CN1293810C - 负载型纳米氧化镁及其制备方法 - Google Patents

负载型纳米氧化镁及其制备方法 Download PDF

Info

Publication number
CN1293810C
CN1293810C CNB2004100295926A CN200410029592A CN1293810C CN 1293810 C CN1293810 C CN 1293810C CN B2004100295926 A CNB2004100295926 A CN B2004100295926A CN 200410029592 A CN200410029592 A CN 200410029592A CN 1293810 C CN1293810 C CN 1293810C
Authority
CN
China
Prior art keywords
mgo
loaded nano
load capacity
disinfection
loading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100295926A
Other languages
English (en)
Other versions
CN1561744A (zh
Inventor
段雪
李殿卿
黄蕾
林彦军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CNB2004100295926A priority Critical patent/CN1293810C/zh
Priority to PCT/CN2004/001114 priority patent/WO2005092106A1/zh
Publication of CN1561744A publication Critical patent/CN1561744A/zh
Application granted granted Critical
Publication of CN1293810C publication Critical patent/CN1293810C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/06Aluminium; Calcium; Magnesium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • A61L2/232Solid substances, e.g. granules, powders, blocks, tablets layered or coated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Environmental Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Agronomy & Crop Science (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dentistry (AREA)
  • Geology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明将MgO负载于Al2O3表面,使其在Al2O3表面高度分散,以至于MgO粒径为纳米量级(4-11nm),这种负载型MgO具有杀菌作用。当MgO的负载量在18%-25%时,其对枯草杆黑色变种芽孢和金黄色葡萄球菌作用24小时的杀灭率均大于99.9%,达到了作为杀菌材料的要求。与其他杀菌剂相比较,负载型纳米氧化镁杀菌材料还具有无色、无毒、杀菌条件简单、杀菌效率高等特点。该负载型纳米氧化镁杀菌材料的制备方法简便,适合工业化生产。

