道,50℃下聚丁二烯膜对单一气体的丙烯/丙烷的选择性仅为1.7(K.Tanaka,A.Taguchi,Jianquiang Hao,H.Kita,K.Okamoto,“J.Membrane Science”,121(1996),197-207);和Ito报道说,40℃时硅橡胶的丙烯/丙烷选择性仅略高于1.0(Akira Ito和Sun-Tak Hwang,“J.AppliedPolymer Science”,38(1989),483-490)。
基于玻璃状聚合物的膜具有提供有用的高烯烃/链烷烃选择性的潜能,因为它可以使分子尺寸小于链烷烃的烯烃优先扩散。
已用于气体分离的玻璃状聚合物通常仅表现出中等的烯烃/链烷烃选择性。例如,Ito报道说,聚砜、乙基纤维素、乙酸纤维素和三乙酸纤维素的膜表现出的丙烯/丙烷选择性为5或更低(Akira Ito和Sun-Tak Hwang,“Permeation of propane and propylene throughcellulosic polymer membranes”,“J.Applied Polymer Science”,38(1989),483-490)。
美国专利No.4,623,704描述了使用三乙酸纤维素膜从聚乙烯装置的反应器出口回收乙烯的方法。但是,含有96.5%乙烯的出口物流仅缓和地升级至97.9%,升级后的物流作为渗透物流再循环回反应器。
聚(2,6-二甲基-1,4-苯撑氧)膜显示出对纯气体的丙烯/丙烷选择性为9.1(Ito和Hwang,Ibid)。Ilinitch等报道了更高的选择性(“J.Membrane Science”,98(1995),287-290;“J.MembraneScience”,82(1993),149-155和“J.Membrane Science”,66(1992),1-8),但在更高压力下的数值不确定并伴随有不希望的膜被丙烯塑化的现象。
人们对聚酰亚胺膜用于气体的分离进行了深入的研究,而且对用于使烯烃与链烷烃分离进行了一定程度的研究。Lee等(Kwang-Rae Lee和Sun-Tak Hwang,“Separation of propylene and propane bypolyimide hollow-fiber membrane module”,“J.MembraneScience”,73(1992),37-45)公开了一种聚酰亚胺中空纤维膜,其在低进料压力(2-4barg)下所表现出来的混合气体的丙烯/丙烷选择性为5-8。聚酰亚胺的组成没有公开。
Krol等(J.J.Krol,M.Boerrigter,G.H.Koops,“Polyimidehollow fiber gas separation membranes:preparation and thesuppression of plasticization in propane/propyleneenvironments”,“J.Membrane Science”,184(2001),275-286)报道的聚酰亚胺中空纤维膜由联苯四羧酸二酐和二氨基苯基二氢化茚组成,其表现出的纯气体的丙烯/丙烷选择性为12;但是,在低至1barg的丙烯压力下,膜会被丙烯不希望地塑化。
已经发现基于4,4’-(六氟异亚丙基)双邻苯二甲酸酐(6FDA)和芳族二胺的聚酰亚胺有利地同时具有丙烯的渗透性和丙烯/丙烷的选择性。已经报道了两种不同的含6FDA聚酰亚胺的质密薄膜的膜的渗透性数据,其对丙烯/丙烷的纯气体的选择性范围为6至27。(C.Staudt-Bickel等,“Olefin/paraffin gas separations with6FDA-based polyimide membranes”,“J.Membrane Science”,170(2000),205-214)。美国专利No.5,749,943(Shimazu等)报道了类似的6FDA聚酰亚胺的更高选择性;但是,可以预计由于富含丙烯的原料气体的塑化作用,混合气体的选择性在高压下会低得多。
美国专利Nos.4,532,041、4,571,444、4,606,903、4,836,927、5,133,867、6,180,008和6,187,987公开了基于由二苯甲酮-3,3’,4,4’-四羧酸二酐(BTDA)和双(4-氨基苯基)甲烷混合物及甲苯二胺混合物共聚衍生的聚酰亚胺共聚物的膜,其可用于液体分离。
美国专利Nos.5,605,627、5,683,584和5,762,798公开了不对称的微孔膜,该膜基于由二苯甲酮-3,3’,4,4’-四羧酸二酐(BTDA)和双(4-氨基苯基)甲烷混合物及甲苯二胺混合物共聚形成的聚酰亚胺共聚物,其可用于液体过滤或透析膜。
