CN110895239B - 一种测量激光增益晶体内激发态吸收热负荷的装置和方法 - Google Patents

一种测量激光增益晶体内激发态吸收热负荷的装置和方法 Download PDF

Info

Publication number
CN110895239B
CN110895239B CN201911212682.1A CN201911212682A CN110895239B CN 110895239 B CN110895239 B CN 110895239B CN 201911212682 A CN201911212682 A CN 201911212682A CN 110895239 B CN110895239 B CN 110895239B
Authority
CN
China
Prior art keywords
laser
gain crystal
laser gain
frequency
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911212682.1A
Other languages
English (en)
Other versions
CN110895239A (zh
Inventor
苏静
卢华东
杨慧琦
彭堃墀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYUAN SHANDA YUGUANG TECHNOLOGICAL Co.,Ltd.
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201911212682.1A priority Critical patent/CN110895239B/zh
Publication of CN110895239A publication Critical patent/CN110895239A/zh
Priority to US17/061,051 priority patent/US11404840B2/en
Application granted granted Critical
Publication of CN110895239B publication Critical patent/CN110895239B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08031Single-mode emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • G01N2021/1712Thermal lens, mirage effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08027Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0816Configuration of resonator having 4 reflectors, e.g. Z-shaped resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1066Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a magneto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lasers (AREA)

Abstract

本发明公开一种测量激光增益晶体内激发态吸收热负荷的装置及方法。通过获取单频激光器对应的降低泵浦功率时的无光泵浦阈值、最佳泵浦点功率以及单频激光器的腔型参数,得到激光增益晶体子午面的热透镜焦距和弧矢面的热透镜焦距;根据子午面的热透镜焦距、弧矢面的热透镜焦距,得到激光增益晶体在子午面的输出矩阵和激光增益晶体在弧矢面的输出矩阵;根据激光增益晶体在子午面的输出矩阵、激光增益晶体在弧矢面的输出矩阵、降低泵浦功率时的无光泵浦阈值和单频激光器的最佳泵浦点功率,得到无光阈值处对应的热负荷、无光阈值处对应的激发态吸收热负荷和最佳泵浦点对应的激发态吸收热负荷。本发明能够提高测量精度,准确反映晶体热效应的严重程度。

