CN1319225C - 超短脉冲激光器及使用该激光器的光学头 - Google Patents

超短脉冲激光器及使用该激光器的光学头 Download PDF

Info

Publication number
CN1319225C
CN1319225C CNB2003101027874A CN200310102787A CN1319225C CN 1319225 C CN1319225 C CN 1319225C CN B2003101027874 A CNB2003101027874 A CN B2003101027874A CN 200310102787 A CN200310102787 A CN 200310102787A CN 1319225 C CN1319225 C CN 1319225C
Authority
CN
China
Prior art keywords
optical fiber
laser
optical
ultra
saturable absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101027874A
Other languages
English (en)
Other versions
CN1501358A (zh
Inventor
北冈康夫
山本和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1501358A publication Critical patent/CN1501358A/zh
Application granted granted Critical
Publication of CN1319225C publication Critical patent/CN1319225C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Lasers (AREA)

Abstract

一种超短脉冲激光装置包括:具有线性偏振的泵浦激光二极管;以线性偏振振荡的固体激光介质;保持偏振方向的光纤;和可饱和吸收器反射镜。该固体激光介质设置在该光纤和该可饱和吸收器反射镜之间。从该泵浦激光二极管发射的激光与该光纤的第一端面光学地耦合,从该光纤第二端面发射的激光泵浦该固体激光介质。该光纤的第一端面和该可饱和吸收器反射镜构成激光共振腔。用这种结构,可以以数百MHz的重复频率稳定地实现锁模。

