CN1279620C - 性能改善的双扩散金属氧化物半导体的晶体管结构 - Google Patents

性能改善的双扩散金属氧化物半导体的晶体管结构 Download PDF

Info

Publication number
CN1279620C
CN1279620C CNB018058078A CN01805807A CN1279620C CN 1279620 C CN1279620 C CN 1279620C CN B018058078 A CNB018058078 A CN B018058078A CN 01805807 A CN01805807 A CN 01805807A CN 1279620 C CN1279620 C CN 1279620C
Authority
CN
China
Prior art keywords
dmos transistor
trench dmos
tagma
unit
transistor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018058078A
Other languages
English (en)
Other versions
CN1416597A (zh
Inventor
石甫渊
苏根政
崔炎曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Semiconductor Inc
Original Assignee
General Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Semiconductor Inc filed Critical General Semiconductor Inc
Publication of CN1416597A publication Critical patent/CN1416597A/zh
Application granted granted Critical
Publication of CN1279620C publication Critical patent/CN1279620C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0626Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a localised breakdown region, e.g. built-in avalanching region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

提供一种凹槽DMOS晶体管结构,其包括至少三个在第一导电型的衬底上形成的独立凹槽DMOS晶体管单元。多个独立DMOS晶体管单元被分为外围晶体管单元和内部晶体管单元。每个独立晶体管单元包含位于衬底上的第二导电型体区。至少有一条凹槽延伸穿过体区和衬底。绝缘层与凹槽对齐。凹槽中有一设在绝缘层上的导电电极。每个内部晶体管单元(不是外围晶体管单元)还包括第一导电型的源区,其位于与凹槽相邻的体区中。

