CN1278565A - 具有结构氧掺杂的硅及其生产方法和用途 - Google Patents

具有结构氧掺杂的硅及其生产方法和用途 Download PDF

Info

Publication number
CN1278565A
CN1278565A CN00118627A CN00118627A CN1278565A CN 1278565 A CN1278565 A CN 1278565A CN 00118627 A CN00118627 A CN 00118627A CN 00118627 A CN00118627 A CN 00118627A CN 1278565 A CN1278565 A CN 1278565A
Authority
CN
China
Prior art keywords
silicon
oxygen
temperature
atom
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00118627A
Other languages
English (en)
Inventor
C·海斯勒
H·U·赫夫斯
W·科克
S·图尔姆
O·布雷滕斯坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of CN1278565A publication Critical patent/CN1278565A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/007Pulling on a substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本发明涉及具有高的氧含量同时具有高的晶格位错密度的硅及其生产方法。这种硅可以用在光电转换中。基于按照本发明的这种材料的太阳能电池表现出高水平的效率,尽管其高的氧含量。

Description

具有结构氧掺杂的硅及其生产方法和用途
本发明涉及具有高的氧含量和高的位错密度的硅,它的生产方法和它用于太阳能电池的用途。
结晶硅是当前制造绝大多数全太阳能电池的材料,太阳能电池可以把阳光光电转换成电能。单晶硅和多晶硅是形成用来制造太阳能电池的硅材料的两种主要的变型。虽然单晶硅通常是从使用切克劳斯基法熔化的硅以单晶拉出的,但多晶硅的生产方法也有许多。最有效的方法是各种块-结晶方法,其中通过锯割固体的多晶硅块可以获得用于制造太阳能电池的硅片,还有各种拉膜方法和铸膜方法,其中从熔化的材料拉出或铸出具有最终厚度的晶片,即硅膜。拉膜方法的例子是EFG方法(边缘确定的供膜生长法)(EP0369574A2)和RGS方法(EP0165449Al,DE4105910Al)。
太阳能电池是大面积的pn结二极管,太阳光在它的体积内产生少数电荷载流子,这些少数电荷载流子必须能够向位于电池表面的发射极扩散,从而使这些少数电荷载流子在pn结处被电场分开,对外部电流作出贡献。少数电荷载流子的服务寿命越长,并且因此少数电荷载流子在基极的扩散长度越大,则这种方法就越有效。因此,对于用来生产太阳能电池的硅材料的质量要附加特殊的要求:这种材料必须尽可能是不含杂质和晶体缺陷,从而可以得到少数电荷载流子的最大扩散长度。
氧在硅中通常是主要杂质,因为熔化的硅通常是在一个石英坩锅(SiO2)中熔化的。虽然氧作为填隙式溶解的杂质在电的方面是不活泼的,但众所周知的是,如果由于高温步骤引起的硅材料中的氧含量超过约8×1017个原子/cm2(J.Vanhellemont等人,J.Appl.Phys.(应用物理杂质)77(11),5669(1995)),少数电荷载流子的寿命也要缩短,因此太阳能电池的效率也要降低。因此,到目前为止的规则一直就是氧含量超过8×1017个原子/cm2的硅材料是不适合于制造太阳能电池的。
尤其是对于高产量的拉膜方法和铸膜方法,产生具有足够低的氧含量的硅材料是极其困难和昂贵的。特别是对于RGS材料,为了建立足够平滑的表面,必须向硬化的表面施加氧气流(DE4105910A1)。结果,在RGS材料的体积中出现了相当高的氧浓度。在接近表面的硅层中,氧含量甚致于更大,并且事实上,未经处理的样品的表面在很大程度上由一层二氧化硅层覆盖。为了使已经离析出来的杂质固定不动,这是必然的和期望的。对于薄的硅膜,例如厚度约为300微米的RGS膜,在没有靠近表面的氧气作用的条件下,刚刚集中在这个薄区的金属杂质立即又扩散回膜的内部,这里仍旧是超过1000℃的温度。
本发明的目的是制造适于用在光电转换中的硅,尽管它具有高的氧含量,即,允许含有这种硅的太阳能电池能达到经济利用硅的效率水平。