Description

超短脉冲激光器及使用该激光器的光学头
技术领域
本发明涉及一种用于光学通信领域和光学信息处理领域的超短脉冲激光装置。
背景技术
三维逐位记录是一种预计为下一代高密度和高容量记录的技术,它利用非线性效应,例如多光子处理。玻璃、有机材料等在通常状态下对于所施加的激光是透明的,当用一透镜将脉冲宽度为飞秒(毫微微秒)级的超短脉冲激光聚集到玻璃、有机材料等时,吸收的跃迁概率的变化与光强的平方成比例,从而产生光吸收。由此,吸收光谱可以通过例如将二芳基乙烯(diarylethene)从开环变成闭环而改变。由于材料对于激光来说是透明的,所以它可以沿层压方向制作多层,由此能够增加光学记录的容量。
这种三维逐位记录要求超短脉冲的激光。图9示出了一个用作超短脉冲激光光源的飞秒级激光器的例子。在这个装置中,来自泵浦激光器60的激光经反射镜61和凹透镜62被聚集到固体激光介质63上。在可饱和吸收器反射镜64和输出镜65之间形成一个共振腔。该可饱和吸收器反射镜64(saturable absorber mirror)被用于锁模。一对棱镜66和67用于色散补偿。Cr:镁橄榄石(fersterite)(泵浦波长1.06μm,振荡波长1.3μm)用作固体激光介质63,而Nd:钇铝石榴石(YAG)激光器(波长:1.06μm)用作泵浦激光器60,由此得到20飞秒的超短脉冲光。
假定该超短脉冲光的平均功率、重复频率、脉冲宽度和峰值功率分别为Pc、f、t和Pp,那么一个脉冲的能量E由下式表示:
E=Pc/f(J)
并且峰值功率Pp表示如下:
Pp=E/t(W)
Pc取决于泵浦激光器的功率。考虑到家用电器,泵浦激光器的功率必须不超过1W。因此,为了增加Pp,应当减少重复频率f和脉冲宽度。同时,例如,为了将超短脉冲激光器应用于光学记录,要求适合的数据传输速率,从而要求的重复频率不低于数百兆赫(MHz)。为了用1瓦(watt)的泵浦实现1kW的峰值功率,脉冲宽度需要大约10皮秒。
作为减少脉冲宽度的一种方式,锁模是优选的。根据该方法,通过以激光通过共振腔的一个往复运动的时序同步地改变增益和损耗使脉冲的相位一致。锁模的方法包括利用AO元件和EO元件的主动型锁模和利用可饱和吸收器和Kerr效应的被动型锁模。锁模的频率v和共振腔长度d之间的关系表示如下:
v=c/2d
其中,c表示光速。因此,为了实现在100兆赫的周期的锁模,共振腔长度必须设置为1.5m。为此,光学系统变得很复杂,如图9中所示,这带来的问题是使装置尺寸增大,而且考虑到光学元件的位移和污染这还带来可靠性的问题。
此外,在日本专利JP H08(1996)-213680A中描述了一种已知的超短脉冲激光装置,其中光纤插在共振腔的光学路径中。光纤的使用使得光学元件的数目和要被光学调节的部件的数目减少。然而,就锁模引起的功率稳定性和结构的简单性而言,还没有实现足以实用的装置。
发明内容
因此,考虑到上述问题,本发明的目的是提供一种超短脉冲激光装置,该装置结构小而简单,并能获得稳定的功率。
本发明的具有第一种结构的超短脉冲激光装置包括:具有线性偏振的泵浦激光二极管;以线性偏振振荡的固体激光介质;保持偏振方向的光纤;以及可饱和吸收器反射镜。固体激光介质设置在光纤与可饱和吸收器反射镜之间。从泵浦激光二极管发射的激光与光纤的第一端面耦合,而从光纤的第二端面发射的激光泵浦固体激光介质。光纤的第一端面和可饱和吸收器反射镜构成激光共振腔。
本发明的具有第二种结构的超短脉冲激光装置包括:具有线性偏振的泵浦激光二极管;形成在铁电晶体基片上的波导固体激光介质,它以线性偏振振荡并具有波导损耗控制单元;和保持偏振方向的光纤;光纤的第一端面和波导固体激光介质的第一端面相对,以便相互光学地耦合。从泵浦激光二极管发射的激光与光纤的第二端面或波导固体激光介质的第二端面光学地耦合,以便泵浦波导固体激光介质。光纤的第二端面和波导固体激光介质的第二端面构成激光共振腔。
具有本发明的第一种结构的光学头包括具有第一种结构的超短脉冲激光装置。该超短脉冲激光装置具有功率输出单元,并且光纤设置在功率输出单元和泵浦激光二极管之间。泵浦激光二极管固定在热沉(heat sink)底座上,功率输出单元固定在光学头底座上,光学头底座与热沉底座分开设置。
具有本发明的第二种结构的光学头包括超短脉冲激光器,该超短脉冲激光器包括具有线性偏振的泵浦激光二极管;掺杂有过渡元素的光纤;和可饱和吸收器反射镜。该超短脉冲激光器具有功率输出单元,并且光纤设置在功率输出单元与泵浦激光二极管之间。泵浦激光二极管固定在热沉底座上,而功率输出单元固定在光学头底座上,光学头底座与热沉底座分开设置。
附图说明
图1示意地示出了本发明的实施例1的超短脉冲激光装置的结构。
图2是用在上述超短脉冲激光装置中的半导体可饱和吸收器反射镜的截面图。
图3示意地示出了本发明的实施例2的超短脉冲激光装置的结构。
图4示意地示出了本发明的实施例3的超短脉冲激光装置的结构。
图5是用在本发明实施例4的超短脉冲激光装置中的光子光纤的截面图。
图6示意地示出了本发明的实施例5的超短脉冲激光装置的结构。
图7示意地示出了本发明的实施例7的光学头的结构。
图8示意地示出了本发明的实施例7的光学头的结构。
图9示意地示出了常规的飞秒级的激光器结构。
具体实施方式