Description

性能改善的双扩散金属氧化物半导体的晶体管结构
技术领域
本发明涉及具有在凹槽中生成的栅极的电流切换DMOS(金属氧化物半导体)晶体管,尤其是涉及在器件导通时具有低阻值的凹槽DMOS晶体管。
背景技术
DMOS功率晶体管被广泛用于众多领域,其中包括汽车电子设备、磁盘驱动器和电源。通常,这些器件的功能就像开关,被用于连接电源和负载。当开关闭合时,保证器件阻值尽可能低是非常重要的。否则,会浪费能源,同时产生过多的热量。
一个典型的分立DMOS电路包括至少两个并列制造的独立DMOS晶体管单元。当每个独立DMOS晶体管单元的源极被金属短接,同时其栅极被多晶硅短接时,它们共用漏极触点(衬底)。因此,尽管分立DMOS电路是由更小的晶体管阵列构成的,它的性能却像一个大的晶体管。当通过栅极将晶体管阵列接通时,对于分立DMOS电路,期望使单位面积导电率最大。
图1给出了这样一个器件,即DMOS晶体管100中一个独立单元的剖面图,图2为该单元的透视剖面图。栅极102和104各自生成于凹槽中,并被栅极氧化物层包围。凹槽栅极通常生成为栅格型图案,其栅格代表独立的相互连接的栅极,此外,凹槽栅极也常生成为为一连串独特的平行条纹。
DMOS晶体管100为在N-外延层111上生成的双扩散器件。在外延层111的表面生成一N+源区112,同样也在其上生成一P+接触区114。P型体(p-bodty)116位于N+源区112和P+接触区114的下面。一金属源触点118与N+源区112相接,并将N+源区112与P+接触区114、P型区116短接。
N-外延层111在N+衬底120上生成,同时,在N+衬底120的底部有一漏极触点(未示出)。图2给出了栅极102和104的触点121,其是通过延伸凹槽外的导电栅材料,并在远离独立单元处生成一金属接点制成的。图3同样给出了连接了栅极102和104的栅极金属触点121。栅极通常是由掺杂了磷或硼的多晶硅制成的。需要注意的是在生成一串晶体管单元时,栅极触点121只能通过扩展结构中的外围单元获得,而不是通过扩展内部单元获得。
N-外延层111位于N+衬底120和P+型体116之间的区110掺杂N-型杂质的程度通常比N+衬底120要轻。这提高了DMOS晶体管100的耐高电压的能力。区110有时被称为“轻掺杂”或“漂移”区(“漂移”指载流子在电磁场中的运动)。漂移区110和N+衬底120构成了DMOS晶体管100的漏极。
DMOS晶体管100为N-沟道晶体管。当在栅极102施加一正电压时,P型体(p-body)116中接近栅极氧化物层106的沟道区反转,并在N+源区112和N+衬底120之间产生电压差,将有一电子流从源区通过凹槽区流入漂移区110。在漂移区110中,部分电子流以一定角度倾斜地扩展,直至碰到N+衬底120,然后其垂直流向漏极。其它电子流竖直向下流过漂移区110,同时,部分电子流流到栅极102下面,然后向下穿过漂移区110。
栅极102和104用导电材料掺杂。因为DMOS晶体管100为N-沟道器件,所以栅极102和104可以是用磷掺杂的多晶硅。栅极102和104分别通过栅极氧化层106和108与DMOS晶体管100的其余部分绝缘。选择栅极绝缘层106和108的厚度以设定DMOS晶体管100的阈电压,所述厚度还可以影响DMOS晶体管100的击穿电压。
在图1-3中所示的DMOS晶体管中,P+接触区114在凹槽底的下面向下延伸,以在所述单元的中心形成深重度掺杂的P型体116。在其它已知的DMOS晶体管(未示出)中,P+触点区114非常浅,没有延伸到凹槽水平面以下。因此,在这些器件中P+型体116不予考虑。浅的P+接触区有助于保证P-型掺杂物不会进入到沟道区中,这将有益于增加器件的阈电压,同时导致器件导通特性从一次运行到另一次运行取决于P+接触区114的取向都不相同。然而,对于浅P+接触区114,不考虑P+部分116,器件当其被截止时只能承受相对较低的电压(例如10伏)。这是因为分布在P+接触区114和漂移区110之间的结的周围扩展的耗尽层不足以保护凹槽的端角处(例如,图1中所示的端角122)。其结果是在凹槽的周围地区可能发生雪崩击穿,导致产生过大的载流子产生速率,使得栅极氧化物层106被载流子充电或降低质量,在极端情况下,导致栅极氧化物层106损坏。因此,这种已知的DMOS晶体管至多是一种低电压器件。
如前面所述,在图1-3所示的已知DMOS晶体管中,通过将P+接触区114向下延伸到凹槽的底部以下,在单元中心形成一深度重掺杂P型体区116,可以提高其击穿电压。虽然这将在端角122处提供附加保护,但其主要优势是载流子最先在P+型体116的底端302开始产生。这种状况的产生是由于在顶端302下面的电场被增强了,从而导致载流子沿着结的弯曲部分或其顶端产生,而不是在靠近栅极氧化物层106的位置产生。这即使可能减少器件实际的结的击穿电压,但也降低栅极氧化物层106上受到的应力,并提高DMOS晶体管100在高电压条件下的可靠性。在例如美国专利号:5,072,266和5,688,725中能够找到关于向下延伸P接触区的另外的细节。