美国专利No.5,635,067公开了基于含苯基二氢化茚的聚酰亚胺聚合物,和由二苯甲酮-3,3’,4,4’-四羧酸二酐(BTDA)与甲苯二异氰酸酯(TDI)及4,4’-亚甲基双苯基异氰酸酯(MDI)缩聚衍生的聚酰亚胺,和/或由BTDA和苯均四酸二酐与TDI及MDI缩聚衍生的聚酰亚胺的共混物的流体分离膜。
已发表的利用膜使烯烃与链烷烃分离的数据的一个显著缺点在于缺少在实际工业条件下的数据:例如,高的进料和渗透压力及高温。正是在这样的条件下膜材料的塑化会变得显著,并会导致在长时间的使用过程中膜的性能显著下降。尽管为提供可用于工业化的使烯烃与链烷烃分离的膜作了大量工作,但没有任何一种膜被证明能够满足工业应用所需的性能标准。
                   发明简述
本发明涉及一种用于从烯烃和链烷烃的混合物中分离烯烃的膜分离方法,该方法包括:
(a)提供一种双侧的选择性渗透膜,该膜含有具有式(I)所示重复单元的聚合物或共聚物:
其中R2是选自式(A)、式(B)、式(C)及其混合物的组成部分,
Figure C20038010407700092
Z是选自式(L)、式(M)、式(N)及其混合物的组成部分,及
Figure C20038010407700093
R1是选自式(Q)、式(T)、式(S)及其混合物的组成部分,
Figure C20038010407700094
(b)使膜的一侧与含有烯烃化合物和链烷烃化合物的原料混合物接触,该链烷烃化合物具有至少与烯烃化合物一样多的碳原子数,
(c)使原料混合物选择性地透过膜,从而在膜的第二侧形成富集烯烃的透过组合物,该透过组合物的烯烃化合物浓度大于原料混合物的烯烃化合物浓度,
(d)从膜的第二侧取出富集烯烃的透过组合物,和
(e)从膜的一侧取走贫含烯烃的组合物。
                 发明详述
本发明涉及一种利用含有某些聚酰亚胺聚合物、共聚物和其共混物的膜,选择性地使烯烃与链烷烃分离的方法。形成这些聚酰亚胺的聚合物具有如下式(I)所示的重复单元:
其中R2是选自式(A)、式(B)、式(C)及其混合物的组成部分,
Figure C20038010407700102
Z是选自式(L)、式(M)、式(N)及其混合物的组成部分,及
Figure C20038010407700103
R1是选自式(Q)、式(T)、式(S)及其混合物的组成部分,
在一个优选实施方案中,形成膜的选择性层的聚酰亚胺具有如下式(II)所示的重复单元:
Figure C20038010407700112
在这一实施方案中,R1部分中,式(Q)占重复单元的0-100%,式(T)占重复单元的0-100%,式(S)补足重复单元的总数100%。这一结构的聚合物可得自HP Polmer GmbH,商品名为P84,且更优选用于本发明。认为P84具有根据式(II)的重复单元,其中,R1是式(Q)占重复单元的约16%,式(T)占重复单元的约64%,而式(S)占重复单元的约20%。认为P84是由以下化合物的缩合反应得到的:二苯甲酮四羧酸二酐(BTDA,100mole%),与2,4-甲苯二异氰酸酯(2,4-TDI,64mole%)、2,6-甲苯二异氰酸酯(2,6-TDI,16mole%)和4,4’-亚甲基双(苯基异氰酸酯)(MDI,20mole%)的混合物。
在另一个优选实施方案中,形成选择性层的聚酰亚胺具有选自示于下式(IIIa和IIIb)的组成的重复单元:
重复单元可以仅为式(IIIa)或式(IIIb)。优选,重复单元是式(IIIa)和(IIIb)的混合物。在这些实施方案中,R1部分的组成是:式(Q)占重复单元的约1-99%,式(T)将重复单元的总数补足100%,而a的范围是a和b总和的约1-99%。
这一结构的优选聚合物可以得自HP Polymer GmbH,商标名为P84-HT325。认为P84-HT325具有根据式(IIIa和IIIb)的重复单元,其中R1部分的组成是:式(Q)占重复单元的约20%,式(T)占重复单元的约80%,且其中a为a和b总和的约40%。认为P84-HT325是由以下化合物的缩合反应得到的:二苯甲酮四羧酸二酐(BTDA,60mole%)和苯均四酸二酐(PMDA,40mole%),与2,4-甲苯二异氰酸酯(2,4-TDI,80mole%)和2,6-甲苯二异氰酸酯(2,6-TDI,20mole%)。