具有本发明第一种结构的超短脉冲激光装置的主要元件包括:具有线性偏振的泵浦激光二极管;保持偏振方向的光纤;以线性偏振振荡的固体激光介质;以及可饱和吸收器反射镜。用这种结构,共振腔的长度可以设置在1m或1m以上的紧凑结构,对于100MHz的重复频率,因为有锁模发生所以能够产生皮秒级或更短的短脉冲光,并且能够很容易获得足够的峰值功率。此外,以线性偏振振荡的固体激光介质和保持偏振方向的光纤的使用使得在共振腔中振荡的激光的偏振方向能够维持线性偏振。这对于锁模是有利的,并且由于稳定的、高效率的振荡能够获得高峰值功率。
在具有第一种结构的超短脉冲激光装置中,优选的是,多层电介质薄膜形成在光纤的第一端面,多层电介质薄膜对于来自泵浦激光二极管的光具有低反射率,而对于在激光共振腔中振荡的光具有高反射率。作为光纤,可以使用光子光纤。优选地,固体激光介质由Nd:YVO4、Nd:GdVO4或Cr:LiSAF组成。
具有本发明第二种结构的超短脉冲激光装置利用具有波导损耗控制单元的波导固体激光介质而不是第一种结构中的固体激光介质和可饱和吸收器反射镜的组合。波导损耗控制单元可以产生光波导损耗,即可控制共振腔的损耗,该损耗起锁模作用。用这种结构,可以得到和第一种结构的效果同样的效果。
在具有第二种结构的超短脉冲激光装置中,波导损耗控制单元可以用形成在铁电晶体基片上的定向耦合器构成。波导固体激光介质可以包括波长转换单元。
具有本发明的第一种或第二种结构的光学头构造成使得泵浦激光二极管和功率输出单元固定在不同的底座上。因此,构成该光学头的元件中包括功率输出单元的结构能够被设计成结构紧凑、重量轻。
在本发明的光学头中,功率输出单元可以用可饱和吸收器反射镜构造。
关于记录介质,用于记录和再现信息的光学信息处理器可以构造成包括:一个具有本发明的任何一种结构的光学头;用于将从光学头中的短脉冲激光器发射的光引入到记录介质的光学系统;以及用于检测从记录介质所反射的光的光学系统。
实施例1
下面参考图1描述本发明实施例1的超短脉冲激光装置。这个超短脉冲激光装置的主要元件有:泵浦激光二极管1,固体激光介质2,光纤3和可饱和吸收器反射镜4。利用其间设置有带通滤波器5的两个透镜6将从该泵浦激光二极管1发射的激光与光纤3的第一端面耦合。从该光纤第二端面发射的激光穿过透镜9和输出镜10而被聚集在固体激光介质2上,在这里发生泵浦。穿过该固体激光介质2的激光从该可饱和吸收器反射镜4被反射。该可饱和吸收器反射镜4和光纤3的第一端面7构成激光共振腔。
这个实施例的超短脉冲激光器目的是获得如下特征:数百兆赫(MHz)的重复频率,脉冲宽度不超过10皮秒以及峰值功率1至10kW。为了满足这些特征,该装置构造成使得由可饱和吸收器反射镜获得锁模。由于锁模是由可饱和吸收器反射镜被动地产生,所以对于数百兆赫的重复频率,能够产生皮秒级或更短的短脉冲激光器。另外,为了产生数百兆赫的重复频率,共振腔的长度需要被设置在大约1米。光纤3具有大约1米的共振腔长度并且对于该装置的紧凑结构是有效的。
作为泵浦激光二极管1,例如,可以使用波长为808nm,输出功率为200mW并具有单管(single stripe)的AlGaAs基的激光二极管。作为固体激光介质2,例如,可以使用a-轴切割(a-axis cut)并且带有3%掺杂的Nd:YVO4(3%at.Nd:YVO4)。作为光纤3,例如,可以使用长度为1.5m的保偏光纤。例如,光纤3可轧制成直径为50mm以便于紧凑地放置。作为输出镜10,可以用通常的电介质多层镜,以便具有95%的透射率及5%的反射率的特性。输出镜10设置成相对于光学轴具有例如45°的倾斜角。
带通滤波器5用于稳定泵浦激光二极管1的振荡波长。带通滤波器5的特性是透射光谱的半极大全宽度为1nm而且具有95%的透射率。在来自泵浦激光二极管1的激光的入射侧的光纤3的第一端面7上形成有多层薄膜,使得其具有5%的反射率,例如,对于波长为808nm的泵浦激光二极管1,而且使得其用作具有99.9%的反射率的高反射率涂层,例如,对于作为固体激光介质2的Nd:YVO4的振荡波长1064nm。对于1064nm的波长,输出镜10具有5%的反射率。
波长为808nm的光的一部分从第一端面7被反射以致于被反馈到泵浦激光二极管1,从而这样的波长被固定在带通滤波器5的透射光谱的中心波长(在这种情况下,Nd:YVO4的吸收波长为808nm)。
在激光出射侧的光纤3的第二端面8上形成有多层薄膜,使得其对于808nm和1064nm的波长用作减反射涂层。相对于光轴对透镜9进行准直调节以及对可饱和吸收器反射镜4进行正交调节,以便用可饱和吸收器反射镜4和光纤3的第一端面7构成激光共振腔。
下面将描述可饱和吸收器反射镜4。作为可饱和吸收器反射镜4,例如,可以使用半导体可饱和吸收器反射镜(SESAM)。SESAM具有显示可饱和特性的特征以及具有大约数百飞秒的快速的吸收-恢复时间的特征,其中具有的显示可饱和特性的特征使得当具有某种程度或更多功率的光入射时吸收减少。如图2所示,SESAM具有这样的结构,即反射层12和夹在两缓冲层13之间的可饱和吸收层14形成在GaAs基片11上。
反射层12形成有由AlAs/GaAs制成的DBR光栅,它是用MOCVD(金属有机化学汽相沉淀)法形成的。缓冲层13由InAlAs层构成而可饱和吸收层14是用多个由InGaAs/GaAs制成的量子阱构造的。优选地,布喇格镜设计成使得反射镜的反射率为100%。作为一个例子,得到100μJ/cm2饱和的光学功率,即,达到饱和时的功率,可得到10%的反射率变化。SESAM固定在铜热沉上(图中未示出)。
