CN1288450A - 陶瓷制品 - Google Patents

陶瓷制品 Download PDF

Info

Publication number
CN1288450A
CN1288450A CN99802298A CN99802298A CN1288450A CN 1288450 A CN1288450 A CN 1288450A CN 99802298 A CN99802298 A CN 99802298A CN 99802298 A CN99802298 A CN 99802298A CN 1288450 A CN1288450 A CN 1288450A
Authority
CN
China
Prior art keywords
ceramic
infrared rays
pottery
transmitance
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99802298A
Other languages
English (en)
Other versions
CN1195702C (zh
Inventor
坂本明彦
和田正纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of CN1288450A publication Critical patent/CN1288450A/zh
Application granted granted Critical
Publication of CN1195702C publication Critical patent/CN1195702C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

为了提供一种对于可见光是不透明的,同时却能容易且高效地进行内部结构测定和检查的管状或棒状陶瓷制品,关于对可见光不透明的管状或棒状陶瓷制品来说,是由对从空气中入射的波长1550nm的红外线厚度1mm的透过率在45%以上的红外线透过陶瓷构成的。该陶瓷制品由满足(1-R)2≥0.84并且,μ≤0.7/mm的条件的陶瓷制成的,式中R为1550nm的反射率,μ为反射系数和吸收系数之和。

