CN1294138C - 钌和锇化合物的合成方法 - Google Patents

钌和锇化合物的合成方法 Download PDF

Info

Publication number
CN1294138C
CN1294138C CNB02822888XA CN02822888A CN1294138C CN 1294138 C CN1294138 C CN 1294138C CN B02822888X A CNB02822888X A CN B02822888XA CN 02822888 A CN02822888 A CN 02822888A CN 1294138 C CN1294138 C CN 1294138C
Authority
CN
China
Prior art keywords
mixture
generate
neutral ligand
carbonyl
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB02822888XA
Other languages
English (en)
Other versions
CN1589275A (zh
Inventor
M·A·里恩哈德
C·A·胡维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1589275A publication Critical patent/CN1589275A/zh
Application granted granted Critical
Publication of CN1294138C publication Critical patent/CN1294138C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/002Osmium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及在净条件下合成基于羰基的化合物的方法,该方法包含回流金属羰基化合物和过量的中性配体以生成第一混合物;从第一混合物中蒸发任何过量的中性配体以生成第二混合物;蒸馏第二混合物以生成基于羰基的化合物。

Description

钌和锇化合物的合成方法
发明领域
本发明涉及有机金属材料的合成方法。更具体而言,本发明涉及钌和锇化合物的合成方法。
发明背景
钌(Ru)、锇(Os)以及它们的氧化物是预期在未来的半导体器件(例如,铁电存储器和逻辑芯片)中用做电极的材料。这些材料具有引人注目的物理性能,如低电阻、高功函、抗层间化学扩散以及热和氧化稳定性。此外,钌、锇以及它们的氧化物生产出的薄膜具有的晶格参数和热膨胀系数使它们能与未来的半导体器件预期使用的许多介电材料相容。
化学汽相淀积(CVD)是一种在半导体器件制造中广泛应用的技术,以生产制造所述器件的材料层。将CVD化合物(称做前体)以汽相输送至或接近一个表面,在这里通过某种方式(例如热、化学或等离子活化)将它们分解以生成所需材料组成的固体薄膜。在很多出版物中展示了CVD技术在生产半导体器件用钌和氧化钌薄膜中的应用。参见,例如,WO 00/12766。如果采用CVD技术将钌和锇化合物引入工业半导体器件中,则需要适合用做CVD前体的这些材料。而且,曾经有过一些有希望的报道,应用环戊二烯基钌(II)配合物和羰基钌(O)配合物作为CVD前体。美国专利No.6,114,557公开了羰基钌(O)配合物的合成路线。
式LxM(CO)y[L=中性配体,M=Ru或Os,x=1-4,且y=1-5]化合物的制备可追溯到1960年代晚期,当时在科技文献中初次描述了它们的制备。这些化合物的一般制备路线包括在溶剂的存在下以回流状态,使Ru3(CO)12与配体的反应。为这些反应所选择的溶剂通常为苯。Ru3(CO)12与二烯、硫醇和膦的反应在回流下在溶剂苯中发生。参见,Johnson等人,Nature,1967,902-3页。包括C6H8Ru(CO)3和C8H12Ru(CO)3配合物的(二烯)Ru(CO)3配合物的制备是由Ru3(CO)12分别与1,3-环己二烯和1,5-环辛二烯在回流的苯中反应制备的。参见,Cowles等人,Chem.Comm,1969,392页。
[(二烯)Ru(CO)3]化合物的另一条路线包括采用C8H12Ru(CO)3作为原料的置换反应。如上所述,该化合物通过在苯中回流1,5-环辛二烯和Ru3(CO)12的混合物来制备。然后,使C8H12Ru(CO)3与另一种二烯(例如C6H8)也在回流的苯中进行反应,生成所需的产物。参见,Burt等人,J.C.S.Dalton,1975,731-6页。而且,烯烃配体置换了C8H12以高的产率形成了(烯烃)Ru(CO)3配合物。参见,Domingos等人,J.C.S.Dalton,1975,2288-91页。