在这个实施例中,单轴晶体Nd:YVO4用作固体激光介质2,保偏光纤用作光纤3。因此,在激光共振腔中振荡的1064nm的激光的偏振方向被保持为线性偏振,从而这个实施例对于锁模也是有效的。
在光纤中,由于自相位调制的作用,在峰值部分产生相位延迟,从而脉冲的前半段波长位移到长波长侧,而脉冲的后半段波长位移到短波长侧。在具有负波长色散(negative wavelength dispersion)(特异散射)的光纤中,在较长的波长处光的群速变得较慢。结果,群速在脉冲的前半段变慢而在后半段变快,导致脉冲的时间波形变窄。在这个实施例中,由于上述的非线性效应,脉冲被压缩,从而这个实施例用于使脉冲更短是有效的。
在根据这个实施例的超短脉冲激光装置的一个例子中,泵浦激光二极管1的200mW功率中的150mW与光纤3耦合。那么,以50mW平均功率从输出镜10得到波长为1064nm的光。此外,在100MHz的频率获得锁模,其中,脉冲宽度为500飞秒,峰值功率为1kW。
由于作为固体激光介质2的Nd:YVO4具有线性偏振振荡的特性并且光纤3是保偏光纤,所以这个实施例的特征在于偏振光能够保持并且锁模振荡能够高效地进行。此外,由于使用可饱和吸收器反射镜4和光纤3,所以能够实现与常规的结构相比的紧凑而稳定的结构。还有,由于具有光反馈功能,所以泵浦激光二极管1的波长能够稳定地固定在作为固体激光介质2的Nd:YVO4的吸收波长,使得激光振荡能够高效地实现。
通过实现对由根据本实施例的装置所获得的1064nm超短脉冲激光的波长转换,能够获得具有更短波长的超短脉冲光。作为波长转换元件,可以使用KTiPO4晶体等。图1的结构可以通过在固体激光介质2和光纤3之间插入KTiPO4晶体而被制作成内共振腔型。当因此得到的532nm的超短脉冲光用于光学记录时,可以选用高敏感材料。
虽然在上述结构中用Nd:YVO4作为固体激光介质2,但是也可以用诸如Cr:LiSAF这样的固体激光介质。由此,通过用红光AlGaInP泵浦二极管进行泵浦,振荡能够在800nm波段实现,由此,能够实现小型的短脉冲激光器。此外,也能够用Nd:GdVO4。在任何固体激光介质中,能够完成线性偏振的振荡。
此外,在上述的结构中,光纤3设置在泵浦二极管1和可饱和吸收器反射镜4之间,热可以从其中之一单独地散失,从而可以构造稳定可靠的共振腔。特别地,激光二极管1的温度可以保持稳定,以使得其波长可以稳定化,从而固体激光介质2的泵浦效率可以保持稳定。
例如,根据本实施例的超短脉冲激光装置可以用于记录/再现系统,该记录/再现系统利用双光子吸收进行三维逐位记录。作为记录材料,例如,可以用二芳基乙烯。当该记录材料用波长不大于400nm的紫外光照射时,其呈兰色,而当用波长不小于500nm的可见光照射时,其回到原来状态。当用波长为780nm的Ti:Al2O3激光器用飞秒级激光(峰值功率2kW,脉冲宽度150飞秒,平均重复频率80MHz,平均功率25mW)照射这种材料时,因为双光子吸收,该材料呈兰色。由于该材料最初不吸收780nm的光,所以凹痕(pit)能够在晶体中三维地形成。此外,双光子吸收仅仅发生在高光密度区,微细凹点能够被形成。
通过改变二芳基乙烯的结构,材料能够被设计使得其在受波长不小于500nm的可见光照射时变为绿色,而用红光照射时可以回到最初的状态。此外,近来已经研制出更高敏感的材料,以便可提供能够以不大于1kW的峰值功率进行记录的材料。
实施例2
下面将参考图3描述实施例2的超短脉冲激光装置。这种装置是采用不用耦合透镜系统的直接耦合方法的例子。在图3中,与图1中相同的元件使用相同的附图标记表示。
泵浦激光二极管1安装在其中形成有V形槽的硅子座(Sisubmount)上,使得泵浦激光二极管的激活层面向硅子座表面。在V形槽中,还固定一光纤3。根据这个实施例,由SESAM构成的可饱和吸收器反射镜15用作输出镜。波长为1064nm的共振腔由光纤3的第一端面7和可饱和吸收器反射镜15组成,其类似于图1的结构。布喇格镜设计成使得可饱和吸收器反射镜15的反射率成为90%。获得的可饱和吸收器反射镜15的饱和光学功率为100μJ/cm2,反射率变化为10%。虽然在这个例子中可饱和吸收器反射镜15固定在铜热沉上(未示出),但是在热沉的中心部分打有一孔,因为在这个实施例中可饱和吸收器反射镜15用作输出镜。
在根据本实施例的超短脉冲激光装置的一个例子中,泵浦激光二极管1的200mW功率中的100mW与光纤3耦合。那么,波长为1064nm的光以平均功率为20mW从可饱和吸收器反射镜15获得。此外,在频率100MHz获得锁模,其中脉冲宽度为500飞秒,峰值功率为400W。
根据这个实施例的结构,虽然与图1的结构相比振荡效率被减少,但对于泵浦二极管1来说输出镜和耦合透镜系统是不必要的。因此,结构稳定而且因元件数目减少从而结构紧凑,因此具有实用性。
实施例3
下面将参考图4描述实施例3的超短脉冲激光装置。在这个实施例中,除了如同图1和图3结构中经光纤3对作为固体激光介质2的Nd:YVO4进行泵浦之外,由第二泵浦激光二极管16从倾斜部分施加的泵浦光由透镜17和18聚集。用这种结构,可以获得较高的功率。当固体激光介质2为波导型时,泵浦可以由具有宽管(wide stripe)的高功率的激光二极管来实现,从而还可望获得更高的功率。
如上所述,在图1、图3和图4所示的超短脉冲激光装置的结构中,光纤3的使用使得长共振腔小型化,而且锁模频率可以设置在几百MHz,这种频率适合于记录/再现系统。因此,在相同的时间可以实现kW级的高功率和皮秒级的短脉冲,从而具有实用性。