Description

一种测量激光增益晶体内激发态吸收热负荷的装置和方法
技术领域
本发明涉及激光领域,特别是涉及一种测量激光增益晶体内激发态吸收热负荷的装置和方法。
背景技术
单频1342nm激光作为一种重要的激光光源被广泛应用于光纤传感、光纤通信、激光医疗等领域。其倍频光671nm红光激光器被广泛应用于高精度激光光谱和超冷原子,激光医疗以及OPO和可调谐泵浦源等领域。随着科学技术的不断发展,例如对于量子纠缠及量子通信领域,性能优良且更高功率输出的1342/671nm激光可以产生更好的信噪比以及纠缠度。高功率高输出性能的1342/671nm激光器一直是研究者研究的目标。但是激光增益晶体的热效应较1064nm激光器非常的严重,严重限制了基频光和倍频光的功率的进一步提升。热透镜中的热负荷是研究和衡量激光增益晶体热效应的一个重要指标,为了获得高功率输出的单频1342/671nm激光输出功率,进一步合理的优化设计激光谐振腔,需要研究激光增益介质的热负荷在激光输出前后的大小情况。
传统的研究ESA效应对激光增益晶体处的热负荷及激光输出功率的影响程度主要集中在理论研究和探针光探针技术。理论研究部分是基于速率方程的基础上,进一步加入ESA的部分,按照ESA热负荷定义进行研究。该方法需要较复杂的理论计算及推导。而探针光法是将整形的探针光通过具有热透镜效应的增益介质,通过测量光谱分布情况研究ESA的光谱分布情况及热透镜值大小。其中通过探针光技术观察光谱分布情况会受探测器精度影响较大而影响最终结果,通过探针光技术观察热透镜变化情况方法的优点是直观,但需要额外引入一束光,且测量精度非常低,不能准确反映晶体热效应的严重程度。
发明内容
本发明的目的是提供一种测量激光增益晶体内激发态吸收热负荷的装置和方法,能够提高测量精度,从而准确反映晶体热效应的严重程度。
为实现上述目的,本发明提供了如下方案:
一种测量激光增益晶体内激发态吸收热负荷的装置,包括:单频激光器(1)、功率计(2)、分光镜(3)、F-P腔(4)、光电探测器(5)、示波器(6)、信号发生器(7)和高压放大器(8);其中,所述分光镜(3)、所述F-P腔(4)、所述光电探测器(5)、所述示波器(6)、所述信号发生器(7)和高压放大器(8)依次连接;
所述单频激光器(1)的输出振荡光经所述分光镜(3)后注入到所述功率计(2)中,透过所述分光镜(3)的一部分的振荡光注入到所述F-P腔(4)中,经所述光电探测器(5)转化为电信号,将所述光电探测器(5)输出的电信号输入到所述示波器(6),所述示波器(6)用于记录不同注入功率下所述单频激光器(1)的单频特性;所述示波器(6)与所述信号发生器(7)连接,所述信号发生器(7)用于产生低频扫描信号,所述低频扫描信号经所述高压放大器(8)放大后加载在粘连于所述F-P腔(4)内的压电陶瓷上。
可选的,所述单频激光器(1)包括激光增益晶体。
可选的,所述激光增益晶体采用Nd:YVO4晶体。
可选的,所述单频激光器(1)的光学谐振腔为驻波腔或行波腔。
一种测量激光增益晶体内激发态吸收热负荷的方法,所述方法采用一种测量激光增益晶体内激发态吸收热负荷的装置,所述方法包括:
获取单频激光器对应的降低泵浦功率时的无光泵浦阈值及单频激光器的最佳泵浦点功率;
获取所述单频激光器的腔型参数;
根据子午面的热透镜焦距公式和弧矢面的热透镜焦距公式,得到单频激光器内部的激光增益晶体子午面的热透镜焦距和弧矢面的热透镜焦距;
根据所述子午面的热透镜焦距、所述弧矢面的热透镜焦距和所述单频激光器的腔型参数得到所述激光增益晶体在子午面的输出矩阵和所述激光增益晶体在弧矢面的输出矩阵;
将所述降低泵浦功率时的无光泵浦阈值和所述单频激光器的腔型参数,代入所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵及激光器处于稳区时满足的条件,得到无光阈值处对应的热负荷;
根据所述无光阈值处对应的热负荷,得到激发态吸收热负荷;
将所述单频激光器的最佳泵浦点功率和所述单频激光器的腔型参数,代入激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵及激光器在最佳泵浦点处子午面、弧矢面的光斑应满足的条件,得到最佳泵浦点对应的激发态吸收热负荷。
可选的,所述获取单频激光器对应的降低泵浦功率时的无光泵浦阈值及单频激光器的最佳泵浦点功率,具体包括:
增加和降低所述单频激光器的泵浦光功率,利用功率计记录所述单频激光器的不同注入泵浦功率情况下对应的激光输出功率;