最后,美国专利No.6,114,557公开了式LxM(CO)y[L=中性配体,M=Ru或Os,x=1-4,且y=1-5]化合物的改进路线。他们使用的反应路线基本与上述的相同,只是溶剂体系稍有改进。这样,Ru3(CO)12与配体在非苯的溶剂体系中反应。具体而言,采用了较高沸点的溶剂(例如甲苯)。该557专利公开的较高沸点的溶剂体系导致了反应速率和产物产率的提高。
虽然在科技化学文献中有许多现有技术公开了LxM(CO)y[L=中性配体,M=Ru或Os,x=1-4,且y=1-5]型化合物的信息,但是据信上述的合成方案描述了它们的合成。
虽然现有技术的方案采用非反应性溶剂体系来合成式LxM(CO)y[L=中性配体,M=Ru或Os,x=1-4,且y=1-5]化合物,但没有教导或建议一种净态或无溶剂的反应路线。此外,现有技术的参考文献表明基于羰基的配合物的合成,即钌配合物的合成需要长反应时间。例如,在美国专利No.6,114,557中,生成(C6H8)Ru(CO)3的反应要进行24小时的时间。因此,需要一种现有技术没有教导或建议过的新型净态合成路线(其中,配体L既是溶剂又是反应物)。所述净反应路线使反应比现有技术的方法更快地完成,同时仍能以高产率生成所需产物。还优选采用净反应体系,这是因为所需的成分更少而简化了合成工艺。
发明概述
本发明涉及在净条件下羰基取代化合物的合成方法,包含将金属羰基化合物与过量的中性配体回流以生成第一混合物;从第一混合物中蒸发任何过量的中性配体以生成第二混合物;蒸馏第二混合物以生成基于羰基的化合物。所述金属羰基化合物是钌或锇羰基配合物。所述中性配体可以是膦、亚磷酸根、胺、胂、茋(stibene)、醚、硫醚、亚烷基(RCH=)、亚硝酸根、异腈、硫代羰基,直链、支化或环状的单烯烃,直链、支化或环状的二烯,直链、支化或环状的三烯,二环烯烃,二环二烯,二环三烯,三环烯烃,三环二烯,三环三烯和炔。
本发明还涉及在净条件下基于羰基的式LxM(CO)y化合物的合成方法,其中L=中性配体,M=Ru或Os,x=1-4,且y=1-5,该方法包含使式Mn(CO)z金属羰基化合物,其中M=Ru或Os,n=3,z=12,与过量的中性配体一起回流以生成第一混合物;从第一混合物中蒸发任何过量的中性配体以生成第二混合物;蒸馏第二混合物以生成基于羰基的化合物。所述羰基化合物基于式LxM(CO)y,其中L是中性配体,x=1,M=Ru或Os,且y=3。
本发明还涉及在净条件下基于羰基的化合物的合成方法,包含将金属羰基化合物与过量的中性配体回流以生成第一混合物并从第一混合物中蒸馏任何过量的中性配体以生成第二混合物;蒸馏第二混合物以生成基于羰基的化合物。
进而,本发明提供了在净条件下合成钌配合物的方法,回流式Mn(CO)z的金属羰基化合物和过量的中性配体以生成第一混合物,其中M=Ru,n=3,z=12;从第一混合物中蒸发任何过量的中性配体以生成第二混合物;蒸馏第二混合物以生成基于羰基的化合物。这里,基于钌的配合物具有式LxM(CO)y,其中L=C6H8(1,3-环己二烯),x=1,M=Ru,且y=3。
本发明还涉及在净条件下合成锇配合物的方法,回流式Mn(CO)z的金属羰基化合物和过量的中性配体以生成第一混合物,其中M=Os,n=3,z=12;从第一混合物中蒸发任何过量的中性配体以生成第二混合物;蒸馏第二混合物以生成基于羰基的化合物。所述基于羰基的化合物可以由式LxM(CO)y来描述,其中L=C6H8,x=1,M=Os,且y=3。
如本发明所述,合成方法分几步进行。使用了词汇“反应”,但为了本发明的目的,其可以与相关的术语如混合、组合、搅拌、回流、加热等互换。不一定要发生反应,但不能排除化学反应。除去步骤可以描述为蒸发、蒸馏、沉淀、过滤、分离等。
优选实施方案的详细描述
本发明可能降低为生产同量的产物,反应设备所必需容纳的材料的体积,使反应设备的尺寸最小化了。采用近似的理由,溶剂的不存在也降低了为使混合物回流所必需向系统中加入的能量。另外,在反应完成后,因为可以将过量的配体直接从反应产物中以高纯度和高回收率蒸馏出来,可以更为容易地将其回收/循环以再用于本方法中。
为了生产通式LxM(CO)y[L=中性配体,M=Ru或Os,x=1-4,且y=1-5]化合物,将Ma(CO)b[其中M=Ru或Os],a=1-3,b=5-12,与L在净条件下(不存在溶剂体系)直接反应。最优选地,通过提供大大过量的配体L,加热反应混合物(理想地是加热至回流,尽管其它温度也是允许的和所希望的),并搅拌反应混合物来加速反应。
实施例1
这里描述了本发明的优选实施方案。