这里应当注意,代替图1、图3和图4中所示的将固体激光介质2设置在光纤3和可饱和吸收器反射镜4或15之间的结构,可以将光纤设置在固体激光介质2和可饱和吸收器反射镜4或15之间,这也可以提供超短脉冲激光。然而,在这种情况下,共振腔由固体激光介质2的一端面和可饱和吸收器反射镜4或15构成,从而在共振腔中要被调节的轴的数目将增加。
实施例4
下面将参考图5描述实施例4的超短脉冲激光装置。这个实施例的装置具有与如图1、图3和图4所示的结构相同的结构,然而,作为光纤3,用光子光纤代替保偏光纤以便保持一个偏振方向。
图5是光子光纤的截面图。在制作该光纤的硅石(SiO2)19中,形成周期性的气孔20。没有形成气孔的部分区域用做芯21。根据直径d和气孔20的周期Λ,包层22的有效折射率改变,使得波导模式的有效折射率可以改变。
当气孔20的周期Λ和直径d被设计在3μm和10μm(d/Λ=0.33)时,对于1064nm的波长波导可以以单模实现。由于光子光纤具有能保持偏振而没有波长散射的特性,所以光子光纤作为用于超短脉冲激光装置中的光学元件是非常有用的。特别地,当光子光纤用作构成图1的超短脉冲激光装置的光纤3时,短脉冲能够稳定地产生,因为能够保持偏振并且没有产生波长散射。
实施例5
下面将参考图6描述实施例5的超短脉冲激光装置。这个装置包括具有波导损耗控制单元的波导固体激光介质23,泵浦激光二极管24和保偏光纤25。
波导固体激光介质23具有这样的结构,其中,光波导27和定向耦合器28形成在铁电晶体基片26上。例如,作为铁电晶体,可以用LiNbO3晶体。由于LiNbO3晶体具有大的非线性性质,所以它显示出良好的波长转换性质和光电效应。此外,被要求用于激光振荡的过渡元素,如Nd,可以用热弥散(thermal dispersion)被掺杂。
Nd薄膜形成在LiNbO3基片的-Z面,接着,在1070℃的氧中进行退火。然后,光波导27通过质子交换形成在该铁电晶体基片26的-Z表面上,该基片26由掺杂有Nd的LiNbO3制作。光波导的两端面接地。这样获得的波导固体激光介质23具有814nm的吸收光谱的中心波长和1084nm的荧光光谱的中心波长。此外,该光波导27仅在异常方向(abnormal direction)上具有折射率分布并且能够进行线性偏振振荡。在波导固体激光介质23的第一端面29和第二端面30上,分别形成对于1084nm波长的减反射涂层和对于1084nm波长的高反射率涂层。
形成在波导固体激光介质23上的定向耦合器28具有波导损耗控制功能。当对形成在光波导27和定向耦合器28上的电极31和32施加一电场时,光波导27内的有效折射率改变,使得光与邻近的定向耦合器28的光波导耦合。通过利用这种方式,光波导27的损耗,即共振腔的损耗可以改变。
涂层还可以类似地形成到保偏光纤25上,而且在第一端面33a和第二端面34上,分别形成对于1084nm波长的减反射涂层和对于1084nm波长的高反射率涂层。例如,第二端面34具有例如5%的透射率,以便用作输出镜。
对于波长1084nm的共振腔用波导固体激光介质23的第二端面29和保偏光纤25的第二端面34来形成,其中波长1084nm是振荡波长。在图6的超短脉冲激光装置中,波导固体激光介质23的光波导27和保偏光纤25直接地光学耦合而不使用透镜系统,其中,保偏光纤25的第一端面33与波导固体激光介质23的第一端面29相对。
从泵浦激光二极管24发射的光与波导固体激光介质23的第二端面30光学地耦合以便光学地泵浦波导固体激光介质23。波长为1084nm的光的谐振发生在波导固体激光介质23的第二端面30与保偏光纤25的第二端面34之间。同时,通过将100MHz的周期的电压施加到电极31和32上,当保偏光纤25的长度为1.5m时,发生锁模振荡。
在根据本实施例的一个例子中,泵浦激光二极管24的200mW的激光功率中的150mW与波导固体激光介质23的光波导27耦合。然后,以平均功率为10mW从保偏光纤25的第二端面34获得波长为1084nm的光。此外,在100MHz的频率下获得锁模,其中,脉冲宽度为500飞秒,峰值功率为200W。
为获得更高功率的脉冲光,从横向泵浦波导固体激光介质23是有效的。在这种情况下,平板型高功率激光二极管可以被用作泵浦光。
如上所述,整体地具有波导损耗控制功能的波导固体激光介质和光纤的使用使得锁模频率可以设定在100MHz,从其可以获得高峰值功率。从而,可以获得结构紧凑的超短脉冲激光装置,其具有高峰值功率,适用于三维逐位记录的光源。
而且,由于飞秒级晶体基片26用作固体激光介质的基片,所以可以形成周期地反向的(reversed)偏振结构等,因而,它也可以起波长转换元件的作用。正如众所周知的,皱形(corrugated)电极形成在基片的表面并对其施加一电场,因而如图6所示的周期地反向的偏振35可以被形成,使得与光波导27正交。通过将反向的周期设置在6.4μm,可以获得对于1084nm的相位匹配,从而可以产生532nm的超短脉冲光。当可见光的超短脉冲光被用于三维光学记录时,可以选择高敏感材料。
在上述结构中,虽然泵浦激光二极管24与波导固体激光介质23的光波导27直接耦合,但是光纤25可以设置在它们之间,使得泵浦光与光纤的一个端面和用作输出镜的波导固体激光介质23的光波导27的一个端面耦合。在这种情况下,由于泵浦激光二极管24和波导固体激光介质23之间的距离增加,所以调制性质的稳定性和波导固体激光介质23的转换性质可以增强。