现在已经发现,在光电转换中可以使用具有高的氧浓度的硅,条件只是这种硅还有高的晶格位错密度(下面称为位错)。因为高的位错密度一般来说将导致较不适合于光电转换的材料,所以这将更加令人惊奇。
因此,本发明涉及的硅的总氧含量为8×1017原子/cm3到1×1019原子/cm3,位错密度为1×105cm-2到5×107cm-2。位错密度优选的为5×105cm-2到5×106cm-2
本发明进而涉及制造硅的方法,所说的硅的总氧含量为8×1017原子/cm3到1×1019原子/cm3,位错密度为1×105cm-2到5×107cm-2,并且本发明还涉及包含这种硅的太阳能电池。
可以使用高产量的方法,例如铸膜或拉膜方法,低成本地制造按照本发明的硅,并且可以使用本发明的硅在光电转换中得到好的效果。包含按照本发明的硅的的太阳能电池和基于切克劳斯基法单晶硅(一种用于光电转换的特别高质量的材料)的一种用相同方法处理的太阳能电池相比,在某些情况下具有较高的短路电流。
例如,通过在结晶过程期间向液态硅施加含氧气体或气体混合物,可以实现按照本发明的硅中的高氧含量。有益地,所用的气体混合物可由惰性气体组分和反应性气体组分组成。可以使用的惰性气是氩,而可以使用的反应性气体是氧。还可以建立高氧含量,其方法例如是控制使用具有高比例表面积的石英组分的石英(SiO2)坩锅及其内部结构,在生产硅材料期间这些石英组分被液态的硅湿润到液态硅的体积内。多种方法的组合是有益的。如果使用以上所述的RGS方法生产硅,例如按DE4105910A1,并过程中将硅暴露到至少有50%(体积)的氧的气体混合物中,则可按照特别有益的方式实现了高的氧含量。
借助于在生产硅期间的结晶速率来设定位错密度。高的结晶速率通常导致高的晶体缺陷,因而导致高的位错密度。为此,借助于液态硅结晶过程的温度分布曲线可设定结晶速率。液态硅的快速冷却产生高的结晶速率,因此产生高的位错密度。刚刚结晶的硅的快速冷却一般和陡峭的温度梯度有关;这些都将导致机械应力,这一机械应力又引起另外的位错的形成。
按照本发明,通过设定合适的分布曲线,还可能影响氧在硅中的存在形式。为了在光电转换中使用硅,总氧量的至少25%、优选的至少50%、特别优选的至少75%是以硅/氧沉积物形式存在,其余的氧作为填隙式(溶解的)氧在硅中扩散。为此,例如通过在温度500℃-1250℃、优选的从800℃-1150℃加热1分钟到10个小时,优选的从15分钟到2小时,但这个温度必须超过950℃持续至少1分钟。在所示的范围内,可以保持温度不变,或者可以改变所说的温度。然后将硅冷却至室温。
按照DIN50438第1部分通过FTIR(付里叶变换红外光谱测量法)测量溶解的(填隙式)氧含量。如果不能避开来源于这个标准的偏差(如样品厚度),要尽可能基于上述标准进行测量。为此目的,硅要在结晶后的小于2分钟内立即从T>1250℃急冷到T<500℃,或者,如果这不可能或不合适,所说的硅为了测量的目的要在大于1250℃的温度开始加热历时1小时以上,然后在小于2分钟内急冷到小于500℃的温度。
使用下述方法测量位错密度:
开始时,用粘结方法使用一种有两种成分的粘结剂将硅材料样品粘结到PVC样品夹持器上,并且在粘结剂固化后,使用400号碳化硅磨擦砂纸(Struers)对硅材料样品进行表面研磨,并进行清洗。接下去的步骤是:用800号、1000号、2400号纸精磨和清洗,每个研磨操作历时约1分钟。所用的清洗液是软化水。然后,在适当的织物布上用金刚石液(3微米)(Struers)研磨样品。最终的抛光操作是在一块织物布上进行的,并且使用由BAYER AG(商标为Levasil100)制造的45%浓度的硅溶胶。抛光持续到样品表面用目视检查为光滑时为止(30分钟到1小时)。
然后,对样品进行彻底的清洗,接下去,用一种蚀刻溶液进行处理,这种蚀刻溶液能够有选择地作用在晶体缺陷上。样品在新制备的重铬酸钾和氢氟酸溶液中腐蚀1分钟,在这期间要不停地有力搅拌。蚀刻溶液由40毫升的45%浓度的重铬酸钾水溶液和60毫升40%浓度的氢氟酸组成。蚀刻处理在位错线通过表面延伸的一些位置产生一些小的漏斗,即所谓的凹坑,随后通过图像分析可以对这些凹坑进行计数。
为了进行这种分析,在放大倍数为500的一台光学显微镜暗视场下观察样品表面。图像通过一台CCD摄像机引到图像处理系统,在这里图像数字化成768×512像素,并进行存储。借助于有选择的暗视场照明,颗粒边界和蚀刻凹坑都作为亮区表现出来。在5-500像素之间覆盖的并且椭圆因子(长椭圆轴和短椭圆轴之比)大于0.3的所有的亮体都被解释为位错腐蚀凹坑并且对其进行计数,从计数中扣除颗粒边界。
