CN1298770A - 防止导电结构腐蚀的方法与系统 - Google Patents

防止导电结构腐蚀的方法与系统 Download PDF

Info

Publication number
CN1298770A
CN1298770A CN00122771A CN00122771A CN1298770A CN 1298770 A CN1298770 A CN 1298770A CN 00122771 A CN00122771 A CN 00122771A CN 00122771 A CN00122771 A CN 00122771A CN 1298770 A CN1298770 A CN 1298770A
Authority
CN
China
Prior art keywords
metal
semiconductor
zinc
coating
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00122771A
Other languages
English (en)
Other versions
CN1195591C (zh
Inventor
阿瑟·J·斯皮瓦克
戴维·B·道林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Semiconductor Inc
Original Assignee
Applied Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Semiconductor Inc filed Critical Applied Semiconductor Inc
Publication of CN1298770A publication Critical patent/CN1298770A/zh
Application granted granted Critical
Publication of CN1195591C publication Critical patent/CN1195591C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • C04B41/68Silicic acid; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5024Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials

Abstract

一种用于防止与腐蚀环境接触的导电结构的表面被腐蚀的方法包括:(a)与表面的至少一部分导电接触的半导体涂层;以及(b)用于过滤腐蚀噪声的电子滤波器以及使用该系统防止腐蚀的方法。