Description

陶瓷制品
技术领域
本说明涉及管状或棒状陶瓷制品。
背景技术
陶瓷材料已在各种工业中广泛使用。尤其是,以具有精细内孔的精密毛细管为代表的精密的管状或棒状陶瓷制品,已具有许多制品,可作为光学部件及电子部件的固定构件、导向构件、定位构件、加固构件、被覆构件和连接构件等。在这种精密部件制造时,需精确测定内孔尺寸等的内部尺寸,以及要检测气泡和裂缝等内部缺陷,这些都是重要的课题。
对于能透过可见光的材料来说,如使用光学测量仪器,则可容易地进行内部尺寸的测定和缺陷的检测。然而,由于一般的陶瓷材料不能透过可见光,所以,不能采用这种方法。
为此,在尺寸精度测定时,不得不使用各种精密的量规,但是问题在于不能进行量规无法达到的内部的测定,以及,在测定时,费工夫。另外,在进行内部缺陷检测时,可采用超声波及放射线等方法进行各种测定,然而,这些方法的任何一种,检查装置复杂,测定效率低。
本发明的目的是提供一种既不透过可见光,又能容易、有效地进行内部结构的测定和检查的管状或棒状的陶瓷制品。
发明的公开
本发明人等为了解决上述课题,进行悉心研究的结果发现,即使对于可见光是不透明的,但对于红外线是透明的陶瓷,以及使用这种可透过红外线的陶瓷制成的管状物及棒状物,通过使用红外线可容易地进行内部结构的测定与检查,于是,完成了本发明。
也就是说,本发明的陶瓷制品,它是对于可见光为不透明的管状或棒状的陶瓷制品,其特征在于,该制品是由对于从空气中入射波长1550nm的红外线,当厚度1mm时的透过率为45%以上,理想的是60%以上的红外线透过陶瓷构成的。
还有,在本发明中,所谓“对于可见光不透明”,意指难以采用可见光进行内部结构的测定和检查,具体的是,可见光区(380-760nm)内的直射光的平均透过率,厚度1mm时,为50%以下。
附图的简单说明
图1是表示可以测定内孔的毛细管状试样的剖面透过率分布的说明图。
图2是表示不能测定内孔的毛细管状试样的剖面透过率分布的说明图。
实施本发明的最佳方案
首先,对本发明进行更具体地说明。
本发明的陶瓷制品,是由对于可见光不透明的红外线透过陶瓷构成的。该红外线透过陶瓷的红外线透过率,是在波长1550nm处、厚度1mm时达到45%以上。这里对人们关注的波长1550nm的红外线透过率的理由加以说明。
在用红外线进行测定和检查时,必须要有红外线激光的发光、受光部件,现在可能得到的波长为790nm,1310nm及1550nm等。
一般情况下,当波长加长时,由于测定的分解能降低,所以,测定的精度下降,但是,为了使光线透过陶瓷中,用长波长是有利的。
按照本发明人等的研究,如果使用接收波长1550nm的部件,已知既可确保亚微米粒子的测定精度,又容易得到用于测定的充分的透光量。另外,如果波长1550nm的红外线透过率,厚度1mm时为45%以上,则用该波长的红外线,进行精度良好的测定和检查是可能的。
还有,在本发明的制品测定或检查时,未必要使用1550nm的红外线。也就是说,根据所要求的测定或检查的精度,以及陶瓷的红外线透过特性,有时使用1550nm以外的其他波长的红外线更有利的情况也是有的。
另外,本发明的陶瓷制品,满足(1-R)2≥O.84、μ≤0.7/mm的条件是理想的,式中R表示在1550nm波长的反射率,μ为反射系数和吸收系数之和。其理由如下:
透过率T和壁厚L的关系,可用T=Aexp(-μL)的公式表示。还有,常数A可用(1-R)2代替。从该式可见,材料的壁厚L一定时,透过率取决于常数A及μ。
例如,在壁厚1mm时,使透过率T达到45%以上的A和μ的组合是无数的,然而,当A小于0.84时,或者μ大于0.7/mm时,如壁厚L大,则透过率的减少显著。因此,由这种材料构成的制品,用1550nm红外线测定·检查的范围局限于壁厚小的制品,是不实用的。
还有,上述红外线透过陶瓷,具体地说,并不局限于狭义的陶瓷(氧化铝、氧化锆等),还包括玻璃(乳白色玻璃,有色玻璃等)、玻璃陶瓷等广义的陶瓷。可用各种方法进行这些材料红外线透过率的调节。
例如,对于狭义的陶瓷及玻璃陶瓷而言,可通过控制其析出结晶的粒径与基体相折射率之差,另外,对于乳白玻璃而言,可通过控制由于分相而生成的不同种粒子的粒径及各相折射率之差等来调节红外线透过率。
下面介绍各种材料的制造方法。
在狭义的陶瓷的场合下,例如,甚至像氧化锆那样,其结晶体系属于正方晶系者,以及,像氧化铝那样,属于六方晶系者,都可以用热压法等于1300~1800℃成形双折射少的结晶,并且如果进行焙烧使气泡尽可能少时,是更为优先的。
在玻璃陶瓷材料的场合,例如,以重量%表示,使含有SiO2 60~75%、Al2O3 15~28%、Li2O 1.8~5%、K2O 0~10%、TiO2 1.5~5%、ZrO20~4%的玻璃,于900~1250℃进行热处理并进行结晶化,析出β-石英固溶体及β-锂辉石固溶体等的玻璃陶瓷,以及,含有SiO2 50~80%、Li2O 8~13%、P2O5 1~4%、Al2O3 1~11%、ZnO 0~7%、K2O 0~6%的玻璃,于800~1100℃使其结晶,析出硅酸锂、石英、方晶石等的玻璃陶瓷,均可以使用。这些玻璃陶瓷,任何一种场合下,其结晶相和玻璃相混在一起,然而,由于结晶相和基体相的折射率之差小,所以,通过往玻璃中添加金属元素、半导体元素等作为添加剂,可以提高红外线的透过率。还有,这里的结晶相和玻璃相的存在比例没有必要考虑。