实施例6
实施例6的超短脉冲激光装置采用红光激光二极管(670nm)作为图1的结构中的泵浦激光二极管1,Cr:LiSAF作为固体激光介质2,而光子光纤用作光纤3。
作为红光激光二极管,例如,可以采用AlGaInP基的高功率红光激光器(波长670nm)。激光经一对透镜6与由光子光纤构成的光纤3耦合。光子光纤设计成使得对于670nm和850nm的波长实现单模传输,通过它可以保持偏振并且波长散射变为零。在光子光纤的入射端面上形成有对于670nm波段的减反射涂层和对于作为振荡波长的850nm波段的高反射率涂层。通过光纤3所传输的光从作为出射端面的第二端面8发射,以便泵浦作为固体激光介质2的Cr:LiSAF。在光纤3的第二端面8上,形成有对于850nm波段的减反射涂层。激光共振腔由可饱和吸收器反射镜4和作为光纤3的入射端面的第一端面7形成。可饱和吸收器反射镜4设计得适用于850nm波段的波长。
在根据这个实施例的一个例子中,作为泵浦激光二极管1的红光激光二极管的200mW功率中的150mW与作为光纤3的光子光纤耦合。那么,以平均功率为30mW从可饱和吸收器反射镜4获得850nm的光。此外,在100MHz的频率获得锁模,其中脉冲宽度为500飞秒,峰值功率为600W。
如上所述,在本发明的每个实施例中的超短脉冲激光装置都包括的主要元件有:具有线性偏振的泵浦激光二极管,保偏光纤,以线性偏振振荡的固体激光介质和可饱和吸收器反射镜。可选地,不用固体激光介质和可饱和吸收器反射镜的组合,可以使用具有波导损耗控制功能的波导固体激光介质。
从而,共振腔的长度可以设置为具有紧凑结构的1m或以上,因为产生锁模,所以对于100MHz的重复频率,可以产生皮秒级或更短的短脉冲激光,从而很容易地获得1kW的峰值功率。
此外,以线性偏振振荡的固体激光介质和保持偏振的光纤的使用使得在共振腔中振荡的激光的偏振方向保持为线性偏振。这对于锁模是有利的,并且由于稳定且高效的振荡,能够获得高峰值功率。因此,每个实施例的超短脉冲激光装置适用于进行三维的位记录的光源。
实施例7
下面将参考图7描述实施例7的光学头。这种光学头具有图3中所示的超短脉冲激光装置并且可用于光学信息处理,例如光学记录/再现设备。
在图7中,从泵浦激光二极管1发射的激光与光纤3直接耦合而不用设置在其之间的透镜系统。泵浦激光二极管1和光纤3封装在硅子座上而硅子座固定在热沉底座36上。从光纤3发射的激光由透镜9聚集以泵浦固体激光介质2。激光共振腔由光纤3的第一端面7和可饱和吸收器反射镜15构成。可饱和吸收器反射镜15具有设置为95%的反射率并用作输出镜。从光纤3的第二端面8到可饱和吸收器反射镜15的输出单元37固定在光学头底座38上。
从可饱和吸收器反射镜15发射的超短脉冲激光(1064nm)由透镜39校准并由包括分束器40、反射镜41和物镜42的光学系统聚集在一个作为记录介质的光盘43上。为了伺服检测和再现信号检测的目的,从光盘43反射的光被检测光学系统44引入到检测器45。
在这个实施例中,光纤3放置在设置于输出单元37的可饱和吸收器反射镜15和泵浦激光二极管1之间。然后,泵浦激光二极管1和输出单元37固定在不同的底座上,即热沉底座36和光学头底座38上。因此,设置在光学头底座38上构成光学头的元件部分可以设计得结构紧凑、重量轻。结果,光学头底座38可以类似地移动到用于CD和DVD的光学头,以进行伺服控制。
此外,从泵浦激光二极管1产生的热可以扩散到热沉底座36,这有助于光学头的热沉设计。
不用上述结构,如图8所示,类似的光学头可以构造成使得包括有泵浦激光二极管46,掺杂有过渡元素的光纤47,以及可饱和吸收器反射镜48这些主要元件的超短脉冲激光装置封装在其上,由此可以获得类似的效应。例如,作为泵浦激光二极管46,可以采用980nm波段的InGaAs激光二极管,而作为光纤47,可以采用掺杂有Er和Yb的光纤。
从泵浦激光二极管46发射的激光利用耦合器49与掺杂有Er的光纤47耦合。法拉第旋转器51连接于掺杂有Er的光纤47的一个端面50。由掺杂有Er的光纤47泵浦的并从光纤的另一端面发射的激光被透镜52聚集以便通过法拉第旋转器53和波片54,然后从可饱和吸收器反射镜48反射。激光共振腔由可饱和吸收器反射镜48和连接有法拉第旋转器51的端面50构成。可饱和吸收器反射镜48具有设置为95%的反射率并用作输出镜。包括可饱和吸收器反射镜48的输出单元55固定于光学头底座38。
类似于图7的光学头,从可饱和吸收器反射镜48发射的超短脉冲光(1560nm)由包括物镜42的光学系统聚集到一个作为记录介质的光盘43上,并且从光盘43反射的光被引入到检测器45并用于伺服检测和再现信号检测。
在这个实施例的结构中,掺杂有Er的光纤47放置在设置于输出单元55中的可饱和吸收器反射镜48和泵浦激光二极管46之间。然后,泵浦激光二极管46和输出单元55固定在不同的底座上,即热沉底座36和光学头底座38上。因此,构成设置在光学头底座38上的光学头的元件部分可以设计得结构紧凑、重量轻。
本发明可以以其他方式实施而不背离本发明的实质和基本特征。该申请中所公开的实施例在各方面都应看作说明性的而不是限制性的。本发明的范围由权利要求表明而不是前面的任何描述表明,在权利要求的等效性的含义及范围内的所有变化都包括在本发明的范围内。