在仍然另一个优选实施方案中,膜的选择性渗透部分可由含有上述聚合物共混物的材料形成。例如,考虑可以用如下共混物形成膜:该共混物含有具有如上定义的式(IIIa)、式(IIIb)、或式(IIIa)与式(IIIb)混合物的重复单元的第一聚合物,和具有如上定义的式(II)的重复单元的第二聚合物。更优选主要由该第一和第二聚合物组成的共混物的膜。在这样的优选组合物中,第二聚合物应构成第一聚合物与第二聚合物总量的约10-90wt%。
聚酰亚胺应具有适当的分子量以能够成膜且易挠从而能够形成连续的薄膜或膜。本发明的聚酰亚胺优选的重均分子量范围为约20,000至约400,000,更优选为约50,000至约300,000。聚合物可通过本领域已知的各种技术形成薄膜或膜。聚合物通常为玻璃状或刚性的,因此,可以用于形成聚合物的未负载薄膜或纤维的单层膜。这样的单层薄膜通常太厚而无法形成原料混合物中优先渗透组分的工业上可接受的穿过膜的通量。为了在经济上更加实用,分离膜可包括一个非常薄的选择性层,其形成一个较厚结构的一部分。这种结构可以是,例如,不对称膜,它包括一个选择性渗透聚合物的薄的致密表层,和一个较厚的微孔支撑层,这种支撑层与表层邻近且整合在一起。这样的膜描述于,例如,Ekiner的美国专利5,015,270。
在一个优选实施方案中,膜可以是复合膜,即,膜具有多个典型地具有不同组成的层。现代复合膜典型地含有一个多孔且非选择性的支撑层。它主要为复合膜提供机械强度。一个选择性渗透的另一种材料的选择性层,其共延展地放置在支撑层上。选择性层主要用于提供分离性能。典型地,这种复合膜的支撑层通过溶液铸塑薄膜或纺成中空纤维制备。然后,选择性层通常在另外的步骤中溶液涂覆在载体上。或者,中空纤维复合膜可通过将载体材料与分离层同时共挤出来制备,如Ekiner的美国专利5,085,676所述。
本发明的膜可放置在任何合适类型的分离装置中。例如,平板型膜可堆叠在板-框型组件中或缠绕在螺旋-缠绕型组件中。中空纤维膜典型地用热固型树脂罐装在圆筒形箱中。最终的膜分离装置可含有一个或多个膜组件。它们可单独地装在压力容器中,或者多个组件可以共同安装在一个共用的具有适当直径和长度的箱中。
操作时,一种或多种烯烃化合物和一种或多种链烷烃化合物的混合物与膜的一侧接触。在适当的渗透驱动力下,例如在膜的原料侧和透过侧之间施加一个压力差,烯烃化合物以比碳原子数相同的链烷烃化合物更高的速率通过到透过侧。即,三个碳的烯烃较三个碳的链烷烃更快地渗透过。这就得到富集烯烃的物流,它可从膜的透过侧取出。贫含烯烃的剩余物,有时称作“滞留物”,从原料侧取走。
新方法可在宽的条件范围内操作,因而适于接受由各种不同来源供给的原料物流。如果原料物流为已经具有足够高的、高于大气压的压力的气体,且通过膜保持压力梯度,则用于分离的驱动力可能已经足够而不需要进一步提高原料物流的压力。相反,原料物流可以被压缩至更高的压力和/或可将膜的透过侧抽成真空以提供足够的驱动力。优选用于分离的驱动力应当为膜两侧的压力梯度为约0.7至约11.2MPa(100-1600psi)。
新方法可接受气态或液态的原料物流。物质的状态将取决于烯烃/链烷烃原料物流的组成和其压力及温度。当原料物流为液态时,分离可通过全蒸发(pervaporation)机制进行。基本上,在全蒸发过程中,与膜接触的液体原料混合物的组分渗透并蒸发通过膜,从而分离出汽相组分。
本发明特别适用于从丙烯/丙烷混合物中分离丙烯。这样的混合物产自,例如烯烃生产操作的流出物物流,和石化装置的各种工艺物流。因此在一个优选实施方案中,该方法包括将含有丙烯和丙烷的物流与膜的原料侧接触,其中所述膜对于丙烯和丙烷是选择性渗透的。丙烯富集在透过物物流中,因而滞留物物流相应地贫含丙烯。本发明的膜表现出出乎意料的高的丙烯/丙烷选择性,这使其与现有技术的膜相区别。而且,本发明的膜在现有技术膜的性能显著退化的条件下长时间工作后表现出稳定的性能。
分离方法的基本步骤包括:
使膜的一侧与含有烯烃化合物和链烷烃化合物的原料混合物接触,链烷烃化合物具有至少与烯烃化合物一样多的碳原子数,
使原料混合物选择性地透过膜,从而在膜的第二侧形成富集烯烃的透过组合物,其烯烃化合物的浓度高于原料混合物的烯烃化合物浓度,
从膜的第二侧取出富集烯烃的透过组合物,和
从膜的一侧取走贫含烯烃的组合物,其烯烃化合物的浓度低于原料混合物的烯烃化合物浓度。
在本发明方法的优选实施方案中,原料混合物包括乙烯和乙烷。
在本发明方法的优选实施方案中,原料混合物处于液态。
在本发明方法的优选实施方案中,进一步包括以下步骤:在原料混合物首次接触膜的初始时间之后,在一段时间内连续执行步骤(a)-(d),和其中膜表现出对于烯烃化合物的透过性,并且在72小时连续进行步骤(a)-(d)时的透过率至少为初始时间透过率的60%。