在玻璃材料的场合,例如,可以使用含有以重量%表示的SiO2 60~70%、Al2O3 3~14%、B2O3 1~4%、BaO 1~3%、ZnO 0~5%、Na2O 10~22%的分相乳白玻璃。
还有,在任何一种情况下,为了得到良好的红外线透过特性,使析出结晶及不同种粒子的粒径达到3μm以下是理想的,而折射率之差也尽量小是理想的。
另外,在玻璃和玻璃陶瓷的场合,通过控制在红外区域具有吸收的有色离子的含量,也可能调整红外线透过率。
另外,在本发明的陶瓷制品用在电子部件等精密零件的场合,作为红外线透过陶瓷,采用以氧化锆、氧化铝等作为析出结晶的狭义的陶瓷,及以β-石英固溶体、β-锂辉石固溶体、硅酸锂等作为析出结晶的玻璃陶瓷是所希望的。这些是机械的、热的、化学的特性优良的,适于制作精密部件的理想材料。
下面,对于制造本发明陶瓷制品的具体例子加以说明。
下列表1给出本发明的实施例(试样No.1~5),表2给出比较例(试样No.6、7)。
首先,准备表1及表2所示的不透明的陶瓷材料,加工成直径2.5mm、长10mm的圆柱体后,采用超声波加工,形成直径O.1mm的内孔并制成毛细管状试样。
还有,用于制作试样No.1、2及6的陶瓷材料是Li2O-Al2O3-SiO2体系玻璃陶瓷,是将Li2O-Al2O3-SiO2体系的玻璃,分别于950℃热处理2小时,于1000℃热处理1小时,于1200℃热处理2小时,使其结晶而得到的。
另外,试样No.3中所用的陶瓷材料是由Li2O-Al2O3-SiO2体系的玻璃构成的乳白玻璃,并且是通过将原料于1550℃熔融后,缓慢冷却,使玻璃分相,生成不同种粒子而形成的。
另一方面,试样No.4、5及7中用的陶瓷材料是氧化铝陶瓷及氧化锆陶瓷,并且是往原料中添加粘合剂,混炼后,用热压法并进行烧结而制成的。
另外,表1、2中的红外线透过率,是通过让波长1550nm的激光照射试样,并测定直射光的光透过量而求出的。
另外,平均可见光透过率,是通过往试样中照射380~760nm的可见光用分光光度计测定直射光的光透过量求出的。测定试样的折射率,依下式求出常数A。式中,n1表示空气的折射率、n2表示试样的折射率:
R={(n1-n2)/(n1+n2)}2
A=(1-R)2而且,从红外线透过率T、常数A、试样壁厚L,依下式求出常数μ。
μ=1n(A/T)/L
这里,析出结晶或不同种粒子的粒径,可采用扫描型电子显微镜进行测定。
下面,关于各种试样,评价其可否用红外线测定内孔。该评价,首先在试样的直径方向扫描1550nm的红外激光束,测定对于各试样直径方向位置的透过率分布。
在红外线的透过率布中,在图1中所示的内径部分,可以明确确定的用“O”表示,而图2中所示的内径部分,难以确定的用“×”表示。结果是,采用红外线透过率高的陶瓷材料制成的本发明实施例中的各种试样,可通过红外线进行内孔测定。与此相反,由红外线透过率低的材料构成的比较例的各试样,不能进行内孔测定。
这些事实表明,本发明的陶瓷制品,用1550nm的紫外线可进行内部结构的测定和检查。
表1
    试样编号     本发明
    1     2     3     4
红外线透过率(%)[1550nm.1mm厚]     71     87     82     50
平均可见光透过率(%)[380~760nm.1mm厚]     10     12     32     5
 A(=(1-R)2)[1550nm]     0.92     0.92     0.91     0.86
μ(/mm)[1550nm]     0.25     0.06     0.10     0.55
析出结晶或异种粒子 β-石英固溶体 β-锂辉石固溶体 分相 氧化铝
粒径(μm)     0.8     0.3     0.1     2.0
内孔可测定性     O     O     O     O
表2
    试样编号   本发明     比较例
    5     6     7
    红外线透过率(%)[1550nm,1mm厚]     56     42     36
平均可见光透过率(%)[400~700nm,1mm厚]     10     5     0
  A{=(1-R)2)[1550nm]     0.88     0.88     0.82
  μ(/mm)[1550nm]     0.45     0.75     0.82
析出结晶或异种粒子 氧化锆 β-锂辉石固溶体 氧化铝
粒径(μm)     0.1     2.5     3.8
内孔可测定性     O     ×     ×
工业上利用的可能性
如上所述,本发明的陶瓷制品,可用光学方法进行内部尺寸的测定,以及进行气泡和裂缝等内部缺陷的检查。因此,特别是要求无缺陷和尺寸精密的,例如,光学部件及电子部件的固定构件、导向构件、定位构件、加固构件、被覆构件和连接构件,或光学部件本身用的精密部件,使用这种材料是合适的。