Description

防止导电结构腐蚀的方法与系统
本发明涉及使用半导体技术用来防止导电结构腐蚀的方法与系统。
过去几个世纪发展了许多用于控制腐蚀的方法,特别强调在腐蚀环境里延长金属结构的寿命的方法。这些方法通常包括涂层,主要用于提高铁类金属,例如钢,和一些非铁类金属,例如铝的耐蚀性,以及避免需要使用比较昂贵的合金。由此既可以提高性能又可以降低成本。然而,这类涂层通常有某些缺陷,包括不适用于受腐蚀和污蚀的非金属结构。
涂层可以分为两大类。最大的一类为表面涂层,例如油漆,起到与环境的物理隔离的作用。第二类包括牺牲性涂层,例如锌或镉,设计成对其优先腐蚀以便保护基本金属不受侵蚀。
阴极保护与涂层均是主要目的为减轻与防止腐蚀的工程方法。每种处理方法不同:阴极保护通过从外界源引入电流抵消常态电化学腐蚀反应来防止腐蚀,而涂层则是形成阻挡层,阻止阴极阳极间或电偶间自发的腐蚀电流或电子流动。每种处理方法均获得有限的成功。到目前为止涂层方法代表了最广泛的普通防蚀的方法(见Leon等的美国专利No.3,562,124以及Hayashi等的美国专利No.4,219,358)。而阴极保护用于保护埋藏或浸泡条件下的百万公里管道和大面积钢表面。
阴极保护技术通过提供足够的阴极电流使阳极溶解速度变到可忽略的程度来减小金属表面的腐蚀(例如,见Pryor的美国专利No.3,574,801;Wasson的美国专利No.3,864,234;Maes的美国专利No.4,381,981;Wilson等的美国专利No.4,836,768;Webster的美国专利No.4,863,578;以及Stewart等的美国专利No.4,957,612)。阴极保护的概念是利用足够的电流极化阴极到阳极电位从而消除局部阳极与阴极表面的电位差的原理。换句话说,施加阴极电流的效果是减小继续参与反应的阳极的面积,而不是减小剩余的阳极的腐蚀速度。当所有的阳极反应失效后即取得了完全的保护。从电化学角度看,这表明足够的电子提供给了被保护的金属,使得平衡了金属电离或溶解的趋势。
最近的腐蚀的研究工作发现,电化学腐蚀过程明显同电化学系统的电特性的随机波动有关,例如电池电流和电极电位。这些随机波动技术上称为“噪声”。研究人员开始应用噪声分析技术研究电化学系统中的腐蚀过程。
Riffe的U.S.5,352,342和Riffe的U.S.5,009,757公开了一种锌/氧化锌为基础的硅酸盐涂层,结合电子学应用于防蚀系统。涂层中的锌/氧化锌颗粒被公开出具有半导体特性,主要是在Zn-ZnO相界的pn结。当反向偏置时,该pn结表现为二极管,阻止跨越相界的电子转移。这种约束限制了电子从Zn氧化位置向ZnO表面氧还原位置的转移。在局部腐蚀电池的阴极阳极之间有效地增加了抗性而减小了腐蚀。
平均地,Zn-ZnO结呈反向偏置,这是由于与Zn表面上Zn的氧化和ZnO表面上O2的还原相联系的电位的缘故。然而,会发生相当大的电压随机波动。这些电压波动时而引起结点变成正向偏置。当正向偏置时,跨越结点的电子转移增加,加速了Zn的氧化和O2的还原。甚至局部腐蚀电池的阴极阳极之间产生短路,增强了腐蚀。
Riffe的专利公开了在防蚀系统的电化学线路中附加一个固定值的电容器。然而,没有方法控制电容器的数值水平或建议任何方法在给定的结构中为有效的防止腐蚀确定电容器必需的数值水平。因此,为使系统有效要使用过电容器。
由此,本发明的一个目的为提供一种半导体涂层,对任何导电结构提供抗腐蚀特性。
本发明的进一步目的为提供一种用于保护导电金属结构不受腐蚀的方法,可以微调到适合该金属结构的独特特征。
本发明的进一步目的为提供一种用于保护导电金属结构不受腐蚀的方法,通过使用半导体技术而不需要外部阳极,不需要电解液,以及不需要产生电流。
本发明的进一步目的为提供一种用于保护导电金属结构不受腐蚀的系统,其中该系统提供长期保护而只需最小的系统维护。
凡此种种目标通过半导体涂层和相关联的电子系统的发现而满意取得,其中系统的运行只需过滤覆盖着半导体涂层的导电结构中的电压波动,其中,使用该系统的方法包括:
用半导体涂层涂敷导电结构,有固定的电子滤波器连接于所述被涂敷的结构,
监视由所述涂层产生的噪声,所述涂层具有连接于其上的所述固定的电子滤波器,