在本发明方法的优选实施方案中,膜提供的烯烃化合物相对于链烷烃化合物的选择性至少为10。
在本发明方法的优选实施方案中,膜提供的烯烃化合物的透过率至少为约0.4GPU。
现在本发明通过某些有代表性的实施方案的实施例来举例说明本发明,其中除非另有说明,所有份数、比例和百分比都以重量计。所有原始不是得自SI单位的重量和测量的单位都已经转化为SI单位。以下实施例中引用的美国专利的全部公开内容引入于此作为参考。
                   实施例
实施例1:用P84膜进行丙烯/丙烷气体分离
不对称的P84中空纤维膜由32%的P84、9.6%的环丁砜和1.6%的乙酸酐在N-甲基吡咯烷酮(NMP)中的溶液纺成,纺制方法和设备参见美国专利5,034,024和5,015,270。刚形成的丝以180cm3/小时的速率通过喷丝头在75℃挤出,其中喷丝头的纤维通道尺寸为外径559μm和内径254μm。将水中含有85%NMP的流体注入纤维的孔中,速率为33cm3/小时。新生成的纤维在室温下通过5cm的空气间隙进入24℃的水凝结浴(coagulant bath)中,纤维以52m/min的速率缠绕。
被水蘸湿的纤维用50℃的流动水洗涤约12小时以除去残留溶剂,然后继续如美国专利4,080,744和4,120,098所述,与甲醇和已烷进行交换,然后于室温下真空干燥30分钟。之后纤维在100℃干燥一小时。纤维样品形成四个测试膜组件,每个包含52根纤维。组件中的纤维用与美国专利4,230,463所述方法相似的方法进行处理以密封分离层中的缺陷。然后纤维与2wt%的1-2577 Low-VOC ConformalCoating(Dow Corning Corporation)在2,2,4-三甲基戊烷中的溶液接触30分钟,然后干燥。
用丙烯/丙烷(50∶50mole%)混合原料对组件进行渗透性测试。原料混合物通过控制原料压力为2.8MPa(400psig)、原料温度为90℃而以蒸汽态提供。所提供的原料混合物与纤维外侧接触并在大气压下收集透过物物流。透过物流速用气泡流量计以体积替代法测量。原料流速保持在大于透过物流速20倍的水平。这一速率足够高,足以使得原料侧的组成在原料混合物透过膜时基本保持不变。这么做是为了简化对膜渗透性能的计算。透过物物流的组成用安装了火焰离子化检测器的气相色谱测量。透过物的平均组成为92.2%丙烯和7.8%丙烷。
膜的性能用丙烯透过率(permeance)和丙烯/丙烷选择性表述。透过率是用膜的表面积及膜两侧丙烯分压的差值将穿过膜的丙烯流速归一化。用气体渗透单位(“GPU”)来表示。一个GPU相当于10-6cm3(在标准温度和压力“STP”下)/(sec·cm2·cmHg)。丙烯/丙烷选择性是丙烯透过率除以丙烷透过率的比值。四种组件的性能示于表1。
表1
  丙烯透过率(1)GPU   丙烯/丙烷选择性(1)
  1.30.971.41.3   12.012.512.913.1
(1)24小时后测量
实施例2:未经后处理的P84膜的丙烯/丙烷气体分离
对实施例1的一个纤维样品进行处理并如实施例1那样成型为测试组件,不同之处在于纤维未进行处理以密封分离层中的缺陷。丙烯透过率为1.7GPU而丙烯/丙烷选择性为7.5。尽管选择性低于实施例1中处理过的纤维的选择性,但也足够高,这表明在不经密封后处理的情况下,可以生成具有可接受性能特征的P84纤维作为不对称膜。
实施例3:P84膜的丙烯/丙烷气体分离
如实施例1那样制备P84的不对称中空纤维膜,不同之处在于以下两个改变:(a)水浴温度降低至8℃及(b)喷丝头温度提高至87℃。对纤维进行洗涤、干燥并制备为测试组件,用如实施例1的50∶50mole%混合的丙烯/丙烷原料混合物测试渗透性。丙烯透过率为0.61GPU,丙烯/丙烷选择性为15。
实施例4:用P84膜进行丙烯/丙烷气体分离时P84膜的耐受性
在90℃下,用2.8MPa(400psig)的50∶50mole%的丙烯/丙烷原料混合物,对与实施例3的纤维相似的不对称P84中空纤维膜进行4天耐受性测试。测试用来模拟工业操作条件。结果示于表II。未观察到选择性的降低。观察到丙烯透过率略有下降,其在第二天后稳定。
表II
  时间   原料压力MPa(psig)   丙烯/丙烷选择性  丙烯透过率GPU
  4小时1天2天3天4天   1.7(250)1.7(250)1.7(250)2.8(400)2.8(400)   1313131214  0.760.960.730.610.61
实施例5:P84膜的丙烯/丙烷液体原料分离