将Ru3(CO)12(2.0g,3.13mMol)转移至装有水冷凝器和特氟隆涂覆的磁力搅拌棒的干燥的25ml圆底烧瓶中。使用注射器加入1,3-环己二烯(5ml,52.5mMol,过量大于5倍)。在干燥的氮气氛下,伴随搅拌将混合物加热回流5小时,得到透明的黄色溶液。停止加热使混合物冷却至室温。使用旋转蒸发法除去过量的1,3-环己二烯。在0.1托的压力下进行真空蒸馏得到浅黄色液体的1,3-环己二烯三羰基钌(C6H8)Ru(CO)3(2.1g,7.92mMol,84%的产率)。
采用GC-MS,1H NMR,13C NMR,FTIR,和ICP-MS(金属含量)来表征该化合物。得到的分析数据(1H&13C NMR)与该化合物的文献值一致。图1,2和3分别显示了GC-MS,1H NMR和FTIR的数据。
实施例2
这是另一个实施例,其中预期由十二羰基三锇(Os3CO12)和1,3-环己二烯生成1,3-环己二烯三羰基锇(C6H8)Os(CO)3。该反应在与上述实施例1相同的条件下实施。将2gOs3(CO)12(2.2mMol)放入烧瓶中。然后加入约5ml 1,3-环己二烯(52.5mMol,过量大于5倍),使混合物回流几个小时。以锇替代钌的反应以相似的产率,物理性质和反应性进行。这符合元素通常所接受的周期性质。
本发明最优选的制备钌和锇化合物的工艺步骤如下:
实施例3
将87.26g(0.136Mol)Ru3(CO)12放进装有特氟隆涂覆的磁力搅拌棒、冷凝器和气体旋塞的3口RB烧瓶中。加入220ml(185g,2.31mol)C6H8。将器件用氮气冲洗并接下来在其余的工序中保持氮气。将混合物加热至轻度回流并搅拌44小时,此时是浑浊的黄色/橙色混合物。在80℃,大气压下,混合物产生120ml未反应的C6H8。对剩余的混合物进行真空蒸馏(在P=0.1托)产生103.32克(C6H8)Ru(CO)3(0.39mol,95%产率)(GC-MS测定大于99.8%)。
通过蒸馏除去过量的配体。对经回流的反应混合物在≈10托和60℃下进行旋转蒸发,由于1,3-C6H8较低的相对蒸气压,这样将过量的该物质除去而除去了非反应性的溶剂和过量配体。最后,将得到的已经除去配体的经回流的反应混合物在≈10-2托下蒸馏,在40℃的头温下产生(C6H8)Ru(CO)3
可以采用其它羰基化合物实施本发明。虽然已知M3(CO)12[M=Ru或Os]是完全由金属和羰基(CO)形成的热力学最稳定的化合物,但也可以采用其它的金属羰基化合物。
具有潜在用途的大量其它配体可能是环状二烯以外的。这些包括任何中性或中性π给电子配体。例如,直链、环状或支化的烯烃,二烯,三烯等,硫醚、醚、胺、膦和腈都可以成功地采用。广义类别的化合物包括氢、氟、其它卤素或其它有机取代基。
相对于反应物的化学计量,配体与原料羰基化合物的比率(以摩尔数计)影响反应速率。金属羰基化合物、中间体和反应产物在配体中的溶解度和配体对反应的可利用性(空间上、能量上和动力学上)都影响反应速率和产率。
反应温度影响反应速率。通常,升高温度导致反应速率升高,通常遵从阿仑尼乌斯性状。此外,预计配体的温度影响金属羰基化合物原料或中间体在反应混合物中的溶解度。在本发明中,使温度保持适中以不至于造成原料、中间体或终产物以有害于所需反应的方式发生热分解。
反应物的充分混合提高了反应速率并降低了反应时间。可以用任何物理方式(搅拌、震摇、声波振荡等)进行搅拌。
反应压力影响反应速率和产物的产率。反应压力影响反应物的分压和沸点(温度)。调整系统的压力/温度使反应时间、产率和纯度最优化。
这样,将预见所有这些变量对完成反应所需的时间、产物产率和产物纯度有影响。
本发明可以采用诸如任何的钌或锇羰基配合物的原料,优选Ma(CO)b其中a=1-3,b=5-12,并最优选M3(CO)12
配体可以是任何中性的配位配体和其可能的任何混合物,优选单烯烃,二烯,三烯(直链,支化或环状的),膦(R3P),胺(R3N),醚(OR2),硫醚(SR2)。R基,通常为烃基,可以含有氢,氟或任何的有机基团。最优选该配体是纯的直链、支化或环状二烯(例如1,3-环己二烯)。
配体与金属的化学计量比可以是任何量,优选配体对金属羰基化合物任意过量,最优选配体对金属羰基化合物显著过量。
反应温度可以是高于溶剂冰点的任意温度至低于原料、配体、反应活性性中间体或产物的分解温度的任意温度,优选高于环境温度的任意温度,最优选L的常压沸腾温度(条件是在该温度下原料、配体、反应性中间体或产物的热分解程度极低)。
反应压力可以为低于大气压至高压。优选反应压力高于或低于大气压,并经调整使反应混合物在所需的温度下回流,最优选大气压。
反应可以在任何气氛下进行。优选反应在含有氙,氖,氦,一氧化碳和二氧化碳的气氛中进行。更优选地,反应在惰性气体如氩气或氮气存在下进行。
仅仅为了方便,将本发明的具体的特征示于一或多个附图之中,每个特征可以按照本发明与其它特征相组合。本领域的技术人员将意识到替代性实施方案并旨在将这些实施方案包括在权利要求的范围内。