获取单频信息;
根据所述激光输出功率表和所述单频信息,得到单频激光器对应的降低泵浦功率时的无光泵浦阈值及单频激光器的最佳泵浦点功率。
可选的,所述根据子午面的热透镜焦距公式和弧矢面的热透镜焦距公式,得到单频激光器内部的激光增益晶体子午面的热透镜焦距和弧矢面的热透镜焦距,具体包括:
根据所述激光增益晶体在子午面的热透镜公式
Figure BDA0002298567420000031
得到激光增益晶体子午面的热透镜焦距ft(thermal)
根据所述激光增益晶体在弧矢面的热透镜公式
Figure BDA0002298567420000032
得到激光增益晶体弧矢面的热透镜焦距;
其中,K‖c、K⊥c分别为平行、垂直于激光增益晶体的热导率,ωp为泵浦光在激光晶体处的腰斑大小,ξ为热负荷,PP为注入激光晶体内的泵浦功率大小,
Figure BDA0002298567420000033
为激光晶体的热光系数,α为激光晶体对泵浦光的吸收系数,l为激光增益晶体掺杂部分的有效长度,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距。
可选的,所述根据所述子午面的热透镜焦距、所述弧矢面的热透镜焦距和所述单频激光器的腔型参数得到所述激光增益晶体在子午面的输出矩阵和所述激光增益晶体在弧矢面的输出矩阵,具体包括:
根据所述子午面的热透镜焦距和所述单频激光器的腔型参数采用公式
Figure BDA0002298567420000041
得到所述激光增益晶体在子午面的输出矩阵
Figure BDA0002298567420000042
根据所述弧矢面的热透镜焦距和所述单频激光器的腔型参数采用公式
Figure BDA0002298567420000043
得到所述激光增益晶体在弧矢面的输出矩阵
Figure BDA0002298567420000044
其中,
Figure BDA0002298567420000045
为所述激光增益晶体在子午面的输出矩阵,
Figure BDA0002298567420000046
为所述激光增益晶体在弧矢面的输出矩阵,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距,
Figure BDA0002298567420000047
为其余光学传输矩阵在子午面的表达式;
Figure BDA0002298567420000048
为其余光学传输矩阵在弧矢面的表达式。
可选的,所述根据所述无光阈值处对应的热负荷,得到激发态吸收热负荷,具体包括:
当所述单频激光器在子午面和弧矢面同时处于稳区时,根据所述无光阈值处对应的热负荷采用公式
Figure BDA0002298567420000049
得到激发态吸收热负荷ξESA
其中,λP为泵浦光的波长,λl为出光后的振荡光波长,ξESA为激发态吸收热负荷,ξlasing为出光后的热负荷。
可选的,所述将所述单频激光器的最佳泵浦点功率和所述单频激光器的腔型参数,代入激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵及激光器在最佳泵浦点处子午面、弧矢面的光斑应满足的条件,得到最佳泵浦点对应的激发态吸收热负荷,具体包括:
当激光谐振腔在最佳泵浦点处子午面、弧矢面的光斑应满足公式
Figure BDA0002298567420000051
时,根据所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵和所述单频激光器的最佳泵浦点功率,得到最佳泵浦点对应的激发态吸收热负荷。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明在对激光增益晶体内激发态吸收热负荷进行测量时,不必过多分析晶体本身发生的复杂的热过程,也无需引入其他光学系统,只需测量该单频激光器的类双稳输出特性曲线及监测输出振荡光的透射谱,即可得到激光增益晶体内激发态吸收热负荷,该测量方法过程简单,结果精确。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明测量激光增益晶体内激发态吸收热负荷的装置结构图;
图2为本发明测量激光增益晶体内激发态吸收热负荷的方法流程图;
图3为本发明“8”字环形腔中实现激光增益晶体内激发态吸收热负荷测量的装置结构图;