DMOS晶体管100中的深P+型体虽然能够极大地减小击穿造成的不利结果,但也具有一些不利的影响。首先,由于伴随着单元密度的增大,P离子将百能被引入到凹槽区,因此产生单元密度的上限。如上所述,这将有助于增加DMOS晶体管的阈电压。其次,当电子流离开凹槽进入漂移区110时,深P+型接触体的存在趋于夹断电子流。在已知的不含有深P+型体116的晶体管中,当电子流到达漂移区110时,电子流发生扩展。该电流扩展增加了漂移区110中单位面积上的平均电流,从而降低了DMOS晶体管的导通电阻。深P+型体的存在限制了这种电流扩展,并与高单元密度相一致,提高了导通电阻。
因此,所需的是综合了深P+型体击穿优点和低导通电阻的DMOS晶体管。
发明内容
按照本发明,提供了一种凹槽DMOS晶体管结构,该结构包括在具有第一导电型的衬底上形成的至少三个独立的凹槽晶体管单元。多个独立DMOS晶体管单元被分为外围晶体管单元和内部晶体管单元。每个独立晶体管单元包括位于所述衬底上的具有第二导电类型的体区。所述至少一条凹槽水平延伸穿过体区和衬底。绝缘层衬在所述凹槽内。凹槽中有一设在绝缘层上的导电电极。每个内部晶体管单元(而不是外围晶体管单元),还包括具有第一导电型的源区,其位于与凹槽相邻的体区中。因此,当内部晶体管单元起作用时,外部晶体管单元不起作用。其结果是,获得低的阈电压,同时不需要深P+接触区。
依照本发明的一个方面,体区平直穿过各晶体管单元分别所处位置的宽度。换句话说,穿过晶体管单元分别所处位置的宽度时体区有双峰式分布。
依照本发明的另一个方面,凹槽延伸到在体区的下面的一个深度。
依照本发明的再一个方面,外围晶体管单元体区的掺杂要远轻于内部晶体管单元体区的掺杂。
依照本发明的另一个方面,提供一种凹槽DMOS晶体管结构,其至少包括在具有第一导电型的衬底上形成的三个独立凹槽晶体管单元。多个独立DMOS晶体管单元被分为外围晶体管单元和内部晶体管单元。每个独立晶体管单元包括位于所述衬底上的具有第二导电类型的体区。体区有穿过各晶体管单元分别所处位置的宽度的双峰式分布。至少一条水平凹槽延伸穿过体区和衬底。绝缘层衬在所述凹槽内。凹槽中有一设在绝缘层上的导电电极。每个内部晶体管还包括具有第一导电类型的源区。源区位于靠近凹槽的体区上。
附图说明
图1和2分别给出了具有相对深的中心p+接触区的常规垂直凹槽的N沟道DMOS晶体管的一个单元的剖面图和透视图。
图3给出了具有相对深的中心p+接触区的常规N沟道DMOS晶体管的另一个剖面图。
图4为依照本发明构造的外围和内部晶体管单元的剖面图。
图5为依照本发明构造晶体管结构的平面图。
图6为本发明可选择的实施方案图。
具体实施方式
图4为一剖面图,图5为凹槽DMOS结构200的一个实施例的平面图,其中,独立单元21在水平剖面图中的形状为矩形。该实施例中的结构包括:n+衬底220,其上生长了一轻n-掺杂的外延层211。在掺杂的外延层211中,提供了具有相反的导电性的接触区和体区214。设在部分体区214上的n-掺杂外延层240用作源极。在外延层上给出了矩形的凹槽202和204,其开口于该结构的上表面并限定了晶体管单元的周界。栅极氧化物层230衬在凹槽202和204的侧壁上。凹槽202和204内填充多晶硅。漏极连接到半导体衬底220的后表面,源极218连接两个源区240和接触区214,栅极221连接到凹槽202中填充的多晶硅上。填充在凹槽内的多晶硅在结构200的表面连续连通。另外,如图4和5所示,延伸在结构200的表面上方的多晶硅221,用于和外围晶体管单元,如单元211,212和213相互连接。内部晶体管单元,如单元214,215和216,相互连接,并通过凹槽本身连接到外围单元上。图4中,凹槽202与外围单元相连,而凹槽204与内部单元相连。
应该注意的是,对于基本的晶体管操作,并不要求晶体管单元21为矩形,通常情况下其为多边形。然而,规则的矩形形状,或规则的六边形形状对于设计是最方便的。换句话说,晶体管单元除了为图中描绘的封闭单元的形状(closed-cell geometry)外,还可能是开放(open)的或条形的几何形状。
如前面所提到的,现有技术的DMOS晶体管中采用的深P+接触区,随着单元密度的提高,也提高了阈电压。深中心P+区将导致器件接通电阻的增大。然而,没有深P+接触区,器件的击穿电压对于许多应用来说就会过低,不能接受。
根据本发明,通过提供晶体管不起作用的外围晶体管单元和晶体管起作用的内部晶体管单元,可以获得低的阈电压,而无需深P+接触区。如图4所示,凹槽202与外围晶体管单元相连,同时凹槽204与内部晶体管单元相连。不起作用的外围晶体管单元与起作用的内部晶体管单元的区别是,不起作用的晶体管的源区被切断了。例如,见图4,与凹槽202相连的外围半导体单元没有源区。另外,与外围晶体管单元相连的P+接触区214比与内部单元相接的P+接触区掺杂程度要轻的多。轻掺杂的结果是,在这些外围单元上不会发生击穿。而这种安排可以确保在内部单元中发生雪崩击穿。因此,本发明的DMOS晶体管阵列可以用于较高电压。另外,由于不需要使用深P+接触区,所以还可以避免阈电压和导通电阻的不适当的提高。
图6给出了本发明的一个特定的实施例,其中,P+接触区614为沿着晶体管单元的宽度的双峰分布,而不是基本上平直的分布。在本发明的这一实施例中,雪崩击穿通常发生在标号610附近。
尽管在这里给出各种实施例的具体图示和描述,但在不背离本发明精神和范围的情况下,在上述教导和附加权利要求范围内覆盖了对其进行形式上和细节上的改动。例如:本发明完全可以应用于不同于这里所描述的各种半导体区域导电性的凹槽DMOS。