Claims (8)

1、在净条件下合成式LxM(CO)y的基于羰基的化合物的方法,其中L=中性配体,x=1-4,M=Ru或Os,且y=1-5,该方法包含:
a.使式Ma(CO)b的金属羰基化合物和过量的中性配体反应以生成第一混合物,其中M=Ru或Os,a=1-3,b=5-12;
b.从所述第一混合物中除去任何过量的中性配体以生成第二混合物;
c.蒸馏所述第二混合物以生成所述基于羰基的化合物。
2、权利要求1的方法,其中所述基于羰基的化合物具有式LxM(CO)y,其中L=1,3-环己二烯,x=1,M=Ru,且y=3。
3、权利要求1的方法,其中所述基于羰基的化合物具有式LxM(CO)y,其中L=1,3-环己二烯,x=1,M=Os,且y=3。
4、权利要求1的方法,其中所述中性配体是选自以下的配体:膦、亚磷酸根、胺、胂、茋、醚、硫醚、亚烷基、亚硝酸根、异腈、硫代羰基,直链、支化或环状的单烯烃,直链、支化或环状的二烯,直链、支化或环状的三烯,二环烯烃,二环二烯,二环三烯,三环烯烃,三环二烯,三环三烯和炔。
5、在净条件下合成钌配合物的方法,包含:
a.使式Mn(CO)z的金属羰基化合物和过量的中性配体反应以生成第一混合物,其中M=Ru,n=3,z=12;
b.从所述第一混合物中除去任何过量的中性配体以生成第二混合物;
c.蒸馏所述第二混合物以生成所述基于钌的化合物。
6、权利要求5的方法,其中所述基于钌的化合物具有式LxM(CO)y,其中L=1,3-环己二烯,x=1,M=Ru,且y=3。
7、在净条件下合成锇配合物的方法,包含
a.使式Mn(CO)z的金属羰基化合物和过量的中性配体反应以生成第一混合物,其中M=Os,n=3,z=12;
b.从所述第一混合物中除去任何过量的中性配体以生成第二混合物;
c.蒸馏所述第二混合物以生成所述基于锇的化合物。
8、权利要求7的方法,其中所述基于锇的化合物具有式LxM(CO)y,其中L=1,3-环己二烯,x=1,M=Os,且y=3。
CNB02822888XA 2001-09-27 2002-05-08 钌和锇化合物的合成方法 Expired - Fee Related CN1294138C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/963,452 2001-09-27
US09/963,452 US6420583B1 (en) 2001-09-27 2001-09-27 Methods of synthesizing ruthenium and osmium compounds

Publications (2)

Publication Number Publication Date
CN1589275A CN1589275A (zh) 2005-03-02
CN1294138C true CN1294138C (zh) 2007-01-10

Family

ID=25507267

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02822888XA Expired - Fee Related CN1294138C (zh) 2001-09-27 2002-05-08 钌和锇化合物的合成方法

Country Status (8)