使用连接于所述涂层的可调滤波器以确定使所述涂层产生的噪声最小化所需的抗蚀滤波响应;以及
用至少具有所述抗蚀滤波响应的有源或无源滤波器替换所述可调滤波器。
本发明的完全理解与其相伴优点通过参阅以下详细描述并参照附图可以容易地获知,其中:
图1为本发明一个优选实施例中Zn/ZnO结的图示。
图2为描述本发明的系统的等效电路图。
本发明提供一种防止任何易于腐蚀的导电结构被腐蚀的方法,包括用半导体涂层涂敷导电结构并将所得的涂敷结构连接到固定的电子滤波器,监视由系统产生的腐蚀噪声,并确定最小化腐蚀噪声所需的滤波特性(在本发明的上下文中,术语“腐蚀噪声”用于描述由于原电池腐蚀过程而产生的电压波动)。本发明的一个实施例包括使用可调滤波器调整滤波响应以确定最小化被覆结构产生的噪声所需的滤波特性,然后用至少具有所确定的抗蚀滤波响应的无源电子滤波器替换该可调滤波器。在另一个实施例中,本发明将可调滤波器替换为有源电子滤波器和监视系统,监视系统持续监视噪声并自动调整滤波响应以最小化系统中的波动。
本发明通过将半导体涂层与电子滤波器耦合来最小化这种腐蚀噪声。电子滤波器具有一种在本发明中定义为给定频率处的噪声减少水平的滤波响应。如上所述,滤波器可以是无源低通RC滤波器或有源滤波器。每种情况下,滤波器使电压波动最小化。存在于半导体涂层中的结保持反向偏置。半导体涂层中从阳极区域流向阴极区域平均时间电子流因而减小,涂层被有效钝化。
无源低通RC滤波器实质上是电容器和电阻器。本发明系统中,半导体涂层某种程度上起到电阻器的作用,加上电容器构成RC滤波器。合适的有源滤波器包括,但不限于,巴特沃斯(Butterworth)滤波器、贝塞尔(Bessel)滤波器、以及Sallen-Key滤波器。这些有源滤波器可在市场上买到和/或易于由本领域普通技术人员所制备。这些有源滤波器基本上是运算放大器电路加电容器。本发明滤波器的主要元件优选为电容器,其中滤波响应与在给定频率使得噪声减小所需的电容值有关。
本发明的噪声测量方面用于微调特殊应用的系统设计。基于测量出的噪声,可以确定并改进所要求的滤波器特性与滤波器在系统中的安装位置,用于结构的整个表面的一致性防蚀,即便是非常大的结构,如航空母舰或大跨度桥梁。在本发明中,监视被涂敷的表面与低噪声、高阻抗参考电极之间的电压波动。合适的高阻抗参考电极可以由饱和甘汞电极或饱和硫酸盐电极制备,例如,适合这种目的的可商业获取的高阻抗参考电极可以从各种分类设备公司得到,如Beckman Instruments或Corning。利用这些电极通过使用示波器显示电压波动可以监视噪声。或者,从电极获得的数据可以使用带有模-数转换器的PC机储存和分析,可以使用时间序列分析程序如快速付里叶变换(FFT)分析或最大熵法(MEM法)来分析结果数据。这些方法根据所需既可以提供实时结果也可以提供延时结果。使用这类方法可以确定滤波器响应水平并安排所需的滤波器使得在示波器上产生几乎平坦的线型(即最小化噪声)。这既可以针对结构的单一局部,也可以在整个结构表面的许多位置上进行微调控制。电子滤波器特性以及滤波器安装位置可以调整为使得将测量到的电压波动最小化,于是最大化地钝化涂层。最终的结果是极大地提高用于任何所需结构的防蚀系统的寿命。这种结果的产生是由于腐蚀噪声的减小,因而极大地减小了半导体涂层的牺牲腐蚀。
本发明还涉及一种半导体涂层,可以利用各种导电基底提供一系列有趣的特性。本发明的半导体涂层可以是任何半导体层,包括但不限于具有(a)n型和p型半导体畴,(b)金属-半导体结,(c)离子导体-半导体结,(d)金属-半导体-离子导体结,(e)半导体-绝缘体-半导体结,以及它们的各种组合的半导体涂层。本发明的半导体涂层可以用于各种最终应用。其中主要的是导电结构的防蚀。用于导电基底的防蚀的该系统包括:
(a)半导体涂层,至少与部分导电结构表面导电接触;以及
(b)过滤腐蚀噪声的装置,其中该装置包含电子汇点,如电池
或其他电源,还有滤波器,如电容器,与被涂敷的导电基底连
接。
披露的一种防蚀方法包括:
1)清洗导电结构的外表面;
2)用本发明的半导体涂层涂敷外表面;以及
3)使用电子滤波器最小化系统中的腐蚀噪声。
本发明的方法与系统的关键是测量由整个系统(包括但不限于,基底、涂层与滤波器元件)产生的腐蚀噪声并应用电子滤波器最小化噪声。