图4为本发明驻波腔中实现激光增益晶体激发态吸收热负荷测量的装置结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种测量激光增益晶体内激发态吸收热负荷的装置和方法,能够提高测量精度,从而准确反映晶体热效应的严重程度。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明测量激光增益晶体内激发态吸收热负荷的装置结构图。如图1所示,一种测量激光增益晶体内激发态吸收热负荷的装置包括:单频激光器1、功率计2、分光镜3、F-P腔4、光电探测器5、示波器6、信号发生器7和高压放大器8,其中,分光镜3、F-P腔4、光电探测器5、示波器6、信号发生器7和高压放大器8依次连接。
单频激光器1的输出振荡光经分光镜3后注入到功率计2中,透过分光镜3的一部分的振荡光注入到F-P腔4中,经光电探测器5转化为电信号,将光电探测器5输出的电信号输入到示波器6,示波器6用于记录不同注入功率下单频激光器1的单频特性;示波器6与信号发生器7连接,信号发生器7用于产生低频扫描信号,低频扫描信号经高压放大器8放大后加载在粘连于F-P腔4内的压电陶瓷上。单频激光器1包括激光增益晶体。激光增益晶体采用Nd:YVO4晶体。单频激光器1的光学谐振腔为驻波腔或行波腔。
图2为本发明测量激光增益晶体内激发态吸收热负荷的方法流程图。如图2所示,一种测量激光增益晶体内激发态吸收热负荷的方法,方法采用一种测量激光增益晶体内激发态吸收热负荷的装置,方法包括:
步骤101:获取单频激光器对应的降低泵浦功率时的无光泵浦阈值及单频激光器的最佳泵浦点功率,具体包括:
增加和降低单频激光器的泵浦光功率,利用功率计记录单频激光器的不同注入泵浦功率情况下对应的激光输出功率。
获取单频信息;由信号发生器产生低频扫描信号,经高压放大器放大后加载于粘连在F-P腔镜的压电陶瓷上,扫描F-P腔的腔长,用示波器记录单频激光器输出激光的透射谱即单频信息。
根据激光输出功率表和单频信息,得到单频激光器对应的降低泵浦功率时的无光泵浦阈值及单频激光器的最佳泵浦点功率。
步骤102:获取单频激光器的腔型参数。
步骤103:根据子午面的热透镜焦距公式和弧矢面的热透镜焦距公式,得到单频激光器内部的激光增益晶体子午面的热透镜焦距和弧矢面的热透镜焦距,具体包括:
根据激光增益晶体在子午面的热透镜公式
Figure BDA0002298567420000071
得到激光增益晶体子午面的热透镜焦距ft(thermal)
根据激光增益晶体在弧矢面的热透镜公式
Figure BDA0002298567420000072
得到激光增益晶体弧矢面的热透镜焦距。
其中,K‖c、K⊥c分别为平行、垂直于激光增益晶体的热导率,ωp为泵浦光在激光晶体处的腰斑大小,ξ为热负荷,PP为注入激光晶体内的泵浦功率大小,
Figure BDA0002298567420000076
为该激光晶体的热光系数,α为激光晶体对泵浦光的吸收系数,l为激光增益晶体掺杂部分的有效长度,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距。
步骤104:根据子午面的热透镜焦距、弧矢面的热透镜焦距和单频激光器的腔型参数,得到激光增益晶体在子午面的输出矩阵和激光增益晶体在弧矢面的输出矩阵,具体包括:
根据子午面的热透镜焦距和单频激光器的腔型参数,采用公式
Figure BDA0002298567420000073
得到激光增益晶体在子午面的输出矩阵
Figure BDA0002298567420000074
根据弧矢面的热透镜焦距和单频激光器的腔型参数,采用公式
Figure BDA0002298567420000075
得到激光增益晶体在弧矢面的输出矩阵
Figure BDA0002298567420000081
其中,
Figure BDA0002298567420000082
为激光增益晶体在子午面的输出矩阵,
Figure BDA0002298567420000083
为激光增益晶体在弧矢面的输出矩阵,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距,
Figure BDA0002298567420000084
为其余光学传输矩阵在子午面的表达式;
Figure BDA0002298567420000085
为其余光学传输矩阵在弧矢面的表达式。
步骤105:将降低泵浦功率时的无光泵浦阈值和单频激光器的腔型参数,代入激光增益晶体在子午面的输出矩阵、激光增益晶体在弧矢面的输出矩阵及激光器处于稳区时满足的条件,得到无光阈值处对应的热负荷。