Claims (4)

1.一种陶瓷制品,该陶瓷制品是对于可见光是不透明的管状或棒状的陶瓷制品,其特征在于,它是由对于从空气中入射的波长1550nm的红外线在厚度1mm中的透过率是45%以上的红外线透过陶瓷构成的。
2.权利要求1所述的陶瓷制品,其特征在于,该陶瓷制品是由满足(1-R)2≥0.84,并且,μ≤0.7/mm条件的红外线透过陶瓷构成的,式中R为1550nm处的反射率,μ为反射系数和吸收系数之和。
3.权利要求1所述的陶瓷制品,其特征在于,上述红外线透过陶瓷,是将析出结晶和不同种粒子的粒径调整至3μm以下的陶瓷。
4.权利要求1所述的陶瓷制品,其特征在于,作为上述红外线透过陶瓷,是由氧化锆或氧化铝作为析出晶体的陶瓷,或者,以β-石英固溶体、β-锂辉石固溶体及硅酸锂中的至少一种作为析出结晶的玻璃陶瓷构成的。
CNB998022985A 1998-11-24 1999-11-18 陶瓷制品 Expired - Fee Related CN1195702C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP332292/1998 1998-11-24
JP33229298 1998-11-24

Publications (2)

Publication Number Publication Date
CN1288450A true CN1288450A (zh) 2001-03-21
CN1195702C CN1195702C (zh) 2005-04-06

Family

ID=18253338

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998022985A Expired - Fee Related CN1195702C (zh) 1998-11-24 1999-11-18 陶瓷制品

Country Status (8)

Country Link
US (1) US6420287B1 (zh)
EP (1) EP1050519B1 (zh)
KR (1) KR100414242B1 (zh)
CN (1) CN1195702C (zh)
AU (1) AU747386B2 (zh)
CA (1) CA2319367C (zh)
DE (1) DE69930017T2 (zh)
WO (1) WO2000030997A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257642B2 (ja) * 2000-12-04 2013-08-07 住友電気工業株式会社 セラミックス光学部品及びその製造方法
US20040157720A1 (en) * 2002-08-20 2004-08-12 Nippon Electric Glass Co., Ltd. Crystallized glass
US20060202627A1 (en) * 2005-03-09 2006-09-14 General Electric Company Ceramic arctubes for discharge lamps
US8664130B2 (en) 2012-04-13 2014-03-04 Corning Incorporated White, opaque β-spodumene/rutile glass-ceramic articles and methods for making the same
US9701574B2 (en) 2013-10-09 2017-07-11 Corning Incorporated Crack-resistant glass-ceramic articles and methods for making the same
US9287106B1 (en) 2014-11-10 2016-03-15 Corning Incorporated Translucent alumina filaments and tape cast methods for making

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113009A (en) * 1958-10-17 1963-12-03 Corning Glass Works Method of making and treating a semicrystalline ceramic body
US3252811A (en) * 1963-12-11 1966-05-24 Corning Glass Works Glass-ceramic bodies and method of making them
DE1771149A1 (de) * 1967-04-13 1972-03-30 Owens Illinois Glass Co Hochhitzebestaendige Glaeser niedriger Waermeausdehnung und daraus hergestellte Keramik
JPS5239051B1 (zh) * 1967-04-25 1977-10-03
US3585390A (en) 1968-02-07 1971-06-15 Tadashi Ishikawa Zirconia ceramics and infrared ray radiation elements utilizing the same
US3841950A (en) * 1971-05-25 1974-10-15 Owens Illinois Inc Glasses and glass-ceramics and products made therefrom
US3926602A (en) * 1974-06-19 1975-12-16 Corning Glass Works Glass-ceramic articles with reflective surfaces
NL7507155A (nl) * 1974-06-20 1975-12-23 Jenaer Glaswerk Schott & Gen Werkwijze voor de bereiding van donkerrood, door- zichtig glaskeramisch materiaal met een variabele hoge warmtespanningsfactor, meer in het bijzonder voor de vervaardiging van vuurvaste platen.
US4057434A (en) * 1975-08-11 1977-11-08 Corning Glass Works Opaque infra-red transmitting glass-ceramic articles
US4009042A (en) * 1976-01-15 1977-02-22 Corning Glass Works Transparent, infra-red transmitting glass-ceramics
US4018612A (en) * 1976-03-25 1977-04-19 Corning Glass Works Transparent beta-quartz glass-ceramics
US4211820A (en) * 1979-02-02 1980-07-08 Corning Glass Works Brown glass-ceramic articles
EP0134277B2 (de) * 1983-08-26 1991-11-13 Hoechst CeramTec Aktiengesellschaft Verfahren und Vorrichtung zum Herstellen von polykristallinen, transluzenten Sinterrohren
DE3447633A1 (de) * 1983-12-28 1985-07-11 Kyocera Corp., Kyoto Oxidkeramik-sinterkoerper
US5053359A (en) * 1989-03-24 1991-10-01 Pyromatics, Inc. Cristobalite reinforcement of high silica glass
JPS62182135A (ja) * 1986-02-05 1987-08-10 Nippon Electric Glass Co Ltd 赤外線透過ガラスセラミツクスおよびその製造方法
CH681112A5 (zh) 1990-01-06 1993-01-15 Wilfried Schoeps
FR2657079B1 (fr) * 1990-01-12 1993-04-09 Corning France Verres precurseurs de vitroceramiques, procede de conversion de ces verres en vitroceramiques a dilation tres faible ou nulle et vitroceramiques obtenues.
US5179045A (en) * 1991-08-30 1993-01-12 Corning Incorporated Colored glass-ceramic
US5173453A (en) * 1991-10-09 1992-12-22 Corning Incorporated Variably translucent glass-ceramic article and method for making
JP2964786B2 (ja) 1992-07-01 1999-10-18 住友電気工業株式会社 透光性フッ化バリウム焼結体の製造方法
US5256600A (en) * 1992-07-24 1993-10-26 Corning Incorporated Glass-ceramics and color methods
DE4321373C2 (de) * 1993-06-26 1995-12-14 Schott Glaswerke Glaskeramik mit hoher Transmission im Wellenlängenbereich von 2700 bis 3300 nm, Verfahren zu deren Herstellung und deren Verwendung
US5512520A (en) * 1994-11-14 1996-04-30 Corning Incorporated Ivory color in opaque glass-ceramic
US5776613A (en) * 1995-11-02 1998-07-07 Nippon Electric Glass Co. Ltd. Enamel frit composition for a low-expansion crystallized glass and enamel-coated low-expansion crystallized glass plate using the same