用于防蚀与防污的实施例中,本系统包含两个互相依赖的部件:(1)半导体涂层,以及(2)用于向涂敷了涂层的导电结构传递净负偏置的装置。通常,导电表面清洗后涂敷半导体涂层,优选为对金属表面喷砂到工业级喷砂表面或对非金属导电结构进行类似处理。当导电表面被喷砂或类似方法清洗后,表面将有许多深度从0.1mil到几个mil的沟槽或凹痕。本发明的半导体涂层应当涂敷到比清洗处理形成的凹坑的深度大至少2mil的厚度,优选为2-10mil厚度,最优选为7-9mil厚度。在没有明显凹坑的光滑表面,涂层可以施加到约0.5mil以下的厚度而不对系统性能造成有害影响。
使用本方法和系统可以保护的结构可以是任何易于腐蚀的导电材料。该结构优选为铁类金属结构或非铁类导电金属构成的金属结构。典型金属包括但不限于铁、钢以及铝。
本发明的半导体涂层优选为金属或金属合金涂层,含有或不含有金属氧化物。在一种最优选实施方案中,涂层为Zn/ZnO系统。金属或金属合金可以单独使用或与适当的涂层粘合剂结合使用。涂层粘合剂包括各种硅酸盐粘合剂,如硅酸钠、硅酸镁、以及硅酸锂。涂层中的金属或金属合金必须比被保护的导电材料具有更高的氧化电位。大多数金属的标准电极电位已经众所周知,众多不同金属的标准电极电位抄录如下。标准电极还原电位(相对于氢电极)
(来源:CRC Handbook of Chemistry and Physics,60th ed.,Ed.Robert C.Weast,CRC Press,Inc,Boca Raton,FL,1979)
由于本系统与方法的涂层就被保护的导电材料而言具有牺牲性(尽管腐蚀噪声最小化时只有极小的牺牲),当确定涂层中包含的金属时,重要的是选择具有比被保护的导电材料更负的标准电极电位的金属。例如,当保护铁时(如存在于钢中的),涂层可以使用Zn、Ti或任何其他具有比-0.44更负的标准电极电位的金属。当保护具有非常负的电极电位的金属,如铝(-1.68)时,容许用一种具有不比其更负的电极电位的金属(如Zn)与一种具有比其更负的电极电位的金属(如Mg)组合的合金。该合金将提供涂层要求的牺牲特性而避免当涂层只含有高负值电极电位的金属如Mg时所发生的极端氧化。通过向上述粘合剂掺入高负值电极电位的金属还可以避免涂层牺牲过快。作为硅酸盐粘合剂的平衡离子可以掺入较负的电极电位的金属,而不用两种金属的合金。
在一个优选实施例中,本发明的半导体涂层可以是与在Schutt的U.S.3,620,784、Riffe的U.S.5,352,342或Riffe的U.S.5,009,757中所公开的相同的涂层,以上文献在此引为参考。无机锌涂层的基本组成元素是二氧化硅、氧、以及锌。在液态下,它们是相对较小的金属硅酸盐分子如硅酸钠,或有机硅酸盐分子如硅酸乙酯。这些基本上单分子的材料交叉连接成硅-氧-锌结构,形成基本的成膜剂或用于所有无机锌涂层的粘合剂。用于本发明的适合的无机锌涂层是各种商业上可获取的硅酸烷基酯或碱性水解硅酸盐类。一种商业上可获取的该类涂层是由Carboline公司制造的Carbozinc D7 WBTM
本发明的涂层还可以包含掺入涂层的额外的n型半导体,例如Sn/SnO。此外,涂层可以掺加诸如Al或Ga金属以增加涂层的导电性或者1-5%的Li以减小涂层的导电性。本发明涂层中的金属/金属氧化物界面(Zn/ZnO)在电化学系统中起二极管的作用。由此,涂层包含了许多起二极管作用的小畴区。由于涂层产生腐蚀噪声,二极管因涂层中小畴区的导通电势的波动间歇地导通和截止。这种导通电势的波动和二极管的开关转换导致涂层牺牲性腐蚀。通过用例如Li掺杂而减小涂层的导电性,可以将二极管的导通电势降低到低于噪声波动曲线的最低点。这将使涂层的牺牲腐蚀最小,同时仍然保护被保护结构的导电材料。
应当补充说明,通过适当选择用于导电表面的半导体涂层材料,既可以实现常规的无源阻挡层也可以实现创新的有源阻挡层。
在一个优选实施例中,本发明的涂层中的锌粉形成一个锌金属与氧化锌交界的金属-半导体结,氧化锌为n型半导体。
所完成的涂层的一种优选实施方案示意于图1中。图1显示了本发明优选的锌/氧化锌/硅酸盐涂层(4)的多孔特性。锌颗粒(1)由氧化锌层(2)覆盖,许多涂敷氧化物的颗粒被不溶性金属硅酸盐粘合剂(3)所包围。涂层与结构金属之间的界面(5)是不溶性金属硅酸盐层,在钢结构的情形下,是不溶性硅酸铁层。