Description

负载型纳米氧化镁及其制备方法
技术领域:
本发明涉及负载型纳米氧化镁及其制备方法和其用途,即用作杀菌材料。
背景技术:
纳米氧化镁微粒具有特殊的骨架型结构,因其具有很小的粒径,故有很大的比表面积,具有一定的杀菌能力。但粒径较小时,纳米氧化镁的团聚也相应增加。
文献[1]Peter K.Stoimnov,Rosalyn L.Klinger,George L.Marchin,andKenneth J.Klabunde,Langmuir,2002,18:6679-6686中指出,粒径在4nm左右,比表面达到1000m2/g的AP-MgO吸附卤素,以静电作用力吸附在细菌和孢子表面,使得细胞壁遭到破坏,细胞内部液体流出,从而达到杀菌效果。而纯的AP-MgO则是以干燥剂的形式,起到杀菌作用。
文献[2]Lee B.I.,Rives J.P.,Colloids andSurface,1991,56:25中指出,超细粒子具有极大的比表面积和较高的比表面能,在制备和后处理过程中极易发生粒子凝并、团聚,形成二次粒子,使粒子粒径增大,在最终使用时失去超细颗粒所具备的功能。鉴于以上原因,应当尽量缓解纳米氧化镁的团聚情况,并考察其杀菌能力。
发明内容:
本发明将MgO负载于Al2O3表面,使其在Al2O3表面高度分散,以至于MgO粒径为纳米量级(4-11nm),这种负载型MgO具有杀菌作用,可用作杀菌材料。
本发明所用的负载型纳米氧化镁杀菌材料应满足如下条件,负载MgO的载体为40-100目,比表面积为200-300m2/g的γ-Al2O3颗粒;MgO的负载量(即负载后MgO的质量百分数)为18%-25%,负载后MgO的粒径为4-11nm。
负载型纳米氧化镁是用下述方法制备的:
取40-100目的γ-Al2O3粉末在500-600℃下焙烧3-6h,按MgO负载量为2%-28%,称取相应量的Mg(NO3)2·6H2O溶于去离子水中配成浸渍溶液。将γ-Al2O3载体加入浸渍液中,搅拌下于沸腾温度蒸发至粒间无水分存在。经70-120℃干燥至恒重后,于500℃焙烧4-12h得到不同负载量的MgO/γ-Al2O3样品。经扫描电镜测试表明,MgO粒径在4-11nm。
将得到的具有不同负载量的负载型纳米氧化镁分别对枯草杆黑色变种芽孢和金黄色葡萄球菌进行灭菌实验,实验步骤如下:
精确称取0.50g负载型纳米氧化镁样品,在120-180℃下进行灭菌处理10-60分钟。将灭菌处理后的负载型MgO/γ-Al2O3样品,分别置于枯草杆黑色变种芽孢和金黄色葡萄球菌(含菌量均为106cfu/片)的营养液中,在37℃下充分作用4h和24h后,取出上层清液进行培养,48h后进行活菌计数,进行杀灭率的计算。结果分别列于表1和表2中。
表1不同负载量MgO/γ-Al2O3杀菌剂与枯草杆黑色变种芽孢作用结果
  MgO的负载量   作用4h后杀灭率/%   作用24h后杀灭率/%
  2%   14.32   40.00
  5%   42.99   60.42
  10%   71.21   80.98
  18%   97.98   99.91
  20%   98.99   99.99
  25%   98.93   99.93
  28%   78.93   87.93
表2不同负载量MgO/γ-Al2O3杀菌剂金黄色葡萄球菌作用结果
  MgO的负载量   作用4h后杀灭率/%   作用24h后杀灭率/%
  2%   71.79   89.99
  5%   86.93   92.89
  10%   90.36   97.99
  18%   98.93   99.94
  20%   99.91   99.99
  25%   98.98   99.98
  28%   88.89   91.93
由表1、表2可以看出,当MgO的负载量在18%-25%时,其对枯草杆黑色变种芽孢和金黄色葡萄球菌作用24小时的杀灭率均大于99.9%,达到了作为杀菌材料的要求。
由于MgO在γ-Al2O3上单层分散的阈值约为15%,当MgO的负载量小于15%时,MgO/γ-Al2O3对细菌的杀灭率较低;当MgO的负载量大于15%后,MgO开始在γ-Al2O3表面形成晶体,随着负载量的增加,杀菌的有效成分MgO晶体的含量也相应增加。当MgO的负载量在18%-25%范围内时,它对枯草杆黑色变种芽孢和金黄色葡萄球菌具有良好的杀灭效果。MgO的负载量大于25%时,MgO粒径增大且团聚情况严重,其对细菌杀灭率下降至90%左右。因此MgO的负载量在18-25%范围内时,对细菌具有很高的杀灭率,可作为杀菌剂使用。
负载型纳米氧化镁大幅度缓解了氧化镁的团聚效应,当MgO的负载量在18%-25%的范围时具有良好的杀菌效果,与其他杀菌剂相比较,负载型纳米氧化镁杀菌材料还具有无色、无毒、杀菌条件简单、杀菌效率高等特点。该负载型纳米氧化镁杀菌材料的制备方法简便,适合工业化生产。
具体实施方式:
实施例1
步骤A:精确称取0.50g负载于40-60目γ-Al2O3上的负载量为18%的MgO/γ-Al2O3样品两份,测得在120℃下进行灭菌处理60分钟。
步骤B:将灭菌处理后的负载型MgO/γ-Al2O3样品,分别置于枯草杆黑色变种芽孢和金黄色葡萄球菌(含菌量均为106cfu/片)的营养液中。
步骤C:样品与细菌在37℃下充分作用4h和24h后,取出上层清液进行培养,48h后进行活菌计数,进行杀灭率的计算,其对枯草杆黑色变种芽孢的杀灭率在4h和24h分别为97.98%和99.91%;对金黄色葡萄球菌的杀灭率在4h和24h分别为98.93%和99.94%。
实施例2
步骤A:精确称取0.50g负载于60-80目γ-Al2O3上、负载量为20%的MgO/γ-Al2O3样品两份,在150℃下进行灭菌处理30分钟。
步骤B:同实施例1步骤B。
步骤C:同实施例1步骤C,负载量为20%的MgO/γ-Al2O3对枯草杆黑色变种芽孢的杀灭率在4h和24h分别为98.99%和99.99%;对金黄色葡萄球菌的杀灭率在4h和24h分别为99.91%和99.99%。
实施例3
步骤A:精确称取0.50g负载于80-100目γ-Al2O3上、负载量为25%的MgO/γ-Al2O3样品两份,在180℃下进行灭菌处理20分钟。
步骤B:同实施例1步骤B。
步骤C:同实施例1步骤C,负载量为25%的MgO/γ-Al2O3对枯草杆黑色变种芽孢的杀灭率在4h和24h分别为98.93%和99.93%;对金黄色葡萄球菌的杀灭率在4h和24h分别为99.98%和99.98%。