Also Published As

Publication number Publication date
CA2319367A1 (en) 2000-06-02
AU747386B2 (en) 2002-05-16
DE69930017T2 (de) 2006-08-03
EP1050519B1 (en) 2006-02-22
US6420287B1 (en) 2002-07-16
DE69930017D1 (de) 2006-04-27
AU1182900A (en) 2000-06-13
CA2319367C (en) 2005-04-05
KR20010034266A (ko) 2001-04-25
EP1050519A1 (en) 2000-11-08
CN1195702C (zh) 2005-04-06
KR100414242B1 (ko) 2004-01-07
EP1050519A4 (en) 2002-01-30
WO2000030997A1 (fr) 2000-06-02

Similar Documents

Publication Publication Date Title
Mecholsky et al. Prediction of fracture energy and flaw size in glasses from measurements of mirror size
JP4504835B2 (ja) 低熱膨張性ガラスセラミック
US20040247826A1 (en) Glass ceramic composites
CN1195702C (zh) 陶瓷制品
HIRAO et al. Kinetics of crack tip blunting of glasses
CN1087424A (zh) 检测的玻璃中缺陷
TW201425261A (zh) 白色玻璃
KR930006566B1 (ko) 빛 확산성 결정입자를 갖는 유백색 유리로 만든 반투명 유리벽돌
CN1668550A (zh) 透明的多晶氧化铝
MATUSITA et al. Compositional trends in photoelastic constants of borate glasses
Hanada et al. Physical Properties and Structure of Rf‐Sputtered Amorphous Films in the System Ti02‐Si02
Jewell et al. Thermal lensing in heavy metal fluoride glasses
Griggs et al. Mechanism of strength increase for a hydrothermal porcelain
Bartenev Constitution and strength of glass fibers
Nissle et al. Stress‐Optical Coefficient as Related to Glass Composition
Kinosita III Surface Deterioration of Optical Glasses
Khalil et al. Heating microscopy study of the sintering behaviour of glass powder compacts in the binary system SiO2–TiO2
Dathe et al. Dissolution of sodium silicate glasses for the production of water glass–part IV: characterisation of reaction layer and glass surface
Lind et al. Natural aging of soda-lime-silicate glass in a semi-arid environment
JP2007039335A (ja) セラミックス物品の製造方法
JP2000219568A (ja) セラミックス物品
Thomas et al. Characterizing opacity of translucent ceramic materials
Todoroki et al. Evaluation of optical glasses for low-loss fibers: Optical attenuation and fiber drawing ability
Coyle et al. Properties of a solar alumina borosilicate sheet glass
Mito et al. Refractive index and its dispersion of Na2O-GeO2 glasses

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050406

Termination date: 20171118

CF01 Termination of patent right due to non-payment of annual fee