用丙烯/丙烷的50∶50mole%原料混合物测试实施例1的一个组件。原料压力和温度分别控制在2.8MPa(400psig)和50℃,以使原料混合物为液态。在大气压下取出透过物,因此透过物为蒸汽相。对于这类分离,通常认为分离的驱动力是膜两侧的浓度差而非用于气体或蒸汽渗透的分压差。为将本实施例的结果与蒸汽态原料条件下的渗透进行比较,使用J.G.Wijmans和R.W.Baker在“A simple predictivetreatment of the permeation process in pervaporation”(“J.Membrane Science”,79(1993),101-113)中所述的简化数学处理。这一分析假设液体原料在膜的原料侧蒸发以生成饱和的蒸汽相,然后由于分压梯度的驱动而透过膜。这一分析提供的数学模型包括了原料侧和透过侧的蒸汽压和透过率与选择性的术语,它们可以与气态原料混合物分离时所用的术语进行比较。该模型还包括与液-汽平衡相关的术语。对于液态的丙烯/丙烷的50∶50mole%的原料混合物,该膜生成了含93%丙烯的透过物物流。通过应用该模型,可以确定丙烯透过率为0.46GPU,而丙烯/丙烷选择性为16。在对蒸汽态的相同组成的原料混合物进行的分离测试中(条件为2.8MPa(400psig),90℃),丙烯透过率为0.95GPU,丙烯/丙烷选择性为13。这表明P84膜可用于液态丙烯/丙烷的分离。
实施例6:用与P84-HT325共混的P84的膜进行丙烯/丙烷气体分离
从16%P84、16%P84-HT325、9.6%环丁砜和1.6%乙酸酐在NMP中的溶液中纺出P84与P84-HT325的1∶1共混物的不对称中空纤维膜,方法如实施例1所述。纺丝条件和设备相似,不同之处在于:喷丝头温度为85℃,浴温8℃,空气间隙为10cm。纤维成型为组件,该组件如实施例1用于测试丙烯/丙烷(50∶50mole%)原料混合物的渗透性。渗透性能为丙烯透过率1.9GPU,和丙烯/丙烷选择性为11.9。
实施例7:用与P84-HT325共混的P84的膜进行丙烯/丙烷液体原料分离
用丙烯/丙烷50∶50mole%的原料混合物测试实施例6中P84与P84-HT325的1∶1共混物的组件。通过施加实施例5所述的条件而将原料混合物保持在液态,即,原料压力为2.8MPa(400psig),温度为50℃。透过物于大气压下以蒸汽形式取出。
该膜生成含93.6%丙烯的透过物;丙烯透过率为0.6GPU,丙烯/丙烷选择性为15.5。这表明P84与P84-HT325的1∶1共混物的膜可用于分离液态丙烯/丙烷原料。
实施例8:用与P84-HT325共混的P84的膜进行丙烯/丙烷液体原料分离
实施例7的测试(即,使用P84与P84-HT325的1∶1共混物的膜)持续进行100小时,以评估膜性能在模拟的工业条件下的稳定性。结果示于表III。未观察到明显的降低。
表III
  时间,小时   丙烯/丙烷选择性  丙烯透过率,GPU
  246084110   15.515.915.615.8  0.56GPU0.59GPU0.67GPU0.67GPU
实施例9:用P84致密薄膜的膜进行丙烯/丙烷气体分离
用在NMP中含20%P84的溶液铸塑成P84聚合物的薄的致密薄膜。薄膜在真空烘箱中于200℃干燥四天。聚合物薄膜样品在改进的47mm超滤型渗透箱(Millipore)中进行测试,使用条件为2.8MPa(400psig)、90℃的丙烯/丙烷50∶50mole%的原料混合物。透过物的压力为2-5mmHg。原料流速高至足以确保低的原料成为透过物的转化率从而使原料侧的组成不变。用装备了火焰离子化检测器的气相色谱测量原料和透过物物流的组成。透过物流速的测量基于渗透箱的固定体积的透过物室中压力随时间的增加。
聚合物的渗透性能由两个参数表征:丙烯的渗透率(permeability)和丙烯/丙烷的选择渗透性(permselectivity)。渗透率是用薄膜表面积和薄膜厚度及薄膜两侧丙烯分压差值将穿过薄膜的丙烯流速归一化。渗透率的单位是Barrer。一个Barrer相当于10-10cm3(STP)·cm/(sec·cm2·cmHg)。丙烯/丙烷的选择渗透性是丙烯与丙烷渗透率的比值。P84薄膜在90℃和2.8MPa(400psig)的丙烯渗透率为0.24Barrer;丙烯/丙烷的选择渗透性为15.5。选择渗透性与用P84聚合物中空纤维膜测量的选择性表现出良好的一致性。
实施例10:用TDI+BTDA∶BPDA(1∶1)的膜进行丙烯/丙烷分离