Country Link
US (1) US6420583B1 (zh)
EP (1) EP1430064A4 (zh)
JP (1) JP4065428B2 (zh)
KR (1) KR100885095B1 (zh)
CN (1) CN1294138C (zh)
CA (1) CA2461815A1 (zh)
TW (1) TWI311560B (zh)
WO (1) WO2003027127A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2503810C (en) * 2002-10-31 2012-03-13 Kusuki Nishioka Therapeutic agent for fibromyalgia
US6884901B2 (en) 2002-10-31 2005-04-26 Praxair Technology, Inc. Methods for making metallocene compounds
US7238821B2 (en) * 2003-10-06 2007-07-03 Praxair Technology, Inc. Method for large scale production of organometallic compounds
US7244858B2 (en) 2004-03-25 2007-07-17 Praxair Technology, Inc. Organometallic precursor compounds
US7270848B2 (en) * 2004-11-23 2007-09-18 Tokyo Electron Limited Method for increasing deposition rates of metal layers from metal-carbonyl precursors
US7279421B2 (en) * 2004-11-23 2007-10-09 Tokyo Electron Limited Method and deposition system for increasing deposition rates of metal layers from metal-carbonyl precursors
US7547464B2 (en) 2005-01-19 2009-06-16 Praxair Technology, Inc. Organometallic precursor compounds
US7351285B2 (en) * 2005-03-29 2008-04-01 Tokyo Electron Limited Method and system for forming a variable thickness seed layer
US20070231489A1 (en) * 2006-03-29 2007-10-04 Tokyo Electron Limited Method for introducing a precursor gas to a vapor deposition system
US7892358B2 (en) * 2006-03-29 2011-02-22 Tokyo Electron Limited System for introducing a precursor gas to a vapor deposition system
US7956168B2 (en) * 2006-07-06 2011-06-07 Praxair Technology, Inc. Organometallic compounds having sterically hindered amides
US8404306B2 (en) * 2006-09-22 2013-03-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés George Claude Method for the deposition of a ruthenium containing film
US20080237860A1 (en) * 2007-03-27 2008-10-02 Tokyo Electron Limited Interconnect structures containing a ruthenium barrier film and method of forming
US20080242088A1 (en) * 2007-03-29 2008-10-02 Tokyo Electron Limited Method of forming low resistivity copper film structures
TWI425110B (zh) * 2007-07-24 2014-02-01 Sigma Aldrich Co 以化學相沉積法製造含金屬薄膜之方法
TWI382987B (zh) * 2007-07-24 2013-01-21 Sigma Aldrich Co 應用於化學相沉積製程的有機金屬前驅物
US7829454B2 (en) * 2007-09-11 2010-11-09 Tokyo Electron Limited Method for integrating selective ruthenium deposition into manufacturing of a semiconductior device
US7704879B2 (en) * 2007-09-27 2010-04-27 Tokyo Electron Limited Method of forming low-resistivity recessed features in copper metallization
US7884012B2 (en) * 2007-09-28 2011-02-08 Tokyo Electron Limited Void-free copper filling of recessed features for semiconductor devices
US7776740B2 (en) * 2008-01-22 2010-08-17 Tokyo Electron Limited Method for integrating selective low-temperature ruthenium deposition into copper metallization of a semiconductor device
US8247030B2 (en) * 2008-03-07 2012-08-21 Tokyo Electron Limited Void-free copper filling of recessed features using a smooth non-agglomerated copper seed layer
US7799681B2 (en) * 2008-07-15 2010-09-21 Tokyo Electron Limited Method for forming a ruthenium metal cap layer
US7871929B2 (en) * 2008-07-30 2011-01-18 Tel Epion Inc. Method of forming semiconductor devices containing metal cap layers
US7776743B2 (en) * 2008-07-30 2010-08-17 Tel Epion Inc. Method of forming semiconductor devices containing metal cap layers
US20100081274A1 (en) * 2008-09-29 2010-04-01 Tokyo Electron Limited Method for forming ruthenium metal cap layers
US7977235B2 (en) * 2009-02-02 2011-07-12 Tokyo Electron Limited Method for manufacturing a semiconductor device with metal-containing cap layers
US8716132B2 (en) * 2009-02-13 2014-05-06 Tokyo Electron Limited Radiation-assisted selective deposition of metal-containing cap layers
JP2013530304A (ja) * 2010-04-19 2013-07-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cvd及びald用のルテニウム含有前駆体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962716A (en) * 1998-08-27 1999-10-05 Micron Technology, Inc. Methods for preparing ruthenium and osmium compounds
WO2000012766A1 (en) * 1998-08-28 2000-03-09 Technological Resources Pty. Ltd. A process and an apparatus for producing metals and metal alloys
US6303809B1 (en) * 1999-12-10 2001-10-16 Yun Chi Organometallic ruthenium and osmium source reagents for chemical vapor deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962716A (en) * 1998-08-27 1999-10-05 Micron Technology, Inc. Methods for preparing ruthenium and osmium compounds
US6114557A (en) * 1998-08-27 2000-09-05 Micron Technology, Inc. Methods for preparing ruthenium and osmium compounds
WO2000012766A1 (en) * 1998-08-28 2000-03-09 Technological Resources Pty. Ltd. A process and an apparatus for producing metals and metal alloys
US6303809B1 (en) * 1999-12-10 2001-10-16 Yun Chi Organometallic ruthenium and osmium source reagents for chemical vapor deposition