本发明的导电结构可以是任何需要保护免受腐蚀的导电结构,既包括金属结构也包括非金属结构。金属结构的例子,除较小的结构如生物医学设备外,还包括金属交通工具,如船、汽车、飞机、军用坦克或运输工具,金属交通部件、桥梁、铁路耦合机械、容器、管道以及金属塔吊。金属交通部件的例子包括交通工具如汽车、飞机、火车、军用陆地运输工具如坦克、以及舰船、以及其他海上交通工具的金属部件。容器的例子如炼油罐、储存筒仓、以及储料仓。非金属导电结构的例子包括导电性混凝土以及导电性聚合结构。腐蚀过程同样影响这些非金属导电结构而通过本发明同样可以减至最小。导电性混凝土已被建议为制备浮动机场跑道的可选材料。本发明的系统将帮助防止混凝土的腐蚀,从而延长混凝土结构的寿命和结构的完整性。
本发明取得的显著优点为通过将半导体涂层的牺牲腐蚀减至最小,涂层的寿命将比常规涂层保护系统延长许多倍。虽然在水里通过施加阴极电流也可以取得这种效果,但这需要相当大的电流并且非常难于控制。本发明的方法作用于涂层的内部,由此阻止环境腐蚀,其中腐蚀介质不过是空气中凝结的水份。这在保护诸如现代轮船的内表面和保护交通部件、桥梁、飞机、以及火车时变得极其重要,其中现代轮船提供越来越坚固的设计而伴随着越来越大的易于腐蚀的面积。
另一个优选实施例为在现代轮船的内表面上应用本方法和系统。其中内表面上的凝结因其很高的含盐物而特别具腐蚀性,同时,没有充足的水份用于阴极保护系统起作用。没有本发明的噪声滤波器的话,涂层中的锌将很快析出并被流到船底的凝结物冲蚀掉。然而,根据本发明对金属基底应用噪声滤波器,这种析出即被有效中止。
此外,在船的基底钢材上使用噪声滤波器不会比在船内打开一只灯炮更对船上的电子设备产生大的干扰,也不会给敌方探测设备产生察觉信号,因为噪声滤波器即使使用电池或其他电子源,也不会在涂层以外产生可察觉辐射的场。锌的吸收特性是众所周知的且经常用于EM屏蔽以及电子外壳。因此,应用本发明的海岸结构不会有可测量的EM辐射。
本发明的固定电子滤波器起电容器的作用,电容器具有附加的电子汇点以保持电容器反偏。固定电子滤波器优选为常规电源,例如,直流(DC)电源装置如电池,优选为12Volt电池,以及太阳能电池和交流(AC)电源装置的结合。应当注意,尽管该元件在本说明书中称为“电源”,但在本系统中并没有电流和电压。因此电源的命名仅为方便起见而并非意指电子流。如果应用完整的电路,优选使用的电源装置将传递足够的0.5-30V电压,最优选为10-20V。可以将固定电子滤波器(即电源和电容器)连接于镀膜导电基底,可以直接连接于基底或连接于涂层。在优选的实施例中,本发明的电源装置具有一个直接耦合于被保护导电结构的负端。电源装置的正端则经由滤波器/电容器耦合于导电结构,耦合在远离负端连接处的一部分结构上。由于本发明不依赖于产生电流,而这种电流当两个端子之间的距离增加时是要下降的,因此端子之间的距离并不重要,只要正端与负端互相不接触即可。正端优选为在结构上连接在与负端的连接位置相差0.01-30米的位置,最优选为与负端的连接位置相差5-10米的位置。
本发明的方法是自我维护系统寿命。不象常规阴极保护系统中那样,本发明没有对电流或电位的进行周期性监视和控制。进而,本发明不可能失去控制和严重损坏支持结构,而外加阴极保护系统则可以发生这种情况。唯一可以降低涂层寿命的是来自风和来自水的磨损。由于涂层的耐磨性多少要好于电镀,涂层的预期寿命可延长至几十年范围。
此外,使用有源滤波器和监视系统持续监视噪声波动并调整滤波器特性如滤波响应和截止频率,通过防止随时间而增加的腐蚀导致的牺牲损耗速度的增加可以延长涂层寿命。
图2显示一个描述本发明的系统的等效电路图。电路中,10为溶液电阻器(Rs),11与12分别为在阳极(Ea)和阴极(Ec)的电极电位。噪声源(En)在电路中用13表示。阳极(Ra)与阴极(Rc)的法拉第阻抗分别示为14和15。Zn/ZnO相界的金属-半导体结示意为二极管(D)16。噪声滤波器(F),不论有源滤波器或无源滤波器,用17表示。
显然,本发明的许多调整与变形均可在上述讲述范围之内。因此应当理解,在权利要求范围内,本发明可以采取除在此特别说明以外的其他作法。