对于甲苯二异氰酸酯(TDI,20%的2,6-甲苯二异氰酸酯和80%的2,4-甲苯二异氰酸酯的混合物)和二苯甲酮-3,3’,4,4’-四羧酸二酐(BTDA)与3,3’,4,4’-联苯四羧酸二酐(BPDA)的1∶1混合物的共聚物的致密薄膜,如实施例9那样,用50∶50mole%的丙烯/丙烷混合原料在2.8MPa(400psig)和90℃的条件下测试其渗透性。膜的丙烯渗透率为0.48Barrer,丙烯/丙烷的选择渗透性超过16。
对比例1:用常规组成的纤维膜进行丙烯/丙烷分离
Matrimid5218,即,5,x-氨基-(4-氨基苯基)-1,1,3-三甲基二氢化茚和3,3’,4,4’-二苯甲酮四羧酸二酐(Vantico,Inc.)的共聚物的复合中空纤维膜样品,如实施例1那样,用丙烯/丙烷的50∶50mole%的原料混合物在1.7MPa(250psig)和90℃下在72小时的时间内测试其渗透性。测试目的在于确定膜性能在模拟的工业条件下的稳定性。该膜如美国专利5,468,430所述,是由MEDAL,LP生产的工业用气体分离膜。测试结果示于表IV。
表IV
  时间,小时   丙烯/丙烷选择性  丙烯透过率,GPU
  2244872   5.57.07.17.2  9.04.84.03.8
从上述结果明显可见,与本发明的膜不同,该膜表现出低的选择性,且在测试过程中其初始透过率损失超过50%。
对比例2:用聚芳酰胺膜进行丙烯/丙烷分离
对由两种芳族聚酰胺的共混物制得的不对称中空纤维膜的样品,如实施例1那样,用50∶50mole%的丙烯/丙烷原料混合物在2.8MPa(400psig)和90℃的条件下测试其渗透性。该膜参见美国专利5,085,774(实施例15)。该纤维纺丝时拉伸比为7.3。它已被确定为是适用于从氢气与烃或一氧化碳的混合物中分离氢气的气体分离膜。它所表现的丙烯透过率为0.23GPU,丙烯/丙烷选择性为9.5。这一性能低于具有式(I)组成的新型膜。这一结果是出乎意料的,因为芳族聚酰胺的膜在其它混合物的分离中具有非常高的选择性,例如在90℃时,对于H2/CH4的选择性高于200。
尽管在前面的说明书中已经选择了本发明特定的形式来举例说明,其中为了全面描述本发明的这些形式引用了具体的术语,它们对于本领域普通技术人员来说是充分的,但是应当理解,各种能产生基本上等价的或更优结果和/或性能的替代和改进都将被认为落在以下权利要求的范围和精神之内。

Claims (13)

1.一种用于从烯烃和链烷烃的混合物中分离烯烃的膜分离方法,包括:
(a)提供一种双侧的选择性渗透膜,包括具有式(I)的重复单元的聚合物或共聚物:
其中,R2是选自式(A)、式(B)、式(C)及其混合物的组成部分,
Figure C2003801040770002C2
Z是选自式(L)、式(M)、式(N)及其混合物的组成部分,和
Figure C2003801040770002C3
R1是选自式(Q)、式(T)、式(S)及其混合物的组成部分,
(b)使膜的一侧与含有烯烃化合物和链烷烃化合物的原料混合物接触,该链烷烃化合物具有至少与烯烃化合物一样多的碳原子数,
(c)使原料混合物选择性地透过膜,从而在膜的第二侧形成富集烯烃的透过组合物,该透过组合物的烯烃化合物浓度大于原料混合物的烯烃化合物浓度,
(d)从膜的第二侧取出富集烯烃的透过组合物,和
(e)从膜的一侧取走贫含烯烃的组合物。
2.权利要求1的方法,其中重复单元为式(II)
Figure C2003801040770003C1
和其中R1部分是式(Q)占重复单元的0-100%,式(T)占重复单元的0-100%,和式(S)将重复单元的总数补足为100%。
3.权利要求2的方法,其中R1部分是式(Q)占重复单元的约16%,式(T)占重复单元的约64%,和式(S)占重复单元的约20%。
4.权利要求1的方法,其中重复单元包括选自式(IIIa)、式(IIIb)及其混合物的组成部分:
Figure C2003801040770003C2
其中R1部分是式(Q)占重复单元的约1-99%,式(T)将重复单元的总数补足到100%,且其中a为a+b的约1-99%。
5.权利要求4的方法,其中R1部分是式(Q)占重复单元的约20%,式(T)占重复单元的约80%,且其中a为a+b的约40%。
6.权利要求4的方法,其中所述膜包括所述聚合物与具有式(II)的重复单元的第二聚合物的共混物,
Figure C2003801040770004C1
和其中第二聚合物的R1部分是式(Q)占重复单元的0-100%,式(T)占重复单元的0-100%,和式(S)将重复单元的总数补足为100%。
7.权利要求6的方法,其中第二聚合物构成所述聚合物与第二聚合物的共混物的约10-90wt%。