Claims (21)

1.一种凹槽DMOS晶体管结构,该结构包括在具有第一导电型衬底上形成的至少三个独立凹槽DMOS晶体管单元,所述多个独立DMOS晶体管单元被分为位于所述结构的外围上的外围晶体管单元和位于所述结构的外围的内部的内部晶体管单元,每个所述独立晶体管单元包括:
位于衬底上的体区,所述体区具有第二种导电类型;
至少一条凹槽延伸到体区中;
衬在凹槽内的绝缘层;
导电电极,在凹槽中设在所述绝缘层上;以及
其中,每个所述内部晶体管单元而不是所述外围晶体管单元,还包括在接近所述凹槽的体区中的具有第一导电类型的源区,
且所述外围晶体管单元体区的掺杂程度要轻于所述内部晶体管单元体区的掺杂程度。
2.如权利要求1所述的凹槽DMOS晶体管结构,其中,所述体区平直穿过各晶体管单元分别所处的位置的宽度。
3.如权利要求1所述的凹槽DMOS晶体管结构,其中,所述至少一条凹槽延伸到低于体区深度的深度。
4.如权利要求1所述的凹槽DMOS晶体管结构,其中,每个所述体区具有穿过所述晶体管单元分别所处的位置的宽度的双峰分布。
5.如权利要求1所述的凹槽DMOS晶体管结构,还包括漏极,其位于与所述体区相对的衬底表面上。
6.如权利要求1所述的凹槽DMOS晶体管结构,其中,所述绝缘层为氧化物层。
7.如权利要求1所述的凹槽DMOS晶体管结构,其中,所述导电电极包括多晶硅。
8.如权利要求1所述的凹槽DMOS晶体管结构,其中,至少一个所述凹槽DMOS晶体管单元具有封闭单元的几何形状。
9.如权利要求8所述的凹槽DMOS晶体管结构,其中,所述封闭单元几何形状为矩形。
10.如权利要求1所述的凹槽DMOS晶体管结构,其中,至少一个所述凹槽DMOS晶体管单元具有开口单元几何形状。
11.如权利要求1所述的凹槽DMOS晶体管结构,还包括多个与外围晶体管单元每个导电电极分别相连的多晶硅触点。
12.如权利要求4所述的凹槽DMOS晶体管结构,还包括多个与所述外围晶体管单元每个导电电极分别相连的多晶硅触点。
13.如权利要求3所述的凹槽DMOS晶体管结构,还包括多个与所述外围晶体管单元每个导电电极分别相连的多晶硅触点。
14.如权利要求1所述的凹槽DMOS晶体管结构,其中,所述体区有穿过晶体管单元分别所处的位置的宽度的双峰式分布,所述至少一条凹槽延伸到低于所述体区的深度。
15.如权利要求14所述的凹槽DMOS晶体管结构,还包括漏极,其位于与所述体区相对的衬底表面上。
16.如权利要求14所述的凹槽DMOS晶体管结构,其中,所述绝缘层为氧化物层。
17.如权利要求14所述的凹槽DMOS晶体管结构,其中,所述导电电极包括多晶硅。
18.如权利要求14所述的凹槽DMOS晶体管结构,其中,至少一个所述DMOS晶体管单元具有封闭单元的几何形状。
19.如权利要求18所述的凹槽DMOS晶体管结构,其中,所述封闭单元的几何形状为矩形。
20.如权利要求14所述的凹槽DMOS晶体管结构,其中,至少所述一个凹槽DMOS晶体管具有开口单元几何形状。
21.如权利要求14所述的凹槽DMOS晶体管结构,还包括分别与每一个所述外围晶体管单元的导电电极连接的多个多晶硅触点。
CNB018058078A 2000-02-29 2001-02-15 性能改善的双扩散金属氧化物半导体的晶体管结构 Expired - Fee Related CN1279620C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/515,335 US6548860B1 (en) 2000-02-29 2000-02-29 DMOS transistor structure having improved performance
US09/515,335 2000-02-29