步骤106:根据无光阈值处对应的热负荷,得到激发态吸收热负荷,具体包括:
当单频激光器在子午面和弧矢面同时处于稳区时,即|At+Dt|≤2&|As+Ds|≤2时,根据无光阈值处对应的热负荷采用公式
Figure BDA0002298567420000086
得到激发态吸收热负荷ξESA
其中,λP为泵浦光的波长,λl为出光后的振荡光波长,ξESA为激发态吸收热负荷,ξlasing为出光后的热负荷。
步骤107:将单频激光器的最佳泵浦点功率和单频激光器的腔型参数,代入激光增益晶体在子午面的输出矩阵、激光增益晶体在弧矢面的输出矩阵及激光器在最佳泵浦点处子午面、弧矢面的光斑应满足的条件,得到最佳泵浦点对应的激发态吸收热负荷,具体包括:
当激光谐振腔在最佳泵浦点处子午面、弧矢面的光斑应满足公式
Figure BDA0002298567420000087
时,根据激光增益晶体在子午面的输出矩阵、激光增益晶体在弧矢面的输出矩阵和单频激光器的最佳泵浦点功率,得到最佳泵浦点对应的激发态吸收热负荷。
本发明提供的一种测量激光增益晶体内激发态吸收热负荷的方法,其原理为:对于Nd:YVO4激光晶体产生1342nm激光来说,由于存在严重的热效应,且有无激光输出时的热效应存在明显的差异,该热效应的明显变化会反应到激光谐振腔的稳定性等腔型的变化。反过来,可以通过激光输出功率变化反应出来的激光腔型的变化推导出有无激光输出时的激光增益晶体内激发态吸收热负荷的大小。
当泵浦波长为880nm时,在没有激光辐射产生情况下,随着泵浦功率的增加,此时的上能级粒子由于没有相应的激发态吸收的能级存在,所以出光前激发态吸收效应不予考虑。对于类双稳激光,当有激光辐射后,高功率的激光辐射突然发生,导致上能级粒子数骤减,能量传递上转换热效应程度随之发生突降,当输出耦合镜对基频光的透射率相对较低时,其能量传输上转换热负荷的值可忽略不计。对于激发态吸收效应,其对于1342nm的吸收截面仅为受激吸收截面的1/10,所以出光后的热负荷除了主要的量子亏损外,激发态吸收效应的热负荷成为了激光热负荷的主要来源。
由出光后的热负荷表达式
Figure BDA0002298567420000091
推导出的出光后激发态吸收的热负荷
Figure BDA0002298567420000092
其中,λP为泵浦光的波长,λl为出光后的振荡光波长,ξESA为激发态吸收热负荷,ξlasing为出光后的热负荷。
以晶体处的热透镜为起始点,列出其在子午面及弧矢面的ABCD传输矩阵为
Figure BDA0002298567420000101
Figure BDA0002298567420000102
激光增益晶体在子午面的热透镜公式为
Figure BDA0002298567420000103
及激光增益晶体在弧矢面的热透镜公式为
Figure BDA0002298567420000104
其中,K‖c、K⊥c分别为平行、垂直于激光增益晶体的热导率,ωp为泵浦光在激光晶体处的腰斑大小,ξ为热负荷,PP为注入激光晶体内的泵浦功率大小,
Figure BDA0002298567420000105
为激光晶体的热光系数,α为激光晶体对泵浦光的吸收吸收,l为激光增益晶体掺杂部分的有效长度。
将测出的降低泵浦功率时的无光泵浦阈值代入
|At+Dt|≤2&|As+Ds|≤2 (7)
即激光器刚好在子午面和弧矢面同时处于稳区时,可求出无光阈值处对应的热负荷,再由激发态吸收热负荷表达式即可求出ξESA
在有振荡光辐射情况下,根据激光器的输出功率情况及单频性,还可得到激光器最佳运行状态对应的泵浦功率值。该状态下激光增益晶体对应的子午面、弧矢面的光斑应满足公式
Figure BDA0002298567420000106
利用该公式求得的总热负荷,结合激发态吸收热负荷公式2即可求得处于最佳工作状态下的激发态吸收热负荷大小值。该测量方法为具体研究激光增益晶体的热特性提供了有效途径。
与现有技术相比,本发明具有以下优点:
1.本发明在对激光增益晶体内激发态吸收热负荷进行测量时,不必过多分析晶体本身发生的复杂的热过程,也无需引入其他光学系统,只需测量该单频激光器的类双稳输出特性曲线及监测输出振荡光的透射谱,即可得到激光增益晶体内激发态吸收热负荷,该测量方法过程简单,结果精确。
2.本发明适用于任意具有类双稳输出特性的增益晶体热效应测量。
3.本发明适用于不同腔型结构中激光增益晶体内激发态吸收热负荷进行测量。