8.权利要求1的方法,其中原料混合物包括乙烯和乙烷。
9.权利要求1的方法,其中原料混合物包括丙烯和丙烷。
10.权利要求7的方法,其中原料混合物处于液态。
11.权利要求1的方法,其进一步包括以下步骤:在原料混合物首次接触膜的初始时间之后,在一段时间内连续执行步骤(a)-(d),和其中膜表现出对于烯烃化合物的透过性,并且在72小时连续进行步骤(a)-(d)时的透过率至少为初始时间透过率的60%。
12.权利要求1的方法,其中膜提供的烯烃化合物相对于链烷烃化合物的选择性至少为10。
13.权利要求10的方法,其中膜提供的烯烃化合物的透过率至少为约0.4GPU。
CNB2003801040773A 2002-12-02 2003-10-27 从与链烷烃的混合物中分离烯烃的方法 Expired - Lifetime CN1319916C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US43032702P 2002-12-02 2002-12-02
US60/430,327 2002-12-02
US10/353,210 2003-01-27

Publications (2)

Publication Number Publication Date
CN1717378A CN1717378A (zh) 2006-01-04
CN1319916C true CN1319916C (zh) 2007-06-06

Family

ID=35822513

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801040773A Expired - Lifetime CN1319916C (zh) 2002-12-02 2003-10-27 从与链烷烃的混合物中分离烯烃的方法

Country Status (1)

Country Link
CN (1) CN1319916C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665863A (zh) * 2009-09-30 2012-09-12 乔治洛德方法研究和开发液化空气有限公司 沸点接近烃组分混合物的膜分离

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134621B2 (ja) * 2012-11-15 2017-05-24 日立造船株式会社 パラフィンとオレフィンの混合物からのオレフィンの分離・回収装置および方法
KR20180008564A (ko) * 2015-05-11 2018-01-24 컴팩트 멤브레인 시스템즈, 인코포레이티드 알켄-알칸 분리 멤브레인용 코폴리머
CN107469643B (zh) * 2017-07-26 2021-03-30 华南理工大学 一种高性能金属有机骨架膜及其在丙烯与丙烷高效分离中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Permeation and separation properties of polyimide membranesto olefins and paraffins TANAKA K ET AL,JOURNAL OF MEMBRANE SCIENCE,ELSEVIER SCIENTIFIC PUBL.COMPANY. AMSTERDAM,NL 1996 *
Separ ation of ethane/ethylene and propane/pr-opylenesystems with a carbonized bpd-a-pp oda polyimidemembrane JUN.ICHIRO HAYASHI ET AL,INDUSTRIAL & ENGIN EERING CHEMISTRY R.ESEARCH,Vol.35 No.11 1996 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665863A (zh) * 2009-09-30 2012-09-12 乔治洛德方法研究和开发液化空气有限公司 沸点接近烃组分混合物的膜分离
CN102665863B (zh) * 2009-09-30 2016-02-24 乔治洛德方法研究和开发液化空气有限公司 沸点接近烃组分混合物的膜分离

Also Published As

Publication number Publication date