Publications (2)

Publication Number Publication Date
CN1416597A CN1416597A (zh) 2003-05-07
CN1279620C true CN1279620C (zh) 2006-10-11

Family

ID=24050918

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018058078A Expired - Fee Related CN1279620C (zh) 2000-02-29 2001-02-15 性能改善的双扩散金属氧化物半导体的晶体管结构

Country Status (8)

Country Link
US (1) US6548860B1 (zh)
EP (2) EP1266406B1 (zh)
JP (1) JP2003529209A (zh)
KR (1) KR20020079919A (zh)
CN (1) CN1279620C (zh)
AU (1) AU2001238287A1 (zh)
TW (1) TW493280B (zh)
WO (1) WO2001065607A2 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127885B4 (de) * 2001-06-08 2009-09-24 Infineon Technologies Ag Trench-Leistungshalbleiterbauelement
US6838722B2 (en) * 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
US8629019B2 (en) * 2002-09-24 2014-01-14 Vishay-Siliconix Method of forming self aligned contacts for a power MOSFET
US7494876B1 (en) 2005-04-21 2009-02-24 Vishay Siliconix Trench-gated MIS device having thick polysilicon insulation layer at trench bottom and method of fabricating the same
US7583485B1 (en) 2005-07-26 2009-09-01 Vishay-Siliconix Electrostatic discharge protection circuit for integrated circuits
US9111754B2 (en) * 2005-07-26 2015-08-18 Vishay-Siliconix Floating gate structure with high electrostatic discharge performance
US7544545B2 (en) * 2005-12-28 2009-06-09 Vishay-Siliconix Trench polysilicon diode
DE102006029750B4 (de) * 2006-06-28 2010-12-02 Infineon Technologies Austria Ag Trenchtransistor und Verfahren zur Herstellung
US20080206944A1 (en) * 2007-02-23 2008-08-28 Pan-Jit International Inc. Method for fabricating trench DMOS transistors and schottky elements
US10600902B2 (en) 2008-02-13 2020-03-24 Vishay SIliconix, LLC Self-repairing field effect transisitor
US9230810B2 (en) 2009-09-03 2016-01-05 Vishay-Siliconix System and method for substrate wafer back side and edge cross section seals
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
JP5736394B2 (ja) 2010-03-02 2015-06-17 ヴィシェイ−シリコニックス 半導体装置の構造及びその製造方法
WO2012158977A2 (en) 2011-05-18 2012-11-22 Vishay-Siliconix Semiconductor device
JP6290526B2 (ja) 2011-08-24 2018-03-07 ローム株式会社 半導体装置およびその製造方法
JP6524279B2 (ja) * 2011-08-24 2019-06-05 ローム株式会社 半導体装置およびその製造方法
JP6219140B2 (ja) * 2013-11-22 2017-10-25 ルネサスエレクトロニクス株式会社 半導体装置
WO2016028943A1 (en) 2014-08-19 2016-02-25 Vishay-Siliconix Electronic circuit
US11217541B2 (en) 2019-05-08 2022-01-04 Vishay-Siliconix, LLC Transistors with electrically active chip seal ring and methods of manufacture
US11218144B2 (en) 2019-09-12 2022-01-04 Vishay-Siliconix, LLC Semiconductor device with multiple independent gates