Claims (36)

1.一种用于防止与腐蚀环境接触的导电结构被腐蚀的方法,所述方法包括:
(a)用半导体涂层涂敷导电结构并提供连接于被涂敷的导电结构的电子滤波器;
(b)监视由被涂敷的导电结构产生的腐蚀噪声并调整所述电子滤波器的滤波器特性使腐蚀噪声最小化。
2.权利要求1中的方法,其中所述电子滤波器包含电源与电容器。
3.权利要求1中的方法,其中所述监视与调整步骤(b)使用有源滤波器与监视装置连续执行。
4.权利要求1中的方法,其中所述电子滤波器包含多个电容器而所述步骤(b)进一步包含确定多个电容器中的每一个在导电结构上的安排。
5.权利要求1中的方法,其中所述导电结构为金属导电结构。
6.权利要求5中的方法,其中所述金属导电结构包括选自铁类金属和非铁类导电金属中的一种金属。
7.权利要求6中的方法,其中所述金属为钢。
8.权利要求6中的方法,其中所述金属为铝。
9.权利要求1中的方法,其中所述导电结构选自桥梁组件、铁路耦合机械、炼油设备、容器、金属塔吊、以及导电性混凝土结构构成的组。
10.权利要求1中的方法,其中所述半导体涂层包含p型和n型半导体畴。
11.权利要求1中的方法,其中所述半导体涂层包含金属-半导体结。
12.权利要求1中的方法,其中所述半导体涂层包含离子导体-半导体结。
13.权利要求1中的方法,其中所述半导体涂层包含金属-半导体-离子导体结。
14.权利要求1中的方法,其中所述半导体涂层包含半导体-绝缘体-半导体结。
15.权利要求1中的方法,其中所述半导体涂层为金属/金属氧化物/硅酸盐涂层。
16.权利要求15中的方法,其中所述金属/金属氧化物/硅酸盐涂层为锌/氧化锌/硅酸盐涂层。
17.权利要求16中的方法,其中所述锌/氧化锌/硅酸盐涂层包含的锌含量占干涂层重量的80-92%。
18.权利要求17中的方法,其中所述锌/氧化锌/硅酸盐涂层包含的锌含量占干涂层重量的85-89%。
19.权利要求15中的方法,其中所述金属/金属氧化物/硅酸盐涂层包含选自Zn、Ti、Al、Ga、Ce、Mg、Ba和Cs之一的金属以及相对应的金属氧化物。
20.权利要求19中的方法,其中所述金属/金属氧化物/硅酸盐涂层包含选自Zn、Ti、Al、Ga、Ce、Mg、Ba和Cs的一种或几种金属的混合物以及由它们获得的一种或几种金属氧化物。
21.权利要求19中的方法,其中所述半导体涂层进一步包括一种或几种掺杂物。
22.一种用于防止导电结构被腐蚀的系统,包括:
(a)半导体涂层;
(b)固定的电子滤波器;
(c)腐蚀噪声监视系统;以及
(d)可调滤波器。
23.权利要求22中的系统,其中所述腐蚀噪声监视系统进一步包括高阻抗参考电极和示波器。
24.权利要求22中的系统,其中所述可调滤波器选自手动可调滤波器与有源滤波器构成的组。
25.权利要求22中的方法,其中所述半导体涂层包含p型和n型半导体畴。
26.权利要求22中的方法,其中所述半导体涂层包含金属-半导体结。
27.权利要求22中的方法,其中所述半导体涂层包含离子导体-半导体结。
28.权利要求22中的方法,其中所述半导体涂层包含金属-半导体-离子导体结。
29.权利要求22中的方法,其中所述半导体涂层包含半导体-绝缘体-半导体结。
30.权利要求22中的系统,其中所述半导体涂层为金属/金属氧化物/硅酸盐涂层。
31.权利要求30中的方法,其中所述金属/金属氧化物/硅酸盐涂层为锌/氧化锌/硅酸盐涂层。
32.权利要求31中的方法,其中所述锌/氧化锌/硅酸盐涂层包含的锌含量占干涂层重量的80-92%。
33.权利要求32中的方法,其中所述锌/氧化锌/硅酸盐涂层包含的锌含量占干涂层重量的85-89%。
34.权利要求30中的方法,其中所述金属/金属氧化物/硅酸盐涂层包含选自Zn、Ti、Al、Ga、Ce、Mg、Ba和Cs之一的金属以及相对应的金属氧化物。
35.权利要求34中的方法,其中所述金属/金属氧化物/硅酸盐涂层包含选自Zn、Ti、Al、Ga、Ce、Mg、Ba和Cs的一种或几种金属的混合物以及由它们获得的一种或几种金属氧化物。
36.权利要求34中的方法,其中所述半导体涂层进一步包括一种或几种掺杂物。
CNB001227718A 1999-12-09 2000-08-14 防止导电结构腐蚀的方法与系统 Expired - Fee Related CN1195591C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US45732899A 1999-12-09 1999-12-09
US09/457,328 1999-12-09
US09/585,397 US6325915B1 (en) 1999-12-09 2000-06-02 Method and system of preventing corrosion of conductive structures
US09/585,397 2000-06-02