Claims (7)

1.一种超短脉冲激光装置,包括:
具有线性偏振的泵浦激光二极管;
以线性偏振振荡的固体激光介质;
保持偏振方向的光纤;和
可饱和吸收器反射镜;
其中,该固体激光介质设置在该光纤和该可饱和吸收器反射镜之间,
从该泵浦激光二极管发射的激光与该光纤的第一端面光学地耦合,从该光纤第二端面发射的激光激励该固体激光介质,并且
该光纤的第一端面和该可饱和吸收器反射镜构成激光共振腔。
2.根据权利要求1的超短脉冲激光装置,其中,电介质的多层薄膜形成在所述光纤的第一端面上,该电介质的多层薄膜对于来自所述泵浦激光二极管的光的反射率,低于对于在所述激光共振腔中振荡的光的反射率。
3.根据权利要求1的超短脉冲激光装置,其特征在于,所述光纤是光子光纤。
4.根据权利要求1的超短脉冲激光装置,其特征在于,所述固体激光介质由Nd:YVO4、Nd:GdVO4或Cr:LiSAF构成。
5.一种光学头,包括根据权利要求1的超短脉冲激光装置,
其中,该超短脉冲激光装置具有功率输出单元,该光纤设置在该功率输出单元和该泵浦激光二极管之间,并且
该泵浦激光二极管固定在热沉底座上,而功率输出单元固定在光学头底座上,该光学头底座与该热沉底座分开设置。
6.根据权利要求5的光学头,其中,所述功率输出单元是所述可饱和吸收器反射镜。
7.一种用于对记录介质进行记录和再现信息的光学信息处理器,包括:
根据权利要求5的光学头;
用于将从光学头中的超短脉冲激光器发射的光引入该到所述记录介质的光学系统;和
用于检测从所述记录介质反射的光的光学系统。
CNB2003101027874A 2002-10-24 2003-10-24 超短脉冲激光器及使用该激光器的光学头 Expired - Fee Related CN1319225C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002309350 2002-10-24
JP309350/2002 2002-10-24