4.本发明在测量激光增益晶体内激发态吸收热负荷的基础上,还可以进一步分析激光器输出耦合镜透过率对激发态吸收热负荷的大小的影响,进而为进一步提升该类激光器的输出功率提供有力的参考。
总之,本发明能够准确测量具有类双稳输出特性的激光增益晶体内激发态吸收热负荷,装置简单,操作简便,同时还可具体研究不同透射率情况下的热负荷大小变化。
实施例1:
图3为本发明“8”字环形腔中实现激光增益晶体内激发态吸收热负荷测量的装置结构图,该装置包括单频激光器1、功率计2、分束镜3、F-P腔4、光电探测器5、示波器6、信号发生器7、高压放大器8。被测激光增益晶体由铟箔包覆通过真空铟焊置于紫铜控温炉中,并置于激光谐振腔中,控温炉采用热电制冷器(TEC)进行温度控制,控温精度为0.1℃;单频激光器1为“8”字环形结构,由第一凹凸镜9、Nd:YVO4激光晶体10、永磁铁包围的TGG磁光晶体11、半波片12、第一平凸面镜13、第一平凹镜14、第二平凹镜15、倍频晶体16组成,倍频晶体的插入是为了得到更加稳定的单频激光输出,第一凹凸镜9镀有对泵浦光高透,振荡光高反膜,第一平凸面镜13镀有基频光高反膜,第一平凹镜14镀有对基频光与倍频光均高反膜,第二平凹镜15镀有对基频光部分高反膜,倍频光高透膜;单频激光器1产生的基频光经分光镜3将绝大多数振荡光注入到功率计2中,透过的微弱振荡光注入到光电探测器5;光电探测器5的输出信号输入到示波器6记录单频激光器1的透射谱;信号发生器7输出的低频扫描信号,经高压放大器8放大后加载在粘连于F-P腔内的压电陶瓷上。
实施例2:
图4为本发明驻波腔中实现激光增益晶体激发态吸收(ESA)热负荷测量的装置结构图,该装置包括单频激光器1、功率计2、分束镜3、F-P腔4、光电探测器5、示波器6、信号发生器7和高压放大器8。被测激光增益晶体由铟箔包覆通过真空铟焊置于紫铜控温炉中,并置于激光谐振腔中,控温炉采用热电制冷器进行温度控制,控温精度为0.1℃;单频激光器1为驻波腔结构,单频激光器1包括凹凸镜17、激光晶体18、倍频晶体19、标准具20和平凹镜21,凹凸镜17和平凹镜21是构成驻波腔的两个光学镜片,凹凸镜17镀有对泵浦光高透、基频光高反、倍频光高反的膜,平凹镜21镀有对基频光部分高反、对倍频光高透膜;单频激光器1产生的基频光经分束镜3将1342nm激光注入到功率计2中,透过的微弱基频光注入到光电探测器5;光电探测器5的输出信号输入到示波器6记录单频激光器1的透射谱;信号发生器7输出的低频扫描信号,经高压放大器8放大后加载在粘连于F-P腔的压电陶瓷上。
实施例3:
被测激光增益晶体Nd:YVO4晶体,尺寸为3*3*(5+15)mm3的复合晶体,其中5mm为未掺杂部分,15mm为掺杂浓度0.3%的部分,晶体两端面均镀有880/1064/1342nm减反膜,出光端面有1.5度楔角,用于激光稳定的输出;单频激光器1为“8”字环形结构,第一凹凸镜9镀有对泵浦光高透,振荡光高反膜,曲率半径为1500mm,第一平凸面镜13镀有基频光高反膜,曲率半径为1500mm,第一平凹镜14镀有对基频光与倍频光均高反膜,曲率半径为-100mm,第二平凹镜15镀有对基频光部分高反膜,反射率为0.5%,曲率半径为-100mm;光电探测器5用于探测1342nm光透射情况,示波器6用于监视激光器的单频情况。
当增加注入泵浦功率到45.3W时有激光输出,由于双稳现象的存在,当减小泵浦功率到40.2W时,无激光输出,由
|At+Dt|≤2&|As+Ds|≤2
可得到无光阈值处的热负荷为43.63%,由公式
Figure BDA0002298567420000131
可得到无光阈值处的ESA热负荷为14.03%。
测量得到的最佳泵浦光功率为42.6W,由公式
Figure BDA0002298567420000132
可得到最佳泵浦点的热负荷为46.23%,由公式
Figure BDA0002298567420000133
可得到最佳泵浦点处的激发态吸收热负荷为18%。
上述计算中平行于激光增益晶体的热导率K‖c为5.23W/m/K,垂直于激光增益晶体的热导率K⊥c为5.1W/m/K,泵浦光在激光晶体处的腰斑大小ωp为510μm,热光系数
Figure BDA0002298567420000134
为3*10-6/K,激光晶体对泵浦光的吸收系数α为1.5/cm,激光增益晶体掺杂部分的有效长度l为15mm。用同样的方法可测量出不同输出耦合镜情况下激光增益晶体内激发态吸收热负荷。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