Publications (2)

Publication Number Publication Date
CN1298770A true CN1298770A (zh) 2001-06-13
CN1195591C CN1195591C (zh) 2005-04-06

Family

ID=27038557

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001227718A Expired - Fee Related CN1195591C (zh) 1999-12-09 2000-08-14 防止导电结构腐蚀的方法与系统

Country Status (13)

Country Link
US (1) US6325915B1 (zh)
EP (1) EP1236223A4 (zh)
JP (1) JP5198702B2 (zh)
KR (1) KR100765589B1 (zh)
CN (1) CN1195591C (zh)
AU (1) AU784620B2 (zh)
CA (1) CA2393611C (zh)
EA (1) EA004487B1 (zh)
HK (1) HK1034480A1 (zh)
MX (1) MXPA02005702A (zh)
NO (1) NO20022726D0 (zh)
TW (1) TW556278B (zh)
WO (1) WO2001043173A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100390323C (zh) * 2002-10-17 2008-05-28 应用半导体国际有限公司 半导体腐蚀和污染控制设备,系统和方法
CN104502981A (zh) * 2014-12-30 2015-04-08 中国科学院电子学研究所 一种海洋电容性电极

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325915B1 (en) * 1999-12-09 2001-12-04 Applied Semiconductor, Inc. Method and system of preventing corrosion of conductive structures
US6551491B2 (en) * 2000-06-02 2003-04-22 Applied Semiconductor, Inc. Method and system of preventing corrosion of conductive structures
US6524466B1 (en) * 2000-07-18 2003-02-25 Applied Semiconductor, Inc. Method and system of preventing fouling and corrosion of biomedical devices and structures
US6562201B2 (en) * 2001-06-08 2003-05-13 Applied Semiconductor, Inc. Semiconductive polymeric system, devices incorporating the same, and its use in controlling corrosion
US6402933B1 (en) * 2001-06-08 2002-06-11 Applied Semiconductor, Inc. Method and system of preventing corrosion of conductive structures
AU2005227402B2 (en) * 2001-06-08 2007-01-04 Applied Semiconductor, Inc. Semiconductive polymeric system, devices incorporating the same, and its use in controlling corrosion
US6811681B2 (en) * 2002-11-12 2004-11-02 Applied Semiconductor International Ltd. Semiconductive corrosion and fouling control apparatus, system, and method
AU2006227443B2 (en) * 2005-03-17 2011-06-16 David B. Dowling Control apparatus, system, and method for reduction and/or prevention of space weather induced corrosion
US7318889B2 (en) * 2005-06-02 2008-01-15 Applied Semiconductor International, Ltd. Apparatus, system and method for extending the life of sacrificial anodes on cathodic protection systems
US20060272909A1 (en) * 2005-06-02 2006-12-07 Fuller Brian K Brake assembly and coating
AU2008296143A1 (en) * 2007-09-07 2009-03-12 Applied Semiconductor International Ltd. Method of preparing high density metal oxide layers and the layers produced thereby
JP7119823B2 (ja) 2018-09-19 2022-08-17 昭和電工マテリアルズ株式会社 封止用エポキシ樹脂組成物及び電子部品装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH507882A (de) * 1967-12-06 1971-05-31 Repla Sa Verfahren zur Herstellung kunstharzgebundener Platten
US3620784A (en) * 1968-01-24 1971-11-16 Nasa Potassium silicate-zinc coatings
US3562124A (en) * 1968-08-02 1971-02-09 Hooker Chemical Corp Composition for corrosion protection
US3864234A (en) * 1973-05-08 1975-02-04 Smith Corp A O Cathodic Protection System for Water Heaters with Sealant
GB2004560B (en) * 1977-09-13 1982-08-18 Dainippon Toryo Kk Anti-corrosion coating composition
US4381981A (en) * 1980-12-17 1983-05-03 S. A. Texaco Belgium N.V. Sacrificial cathodic protection system
FR2502001B1 (fr) * 1981-03-19 1985-07-12 Beghin Say Sa Articles d'hygiene pour l'absorption des liquides corporels
US4528460A (en) * 1982-12-23 1985-07-09 Brunswick Corporation Cathodic protection controller
GB8427138D0 (en) * 1984-10-26 1984-12-05 Wilson A D Coated substrates
US4957612A (en) * 1987-02-09 1990-09-18 Raychem Corporation Electrodes for use in electrochemical processes
US5009757A (en) * 1988-01-19 1991-04-23 Marine Environmental Research, Inc. Electrochemical system for the prevention of fouling on steel structures in seawater
US4863578A (en) * 1988-04-25 1989-09-05 Corrosion Service Company Limited Corrodible link for cathodic protection systems
GB9106218D0 (en) * 1991-03-23 1991-05-08 Capcis March Ltd Electrochemical impedance monitoring
JPH05256809A (ja) * 1991-03-29 1993-10-08 Osaka Gas Co Ltd 外部電源法による被防食物体の対地電位測定方法
US5352342A (en) * 1993-03-19 1994-10-04 William J. Riffe Method and apparatus for preventing corrosion of metal structures
US5500629A (en) * 1993-09-10 1996-03-19 Meyer Dennis R Noise suppressor
US5371695A (en) * 1993-10-14 1994-12-06 Ford Motor Company Method for automatically controlling the bandwidth of a digital filter and adaptive filter utilizing same
US5888374A (en) * 1997-05-08 1999-03-30 The University Of Chicago In-situ process for the monitoring of localized pitting corrosion
US6325915B1 (en) * 1999-12-09 2001-12-04 Applied Semiconductor, Inc. Method and system of preventing corrosion of conductive structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100390323C (zh) * 2002-10-17 2008-05-28 应用半导体国际有限公司 半导体腐蚀和污染控制设备,系统和方法
CN104502981A (zh) * 2014-12-30 2015-04-08 中国科学院电子学研究所 一种海洋电容性电极