CN1717378A (zh) 2006-01-04

Similar Documents

Publication Publication Date Title
US7399897B2 (en) Method of separating olefins from mixtures with paraffins
JP5567211B2 (ja) 空気分離のための高パーミアンスポリイミド膜
US10569218B2 (en) Multiple membrane separation process using glassy polymeric membrane and rubbery polymeric membrane
Okamoto et al. Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane
US6572679B2 (en) Gas separation using organic-vapor-resistant membranes in conjunction with organic-vapor-selective membranes
JP5750109B2 (ja) ポリベンゾオキサゾール膜の選択性を向上させる方法
US6579341B2 (en) Nitrogen gas separation using organic-vapor-resistant membranes
US7479227B2 (en) Liquid-phase separation of low molecular weight organic compounds
US6572680B2 (en) Carbon dioxide gas separation using organic-vapor-resistant membranes
Wang et al. Membrane pervaporation
WO2018093488A1 (en) High selectivity chemically cross-linked rubbery membranes and their use for separations
WO2018093487A1 (en) High flux, cross-linked, fumed silica reinforced polyorganosiloxane membranes for separations
US20040173529A1 (en) Liquid-phase separation of low molecular weight organic compounds
WO2015175184A1 (en) Polyimide membranes with very high separation performance for olefin/paraffin separations
CN110461450B (zh) 用于分离的橡胶状聚合物膜
CN1319916C (zh) 从与链烷烃的混合物中分离烯烃的方法
US9327248B1 (en) Copolyimide membranes with high permeability and selectivity for olefin/paraffin separations
US9751053B2 (en) Asymmetric integrally-skinned flat sheet membranes for H2 purification and natural gas upgrading
RU2696131C2 (ru) Асимметричные, целиком покрытые оболочкой плоско-листовые мембраны для очистки H2 и обогащения природного газа
JP4494222B2 (ja) パラフィンとの混合物からオレフィンを分離する方法
Brunetti et al. Si‐Containing Polymers in Membrane Gas Separation
CN116615280A (zh) 用于气体分离的高选择性聚酰亚胺/pes共混物中空纤维膜
Qiao et al. Pervaporation Membranes for Organic Separation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070606