1.一种测量激光增益晶体内激发态吸收热负荷的方法,所述方法采用一种测量激光增益晶体内激发态吸收热负荷的装置,所述装置包括:单频激光器、功率计、分光镜、F-P腔、光电探测器、示波器、信号发生器和高压放大器;其中,所述分光镜、所述F-P腔、所述光电探测器、所述示波器、所述信号发生器和高压放大器依次连接;所述单频激光器的输出振荡光经所述分光镜后注入到所述功率计中,透过所述分光镜的一部分的振荡光注入到所述F-P腔中,经所述光电探测器转化为电信号,将所述光电探测器输出的电信号输入到所述示波器,所述示波器用于记录不同注入功率下所述单频激光器的单频特性;所述示波器与所述信号发生器连接,所述信号发生器用于产生低频扫描信号,所述低频扫描信号经所述高压放大器放大后加载在粘连于所述F-P腔内的压电陶瓷上,其特征在于,包括:
获取单频激光器对应的降低泵浦功率时的无光泵浦阈值及单频激光器的最佳泵浦点功率;
获取所述单频激光器的腔型参数;
根据子午面的热透镜焦距公式和弧矢面的热透镜焦距公式,得到单频激光器内部的激光增益晶体子午面的热透镜焦距和弧矢面的热透镜焦距;
根据所述子午面的热透镜焦距、所述弧矢面的热透镜焦距和所述单频激光器的腔型参数得到所述激光增益晶体在子午面的输出矩阵和所述激光增益晶体在弧矢面的输出矩阵;
将所述降低泵浦功率时的无光泵浦阈值和所述单频激光器的腔型参数,代入所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵及激光器处于稳区时满足的条件,得到无光阈值处对应的热负荷;
根据所述无光阈值处对应的热负荷,得到激发态吸收热负荷;
将所述单频激光器的最佳泵浦点功率和所述单频激光器的腔型参数,代入激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵及激光器在最佳泵浦点处子午面、弧矢面的光斑应满足的条件,得到最佳泵浦点对应的激发态吸收热负荷;
所述根据所述无光阈值处对应的热负荷,得到激发态吸收热负荷,具体包括:
当所述单频激光器在子午面和弧矢面同时处于稳区时,根据所述无光阈值处对应的热负荷采用公式
Figure FDA0002639224870000021
得到激发态吸收热负荷ξESA
其中,λP为泵浦光的波长,λl为出光后的振荡光波长,ξESA为激发态吸收热负荷,ξlasing为出光后的热负荷。
2.根据权利要求1所述的测量激光增益晶体内激发态吸收热负荷的方法,其特征在于,所述获取单频激光器对应的降低泵浦功率时的无光泵浦阈值及单频激光器的最佳泵浦点功率,具体包括:
增加和降低所述单频激光器的泵浦光功率,利用功率计记录所述单频激光器的不同注入泵浦功率情况下对应的激光输出功率;
获取单频信息;
根据所述激光输出功率和所述单频信息,得到单频激光器对应的降低泵浦功率时的无光泵浦阈值及单频激光器的最佳泵浦点功率。
3.根据权利要求1所述的测量激光增益晶体内激发态吸收热负荷的方法,其特征在于,所述根据子午面的热透镜焦距公式和弧矢面的热透镜焦距公式,得到单频激光器内部的激光增益晶体子午面的热透镜焦距和弧矢面的热透镜焦距,具体包括:
根据所述激光增益晶体在子午面的热透镜公式
Figure FDA0002639224870000031
得到激光增益晶体子午面的热透镜焦距ft(thermal)
根据所述激光增益晶体在弧矢面的热透镜公式
Figure FDA0002639224870000032
得到激光增益晶体弧矢面的热透镜焦距;
其中,K‖c、K⊥c分别为平行、垂直于激光增益晶体的热导率,ωp为泵浦光在激光晶体处的腰斑大小,ξ为热负荷,PP为注入激光晶体内的泵浦功率大小,
Figure FDA0002639224870000033
为激光晶体的热光系数,α为激光晶体对泵浦光的吸收系数,l为激光增益晶体掺杂部分的有效长度,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距。
4.根据权利要求1所述的测量激光增益晶体内激发态吸收热负荷的方法,其特征在于,所述根据所述子午面的热透镜焦距、所述弧矢面的热透镜焦距和所述单频激光器的腔型参数得到所述激光增益晶体在子午面的输出矩阵和所述激光增益晶体在弧矢面的输出矩阵,具体包括:
根据所述子午面的热透镜焦距和所述单频激光器的腔型参数采用公式
Figure FDA0002639224870000034
得到所述激光增益晶体在子午面的输出矩阵
Figure FDA0002639224870000035
根据所述弧矢面的热透镜焦距和所述单频激光器的腔型参数采用公式
Figure FDA0002639224870000041
得到所述激光增益晶体在弧矢面的输出矩阵
Figure FDA0002639224870000042
其中,
Figure FDA0002639224870000043
为所述激光增益晶体在子午面的输出矩阵,
Figure FDA0002639224870000044
为所述激光增益晶体在弧矢面的输出矩阵,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距,
Figure FDA0002639224870000045
为其余光学传输矩阵在子午面的表达式;
Figure FDA0002639224870000046
为其余光学传输矩阵在弧矢面的表达式。
5.根据权利要求1所述的测量激光增益晶体内激发态吸收热负荷的方法,其特征在于,所述将所述单频激光器的最佳泵浦点功率和所述单频激光器的腔型参数,代入激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵及激光器在最佳泵浦点处子午面、弧矢面的光斑应满足的条件,得到最佳泵浦点对应的激发态吸收热负荷,具体包括:
当激光谐振腔在最佳泵浦点处子午面、弧矢面的光斑应满足公式
Figure FDA0002639224870000047
时,根据所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵和所述单频激光器的最佳泵浦点功率,得到最佳泵浦点对应的激发态吸收热负荷。
CN201911212682.1A 2019-12-02 2019-12-02 一种测量激光增益晶体内激发态吸收热负荷的装置和方法 Active CN110895239B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911212682.1A CN110895239B (zh) 2019-12-02 2019-12-02 一种测量激光增益晶体内激发态吸收热负荷的装置和方法
US17/061,051 US11404840B2 (en) 2019-12-02 2020-10-01 Device and method for measuring thermal load caused by excited state absorption in laser gain crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911212682.1A CN110895239B (zh) 2019-12-02 2019-12-02 一种测量激光增益晶体内激发态吸收热负荷的装置和方法