Also Published As

Publication number Publication date
WO2003027127A8 (en) 2004-09-16
EP1430064A1 (en) 2004-06-23
JP4065428B2 (ja) 2008-03-26
CN1589275A (zh) 2005-03-02
JP2005503441A (ja) 2005-02-03
US6420583B1 (en) 2002-07-16
TWI311560B (en) 2009-07-01
EP1430064A4 (en) 2009-09-30
CA2461815A1 (en) 2003-04-03
WO2003027127A1 (en) 2003-04-03
KR100885095B1 (ko) 2009-02-20
KR20040037151A (ko) 2004-05-04

Similar Documents

Publication Publication Date Title
CN1294138C (zh) 钌和锇化合物的合成方法
Duchateau et al. Side-on versus end-on coordination of dinitrogen to titanium (II) and mixed-valence titanium (I)/titanium (II) amido complexes
Williams et al. Encapsulated alkaline-earth metallocenes. Synthesis, solution behavior, and solid-state structures of bis (tetraisopropylcyclopentadienyl) calcium and-barium,[(C3H7) 4C5H] 2Ca and [(C3H7) 4C5H] 2Ba
CN101367756B (zh) 用于制造相变存储器材料的碲(Te)前驱体
Bonasia et al. Synthesis and characterization of gold (I) thiolates, selenolates, and tellurolates: x-ray crystal structures of Au4 [TeC (SiMe3) 3] 4, Au4 [SC (SiMe3) 3] 4, and Ph3PAu [TeC (SiMe3) 3]
Chirila et al. Main group and transition metal-mediated phosphaalkyne oligomerizations
TW200914123A (en) Method of preparing organometallic compounds
Belot et al. Volatility by design. synthesis and characterization of polyether adducts of bis (1, 1, 1, 5, 5, 5-hexafluoro-2, 4-pentanedionato) barium and their implementation as metal− organic chemical vapor deposition precursors
Burrows et al. 5-Aminoorotic acid, a versatile ligand with the ability to exhibit differing co-ordination and hydrogen-bonding modes: synthesis and crystal structures of platinum (II) complexes
Onitsuka et al. Reactions of µ-ethynediyl complexes of transition metals: selective double insertion of isocyanides and molecular structure of [Cl (Et3P) 2PdCCC (NPh) C (NPh) Pd (PEt3) 2Cl]
US6884901B2 (en) Methods for making metallocene compounds
Marshman et al. Synthesis and reactivity of (. eta. 5-C5H5) Os (N)(CH2SiMe3) 2, the first cyclopentadienyl-nitrido transition-metal complex
TWI458713B (zh) 揮發性咪唑及以咪唑為基礎的第2族金屬前驅物
CN112125931A (zh) 双(叔丁基胺)双(二甲基胺)钨(vi)的合成方法
CA2727510A1 (en) Method of preparing organometallic compounds
Duan et al. Synthesis and Characterization of a Novel Azatitanatrane
EP1556395B1 (en) Methods for making metallocene compounds
CN113906158A (zh) 生成含金属或半金属膜的方法
KR102631512B1 (ko) 박막 제조를 위한 신규한 유기 금속 화합물
Mallela et al. (Tris (trimethylsilyl) germyl) plumbanes: Crystal Structure of Diphenylbis (tris (trimethylsilyl) germyl) plumbane
CN113563390B (zh) 双(三异丙基环戊二烯基)锶的制备方法
KR20220018546A (ko) 금속 또는 반금속-함유 필름의 제조 방법
CN1126724C (zh) 多取代环戊二烯衍生物的合成方法
KR20180089420A (ko) 금속 필름의 생성을 위한 방법
Waybright Oligonucleotide directed assembly of materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070110

Termination date: 20120508