Claims (3)

1.一种负载型纳米氧化镁,是MgO被负载于γ-Al2O3颗粒上,其特征是MgO被负载于比表面积为200-300m2/g、粒度为40-100目的γ-Al2O3颗粒上,MgO在γ-Al2O3上高度分散,粒径达到4-11nm,MgO的负载量为18%-25%。
2.一种如权利要求1所述的负载型纳米氧化镁的制备方法:取比表面积为200-300m2/g、粒度为40-100目的γ-Al2O3粉末在500-600℃下焙烧3-6h,按MgO负载量为2%-28%称取相应量的Mg(NO3)2·6H2O溶于去离子水中配成浸渍溶液,将γ-Al2O3载体加入浸渍液中,搅拌下于沸腾温度蒸发至粒间无水分存在,经70-120℃干燥至恒重,于500℃焙烧4-12h得到不同负载量的MgO/γ-Al2O3
3.一种如权利要求1所述的负载型纳米氧化镁的应用,将该负载型纳米氧化镁作用枯草杆黑色变种芽孢和金黄色葡萄球菌的杀菌剂。
CNB2004100295926A 2004-03-26 2004-03-26 负载型纳米氧化镁及其制备方法 Expired - Fee Related CN1293810C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2004100295926A CN1293810C (zh) 2004-03-26 2004-03-26 负载型纳米氧化镁及其制备方法
PCT/CN2004/001114 WO2005092106A1 (fr) 2004-03-26 2004-09-28 Utilisation de mgo a nanoechelle sur support en tant que matiere desinfectante

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100295926A CN1293810C (zh) 2004-03-26 2004-03-26 负载型纳米氧化镁及其制备方法

Publications (2)

Publication Number Publication Date
CN1561744A CN1561744A (zh) 2005-01-12
CN1293810C true CN1293810C (zh) 2007-01-10

Family

ID=34480954

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100295926A Expired - Fee Related CN1293810C (zh) 2004-03-26 2004-03-26 负载型纳米氧化镁及其制备方法

Country Status (2)

Country Link
CN (1) CN1293810C (zh)
WO (1) WO2005092106A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428961B (zh) * 2011-11-15 2013-07-17 农业部环境保护科研监测所 一种纳米MgO缓释消毒颗粒的制备方法
CN102885087B (zh) * 2012-10-16 2014-09-24 中国科学院过程工程研究所 一种纳米氧化镁无机抗菌剂、制备方法及用途
CN105498679B (zh) * 2015-11-24 2018-11-16 常熟理工学院 一种固载化纳米MgO吸附材料的制备方法和应用
CN109111598A (zh) * 2018-07-18 2019-01-01 安徽江淮汽车集团股份有限公司 一种抗菌剂的制备方法
CN109181239A (zh) * 2018-07-18 2019-01-11 安徽江淮汽车集团股份有限公司 一种抗菌抗静电pbt复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215266A (ja) * 1990-01-19 1991-09-20 Nobuhide Maeda 脱臭および抗菌性を有する複合セラミックスとその製造方法
JPH10324825A (ja) * 1997-05-26 1998-12-08 Nobuhide Maeda 遠赤外線放射特性、抗菌性、脱臭性、防カビ性および防虫性を有すると共に、静電気防止効果を有する塗料の製造方法
JPH1129354A (ja) * 1997-07-11 1999-02-02 Nippon Mizushiyori Giken:Kk 電磁波放射セラミックス粉材の製造方法
JP3215266B2 (ja) * 1994-07-12 2001-10-02 新日本製鐵株式会社 写像性に優れたオーステナイト系ステンレス鋼板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193737A (ja) * 1982-05-04 1983-11-11 Mitsubishi Heavy Ind Ltd 水素富化ガス製造用触媒
JPH075354B2 (ja) * 1990-04-10 1995-01-25 信秀 前田 脱臭および抗菌性を有する複合セラミックスとその製造方法
JPH07173022A (ja) * 1993-12-17 1995-07-11 Asahi Chem Ind Co Ltd 抗菌剤
US6417423B1 (en) * 1998-09-15 2002-07-09 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
US6653519B2 (en) * 1998-09-15 2003-11-25 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
CN1115381C (zh) * 1999-03-30 2003-07-23 中国石油化工集团公司 一种石油馏份中硫醇的氧化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215266A (ja) * 1990-01-19 1991-09-20 Nobuhide Maeda 脱臭および抗菌性を有する複合セラミックスとその製造方法
JP3215266B2 (ja) * 1994-07-12 2001-10-02 新日本製鐵株式会社 写像性に優れたオーステナイト系ステンレス鋼板の製造方法
JPH10324825A (ja) * 1997-05-26 1998-12-08 Nobuhide Maeda 遠赤外線放射特性、抗菌性、脱臭性、防カビ性および防虫性を有すると共に、静電気防止効果を有する塗料の製造方法
JPH1129354A (ja) * 1997-07-11 1999-02-02 Nippon Mizushiyori Giken:Kk 電磁波放射セラミックス粉材の製造方法