Publications (2)

Publication Number Publication Date
CN110895239A CN110895239A (zh) 2020-03-20
CN110895239B true CN110895239B (zh) 2020-10-09

Family

ID=69787257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911212682.1A Active CN110895239B (zh) 2019-12-02 2019-12-02 一种测量激光增益晶体内激发态吸收热负荷的装置和方法

Country Status (2)

Country Link
US (1) US11404840B2 (zh)
CN (1) CN110895239B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3032288C (en) * 2016-09-29 2020-08-18 Halliburton Energy Services, Inc. Distributed temperature sensing over extended temperature ranges
WO2023115381A1 (zh) * 2021-12-22 2023-06-29 中国科学技术大学 利用圆偏振激光实现半导体纳米晶中单激子增益的方法
CN114509242B (zh) * 2022-02-18 2024-05-14 重庆邮电大学 一种测量激光晶体热透镜焦距方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368041B2 (en) * 2011-03-31 2013-02-05 Cymer, Inc. System and method for compensating for thermal effects in an EUV light source
CN102607812A (zh) * 2012-03-23 2012-07-25 北京国科世纪激光技术有限公司 一种侧泵激光模块热效应的检测装置
CN104377540B (zh) * 2014-12-14 2018-03-02 中国科学技术大学 一种自动优化输出功率的高功率固体激光器谐振腔系统
US10048130B2 (en) * 2015-01-09 2018-08-14 California Institute Of Technology Context imaging raman spectrometer
CN105547656B (zh) * 2016-02-02 2018-12-28 潍坊学院 一种在线实时测量激光晶体热透镜焦距的方法与装置
CN108226036A (zh) * 2017-12-06 2018-06-29 西南技术物理研究所 基于双光栅剪切干涉的一体化激光材料热效应测量装置

Also Published As

Publication number Publication date
US11404840B2 (en) 2022-08-02
CN110895239A (zh) 2020-03-20
US20210167566A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
CN110895239B (zh) 一种测量激光增益晶体内激发态吸收热负荷的装置和方法
CN105973573B (zh) 全固态激光器腔内线性损耗的测量方法
CN112345209B (zh) 一种端面泵浦激光晶体热焦距测量装置及方法
CN110865053B (zh) 测量激光增益晶体内能量传输上转换热负荷的装置及方法
CN109586150B (zh) 一种单谐振腔实现百瓦级连续单频全固态激光器
CN111313216A (zh) 一种抑制高功率连续波单频激光器强度噪声的方法
CN112290359A (zh) 一种双共振腔拉曼激光器
Chen et al. Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd: YVO/sub 4//KTP green laser
CN108512027B (zh) 用于皮秒种子激光脉冲的环形腔放大装置
CN112397982B (zh) 一种基于超低温粒子数调控机制的双波长中红外激光器
CN114509242B (zh) 一种测量激光晶体热透镜焦距方法及装置
CN216648856U (zh) 一种全固态掺镨环形腔单频激光装置
CN114518218A (zh) 一种测量固体激光器腔内损耗的方法及装置
CN110797740B (zh) 一种基于碱金属激光器差频的中红外激光器
Jackson et al. Theoretical modeling of a diode-pumped Nd: YAG laser with a solid nonfocusing pump light collector
CN112366507B (zh) 基于全固态连续波金绿宝石激光器的原子冷却光学装置
CN205303940U (zh) 一种558nm波长单频输出的全固体激光器
CN111180985B (zh) 一种产生高重复频率飞秒激光的实验装置和方法
Li et al. All-solid-state CW Pr3+: YLF green laser at 522 nm end-pumped by a high-power fiber-coupled 444 nm blue LD module
Yang et al. Low-intensity-noise single-frequency CW 1080 nm laser by employing a laser crystal with the small stimulated-emission cross section
RU2177665C2 (ru) Микролазер с внутрирезонаторным удвоением частоты излучения
Chen et al. Reduction of thermal effects in a 2.7-µm Er: Y 2 O 3 ceramic laser with annular pumping
CN112993729B (zh) 一种中波光参量振荡器低量子亏损1.6μm高峰值功率泵浦源
CN113690724B (zh) 一种用于有色金属加工的超短脉冲源
CN217507916U (zh) 一种双波长黄光激光器装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210719

Address after: 030006 No. C618, 6th floor, No. 402, South Central Street, Taiyuan Xuefu Park, Shanxi comprehensive reform demonstration zone, Taiyuan City, Shanxi Province

Patentee after: TAIYUAN SHANDA YUGUANG TECHNOLOGICAL Co.,Ltd.

Address before: 030006 No. 92, Hollywood Road, Taiyuan, Shanxi

Patentee before: Shanxi University

TR01 Transfer of patent right