Also Published As

Publication number Publication date
WO2001043173A1 (en) 2001-06-14
NO20022726L (no) 2002-06-07
MXPA02005702A (es) 2004-09-10
US6325915B1 (en) 2001-12-04
KR100765589B1 (ko) 2007-10-09
AU784620B2 (en) 2006-05-18
NO20022726D0 (no) 2002-06-07
CA2393611C (en) 2010-10-19
EA004487B1 (ru) 2004-04-29
TW556278B (en) 2003-10-01
EA200200653A1 (ru) 2003-06-26
KR20020071884A (ko) 2002-09-13
HK1034480A1 (en) 2001-10-26
JP5198702B2 (ja) 2013-05-15
CN1195591C (zh) 2005-04-06
EP1236223A4 (en) 2009-11-18
EP1236223A1 (en) 2002-09-04
CA2393611A1 (en) 2001-06-14
AU1931301A (en) 2001-06-18
JP2003519725A (ja) 2003-06-24

Similar Documents

Publication Publication Date Title
KR100822090B1 (ko) 생의학 장치의 전도성 표면의 부식 방지 방법 및 장치
CN1298770A (zh) 防止导电结构腐蚀的方法与系统
US6673469B2 (en) Arrangement for decreasing galvanic corrosion between metal components
Mutlu et al. Copper-deposited aluminum anode for aluminum-air battery
CN1242097C (zh) 半导体聚合体系、其利用装置以及其在控制腐蚀方面的用途
US6402933B1 (en) Method and system of preventing corrosion of conductive structures
US6551491B2 (en) Method and system of preventing corrosion of conductive structures
AU2002348505A1 (en) Semiconductive polymeric system, devices incorporating the same, and its use in controlling corrosion
Luba et al. Comparison of the Corrosion Resistance of Commercial coated steel and hot-dip Zn Coatings under Changing Environmental Conditions
Luna et al. Electrochemical Evaluation of 18 Gauge Galvanized Steel Exposed to the Poza Rica Atmosphere
RU2153739C2 (ru) Способ изготовления электрода свинцового аккумулятора
US20140262824A1 (en) Corrosion protection system for non-immersed equipment
JP2010538169A (ja) 高密度金属酸化物層の製造方法及び当該方法によって製造される層
BELL TELEPHONE LABS INC MURRAY HILL NJ GALVANIC CORROSION IN COMMUNICATION EQUIPMENTS
BUILDiNG ANCI SSIFIF
KR20030071742A (ko) 도장구조물의 전기 방식(防蝕)용 양극 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050406

Termination date: 20130814