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100460A (ja) 1981-12-11 1983-06-15 Hitachi Ltd 縦形mos半導体装置
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
JPH0354868A (ja) 1989-07-21 1991-03-08 Fuji Electric Co Ltd Mos型半導体装置
JP3170966B2 (ja) * 1993-08-25 2001-05-28 富士電機株式会社 絶縁ゲート制御半導体装置とその製造方法
JPH0878668A (ja) * 1994-08-31 1996-03-22 Toshiba Corp 電力用半導体装置
US5688725A (en) * 1994-12-30 1997-11-18 Siliconix Incorporated Method of making a trench mosfet with heavily doped delta layer to provide low on-resistance
US5998837A (en) * 1995-06-02 1999-12-07 Siliconix Incorporated Trench-gated power MOSFET with protective diode having adjustable breakdown voltage
US5763915A (en) 1996-02-27 1998-06-09 Magemos Corporation DMOS transistors having trenched gate oxide
JP3257394B2 (ja) * 1996-04-04 2002-02-18 株式会社日立製作所 電圧駆動型半導体装置
US5998266A (en) 1996-12-19 1999-12-07 Magepower Semiconductor Corp. Method of forming a semiconductor structure having laterally merged body layer
US5986304A (en) 1997-01-13 1999-11-16 Megamos Corporation Punch-through prevention in trenched DMOS with poly-silicon layer covering trench corners

Also Published As

Publication number Publication date
EP2267786A3 (en) 2011-01-12
AU2001238287A1 (en) 2001-09-12
EP1266406A2 (en) 2002-12-18
WO2001065607A2 (en) 2001-09-07
JP2003529209A (ja) 2003-09-30
CN1416597A (zh) 2003-05-07
EP2267786A2 (en) 2010-12-29
WO2001065607A3 (en) 2002-05-30
US6548860B1 (en) 2003-04-15
KR20020079919A (ko) 2002-10-19
EP1266406B1 (en) 2011-11-30
TW493280B (en) 2002-07-01

Similar Documents

Publication Publication Date Title
CN1279620C (zh) 性能改善的双扩散金属氧化物半导体的晶体管结构
US10157983B2 (en) Vertical power MOS-gated device with high dopant concentration N-well below P-well and with floating P-islands
EP1425802B1 (en) Power mosfet having a trench gate electrode and method of making the same
US7928505B2 (en) Semiconductor device with vertical trench and lightly doped region
US7919824B2 (en) Semiconductor device and method of manufacturing the same
US6008520A (en) Trench MOSFET with heavily doped delta layer to provide low on- resistance
US8125023B2 (en) Vertical type power semiconductor device having a super junction structure
US8049270B2 (en) Semiconductor device
EP2342753B1 (en) Insulated gate bipolar transistor
US7417282B2 (en) Vertical double-diffused metal oxide semiconductor (VDMOS) device incorporating reverse diode
EP2200089A1 (en) Trench gate field effect devices
US20090072304A1 (en) Trench misfet
JP2004095954A (ja) 半導体装置
KR20010074945A (ko) 고전압 반도체 소자
US9455340B2 (en) Power semiconductor device and corresponding module
US8030706B2 (en) Power semiconductor device
US20040041229A1 (en) Power semiconductor device having high breakdown voltage, low on-resistance, and small switching loss and method of forming the same
KR101127501B1 (ko) 트렌치 게이트 구조를 가지는 전력 반도체 소자
US11575032B2 (en) Vertical power semiconductor device and manufacturing method
EP1051755B1 (en) A transistor of sic
JP7471403B2 (ja) 縦型電界効果トランジスタおよびその形成方法
KR102078295B1 (ko) 이너 웰을 가진 슈퍼 정션 트랜지스터
CN102449770A (zh) 用于半导体器件的3d沟道结构
EP4016638A1 (en) Power semiconductor device with an insulated trench gate electrode
KR102030466B1 (ko) 레터럴 타입의 전력 반도체 소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061011

Termination date: 20170215