Publications (2)

Publication Number Publication Date
CN1501358A CN1501358A (zh) 2004-06-02
CN1319225C true CN1319225C (zh) 2007-05-30

Family

ID=32170998

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101027874A Expired - Fee Related CN1319225C (zh) 2002-10-24 2003-10-24 超短脉冲激光器及使用该激光器的光学头

Country Status (2)

Country Link
US (2) US7103076B2 (zh)
CN (1) CN1319225C (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4099192B2 (ja) * 2003-08-01 2008-06-11 日本電信電話株式会社 レーザ光源
GB2434483A (en) 2006-01-20 2007-07-25 Fianium Ltd High-Power Short Optical Pulse Source
US7573918B1 (en) * 2006-08-07 2009-08-11 Calmar Optcom, Inc. Dispersion compensated mode-locked pulsed lasers and optical amplifiers
US20080299408A1 (en) 2006-09-29 2008-12-04 University Of Rochester Femtosecond Laser Pulse Surface Structuring Methods and Materials Resulting Therefrom
US20080216926A1 (en) * 2006-09-29 2008-09-11 Chunlei Guo Ultra-short duration laser methods for the nanostructuring of materials
US10876193B2 (en) 2006-09-29 2020-12-29 University Of Rochester Nanostructured materials, methods, and applications
GB0800936D0 (en) 2008-01-19 2008-02-27 Fianium Ltd A source of optical supercontinuum generation having a selectable pulse repetition frequency
CN102244344B (zh) * 2011-06-02 2012-10-03 天津大学 一种In-band泵浦的掺钕离子光纤激光器
US8774238B2 (en) * 2011-06-30 2014-07-08 Coherent, Inc. Mode-locked optically pumped semiconductor laser
JP6134313B2 (ja) * 2012-04-27 2017-05-24 ギガフォトン株式会社 レーザシステム及び極端紫外光生成システム
CN103595985B (zh) * 2012-08-13 2016-01-27 辉达公司 3d显示设备、3d显示系统及显示3d 图像的方法
CN102882111A (zh) * 2012-10-14 2013-01-16 北京工业大学 用于提高输出稳定性的调q激光器
CN102882112A (zh) * 2012-10-14 2013-01-16 北京工业大学 一种提高输出光束质量的偏振式的调q激光器
US10106880B2 (en) 2013-12-31 2018-10-23 The United States Of America, As Represented By The Secretary Of The Navy Modifying the surface chemistry of a material
US10189117B2 (en) 2013-12-31 2019-01-29 The United States Of America, As Represented By The Secretary Of The Navy Adhesion improvement via material nanostructuring or texturizing
RU2564519C2 (ru) * 2014-01-10 2015-10-10 Общество с ограниченной ответственностью "Техноскан-Лаб" Волоконный импульсный кольцевой лазер с пассивной синхронизацией мод излучения (варианты)
US11777610B2 (en) * 2018-02-07 2023-10-03 Attochron, Llc Method and apparatus for ultra-short pulsed laser communication through a lossy medium
CN112352358A (zh) * 2018-05-15 2021-02-09 松下知识产权经营株式会社 激光装置和使用了该激光装置的激光加工装置
CN111961300B (zh) * 2020-07-10 2023-01-20 广东工业大学 一种基于二硫化钽的可饱和吸收体及其制备方法和激光锁模应用
CN114121090A (zh) 2020-08-31 2022-03-01 华为技术有限公司 一种数据读写装置及电子设备
WO2023129629A1 (en) 2021-12-29 2023-07-06 PlasmaTex, LLC Pulsed laser processing of medical devices
CN114552338A (zh) * 2022-01-28 2022-05-27 罗根激光科技(武汉)有限公司 一种sesam被动调q微型激光器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048047A (en) * 1990-09-12 1991-09-10 International Business Machines Corporation Passive absorptive resonator laser system and method
US5701319A (en) * 1995-10-20 1997-12-23 Imra America, Inc. Method and apparatus for generating ultrashort pulses with adjustable repetition rates from passively modelocked fiber lasers
US20020048078A1 (en) * 2000-10-25 2002-04-25 Stephan Schiller Short pulse optical parametric oscillator system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448579A (en) * 1993-12-09 1995-09-05 Hewlett-Packard Company Polarization independent picosecond fiber laser
US5450427A (en) 1994-10-21 1995-09-12 Imra America, Inc. Technique for the generation of optical pulses in modelocked lasers by dispersive control of the oscillation pulse width
US5627848A (en) * 1995-09-05 1997-05-06 Imra America, Inc. Apparatus for producing femtosecond and picosecond pulses from modelocked fiber lasers cladding pumped with broad area diode laser arrays
US5880877A (en) * 1997-01-28 1999-03-09 Imra America, Inc. Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier
US6097741A (en) * 1998-02-17 2000-08-01 Calmar Optcom, Inc. Passively mode-locked fiber lasers
US6072811A (en) * 1998-02-11 2000-06-06 Imra America Integrated passively modelocked fiber lasers and method for constructing the same
US6034975A (en) * 1998-03-09 2000-03-07 Imra America, Inc. High power, passively modelocked fiber laser, and method of construction
US6252892B1 (en) * 1998-09-08 2001-06-26 Imra America, Inc. Resonant fabry-perot semiconductor saturable absorbers and two photon absorption power limiters
US6275512B1 (en) * 1998-11-25 2001-08-14 Imra America, Inc. Mode-locked multimode fiber laser pulse source
US6822978B2 (en) * 1999-05-27 2004-11-23 Spectra Physics, Inc. Remote UV laser system and methods of use
US7190705B2 (en) * 2000-05-23 2007-03-13 Imra America. Inc. Pulsed laser sources
JP3726676B2 (ja) * 2000-11-28 2005-12-14 日本電気株式会社 外部共振器型モード同期半導体レーザ装置
JP2004527001A (ja) * 2001-04-11 2004-09-02 ユニバーシティ、オブ、サウサンプトン 光パルス光源および光パルスを生成するための方法
JP2002368313A (ja) * 2001-06-12 2002-12-20 Aisin Seiki Co Ltd 受動型モードロック・ファイバーレーザー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048047A (en) * 1990-09-12 1991-09-10 International Business Machines Corporation Passive absorptive resonator laser system and method
US5701319A (en) * 1995-10-20 1997-12-23 Imra America, Inc. Method and apparatus for generating ultrashort pulses with adjustable repetition rates from passively modelocked fiber lasers
US20020048078A1 (en) * 2000-10-25 2002-04-25 Stephan Schiller Short pulse optical parametric oscillator system

Also Published As

Publication number Publication date
CN1501358A (zh) 2004-06-02
US20040086005A1 (en) 2004-05-06
US20060251132A1 (en) 2006-11-09
US7103076B2 (en) 2006-09-05

Similar Documents

Publication Publication Date Title
CN1319225C (zh) 超短脉冲激光器及使用该激光器的光学头
US6259711B1 (en) Laser
EP0744089B1 (en) Passively q-switched picosecond microlaser
KR20010005608A (ko) 고전력 레이저 장치
US5666373A (en) Laser having a passive pulse modulator and method of making same
CN110459956B (zh) 一种窄线宽可调谐激光器
WO1996025779A1 (en) Optical source with mode reshaping
JPH0357288A (ja) 半導体レーザーを有するデバイスおよびその使用方法
US6288833B1 (en) Optical device
JPH04229674A (ja) 光デバイス
Shamrakov et al. Superradiant film laser operation in red perylimide dye doped silica—polymethylmethacrylate composite
Frerichs et al. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm
CN110895239B (zh) 一种测量激光增益晶体内激发态吸收热负荷的装置和方法
MacKinnon et al. A laser diode array pumped, Nd: YVO4/KTP, composite material microchip laser
CN101483317A (zh) 一种半导体激光器的泵浦方式
US5197072A (en) Optical wavelength converting device, and laser diode pumped solid laser
JPH04245687A (ja) レーザ・システム,レーザ光発生方法及びレーザ・データ記憶システム
CN113078547A (zh) 一种单频高功率的可调谐短腔激光器
CN104393474A (zh) 一种窄脉宽激光器
US20020094006A1 (en) Solid-state laser device and solid-state laser amplifier provided therewith
CN113964631B (zh) 一种光泵浦的片上固体激光器
CN201766283U (zh) 半导体泵浦固体激光器被动调q试验装置
CN219917893U (zh) 一种具有选偏功能的固体激光器
CN112993729B (zh) 一种中波光参量振荡器低量子亏损1.6μm高峰值功率泵浦源
JP2761678B2 (ja) レーザーダイオードポンピング固体レーザー

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070530

Termination date: 20211024