Also Published As

Publication number Publication date
WO2005092106A1 (fr) 2005-10-06
CN1561744A (zh) 2005-01-12

Similar Documents

Publication Publication Date Title
Youssef et al. Synthesis and evaluation of eco-friendly carboxymethyl cellulose/polyvinyl alcohol/CuO bionanocomposites and their use in coating processed cheese
Huo et al. Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays
Jin et al. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7
CN1961066B (zh) 包括干微生物的组合物的制备方法
Harikumar et al. Antibacterial activity of copper nanoparticles and copper nanocomposites against Escherichia coli bacteria
Maliha et al. Bismuth phosphinate incorporated nanocellulose sheets with antimicrobial and barrier properties for packaging applications
Liao et al. Nano-Magnesium oxide: A novel bactericide against copper-tolerant Xanthomonas perforans causing tomato bacterial spot
Xiong et al. One‐step synthesis of silver nanoparticle‐decorated hydroxyapatite nanowires for the construction of highly flexible free‐standing paper with high antibacterial activity
US20060240980A1 (en) Polyporous material having nanoparticle and their preparation thereof
Revathi et al. Immobilization of ZnO on Chitosan-Neem seed composite for enhanced thermal and antibacterial activity
US20120052105A1 (en) Nanostructural composition of biocide and process of obtaining nanostructural biocide nanocomposition
CN103004884B (zh) 西瓜生物种衣剂及其制备和应用
Dai et al. High antibacterial activity of chitosan films with covalent organic frameworks immobilized silver nanoparticles
Tong et al. Synthesis of DNA-guided silver nanoparticles on a graphene oxide surface: Enhancing the antibacterial effect and the wound healing activity
Martínez-Abad et al. On the different growth conditions affecting silver antimicrobial efficacy on Listeria monocytogenes and Salmonella enterica
Sajeshkumar et al. Synthesis of silver nanoparticles from neem leaf (Azadirachta indica) extract and its antibacterial activity
CN1293810C (zh) 负载型纳米氧化镁及其制备方法
Doolotkeldieva et al. Biological Activity of Ag and Cu Monometallic Nanoparticles and Ag‐Cu Bimetallic Nanocomposites against Plant Pathogens and Seeds
Yang et al. The mechanism of metal-based antibacterial materials and the progress of food packaging applications: A review
CN109179430A (zh) 一种掺硒的介孔二氧化硅抗菌材料及其制备方法
De Corato et al. Use of alginate for extending shelf life in a lyophilized yeast-based formulate in controlling green mould disease on citrus fruit under postharvest condition
Mikiciuk et al. Physico‐chemical properties and inhibitory effects of commercial colloidal silver nanoparticles as potential antimicrobial agent in the food industry
Deng et al. Nano-titanium dioxide/basic magnesium hypochlorite-containing linear low-density polyethylene composite film on food packaging application
El–Nakeeb et al. Study of antimicrobial action of pectin
CN107114405A (zh) 纳米银/氢氧化镁纳米组装球复合杀菌剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070110

Termination date: 20100326