可以使用用来生产太阳能电池的基础材料的标准方法来获得本发明的硅,其条件是使用上述的度量方法设定了高氧含量和高位错密度。使用拉膜和铸膜方法是有益的,并且优选地使用RGS方法生产本发明的硅。
可以使用本发明的硅很好地实现光电转换。可使用本领域的普通技术人员公知的标准方法进行p或n掺杂。可以按已知的方法使用掺杂硅作为太阳能电池的起始材料。
硅的掺杂例如在它的结晶期间发生。例如通过向熔化的硅或者将要熔化的硅添加硼化合物或优选地添加硼硅源合金,就可获得p掺杂的硅。例如通过向熔化的硅或者将要熔化的硅添加磷化合物或优选地添加磷硅源合金,就可获得n掺杂的硅。通过硅原材料的一种适当的组合物或者包含期望的例如硼或磷的总掺杂量的二次硅的一种适当组合物,就可获得n或p掺杂的硅。
从具有按照本发明的高氧含量和高位错密度的p掺杂硅,例如可以产生np太阳能电池,并且,n掺杂硅适于用作pn太阳能电池的起始材料。从掺杂硅加工太阳能电池的方法形成现有技术的一部分,本领域的普通技术人员是公知的。
按照本发明的硅,尽管它具有高的氧含量,但都是太阳能电池的一种特别合适的起始材料。硅中的高位错密度在这一方面起特殊的作用。如果在硅材料中有高的氧浓度和高的位错密度,则在高温步骤进行的同时(在太阳能电池的处理期间或之前),氧以硅/氧聚集体的形式优选地在位错位置沉积出来。因此,氧沉积物不像通常发生的那样是孤立的颗粒形式,而是安排成沿位错的链式结构。如果氧含量充分地高,并足够多的氧沉积出来,那么这沉积物链就要由通常冻结在氧化物中的氧电荷正向充电,并且形成正向充电的丝,丝的直径优选为1和100nm之间。这些充电的沉积物丝根据一般通用的太阳能电池是由p型导电起始材料(np结构)还是由n型导电起始材料(pn结构)制成的而有不同的效果。
对于np结构,大多数沉积物丝定位在电池基极的p型导电材料上。如果氧化物电荷足够多,丝的直接周围要经受电荷载流子的反转,即,丝的周围变为n型导电。因此,它们对电子的重组活性明显减小,这是因为不再有任何空穴可以作为重组的配偶子,这就是在氧化的p型硅表面下发生的已知的自发表面反转的情况。类似地,按相同的方式,沉积物丝起通过该晶体的少数电荷载流子(在这个情况下是电子)的导体的作用。由于相当大数目的丝突出穿过pn结,并因此和发射极电连接,所以少数电荷载流子可以从基极的深部流出,经所说的丝到达位于表面的pn结,结果是明显改进了太阳能电池的电流效率。因此,使用按照本发明的硅制造np型太阳能电池的效果是:在处理期间形成的沉积物丝形成了导电沟道系统(n导电沟道或电子导电沟道),这个导电沟道系统电连接到发射极并且因此特别有效地输送少数电荷载流子离开基极到发射极。因而,已经有可能使太阳能电池具有少数电荷载流子的扩散长度小于晶片厚度的功能。
如果太阳能电池是从具有p掺杂的发射极的n型导电起始材料(pn结构)产生的,通过使用按照本发明的材料在处理期间形成带有正电荷的氧沉积物,其作用如下:它们对于光生的少数电荷载流子(在此情况下是空穴)具有静电排斥作用,但吸引多数电荷载流子(电子)。因此,在所说的丝的周围形成排斥少数电荷载流子的加强沟道。这和借助于后表面触点(称之为后表面场,BSF)的附加p掺杂对于常规的np太阳能电池得到的效果相同。还是在这种情况下,通过排斥电场使电池的后表面钝化,因而使后表面呈重组非活性。因此,使用按照本发明的硅产生pn太阳能电池将导致位错和其它的晶体缺陷,这些位错和晶体缺陷由在处理期间形成的带有正电荷的硅/氧沉积物有效地加以钝化,使硅中的电荷载流子产生足够大的扩散长度,尽管其高缺陷密度。
和到目前为止一直使用的用来制造太阳能电池的材料相比,使用按照本发明的硅制造太阳能电池的优点是这种硅的生产成本特别地低,这是因为在生产期间不需要遵从最大可允许的氧含量。熔融富氧的硅材料比熔融贫氧的硅材料更容易。另一个优上是:材料可以有较高的晶体缺陷密度,因为在p掺杂硅的情况下,有意地使用这些缺陷用于电流传导,而在n掺杂硅的情况下,这些缺陷得到了有效的钝化。
参照下面的例子详细说明按照本发明的硅的生产方法、它在光电转换中的用途、以及基于这种硅的太阳能电池的制造方法和性质。然而,这些例子不构成对于本发明的构思的任何限制,只是对于这一构思的说明。
实施例
下面的内容描述按照EP0165499A1和DE4105910A1使用RGS方法(Ribbon Growth on Substrat(基板上的晶带生长))制造的p-和n-导电硅膜,以此作为按照本发明制造用于生产太阳能电池的硅材料的说明性实施例。
实施例1
在石英玻璃坩锅中熔化300克硅颗粒和1.2856克含43ppmg硼的硼硅源合金,然后将它们倒入不连续操作的RGS设备的模具中。然后,以6.5米/分钟的速度沿铸架底部移动RGS设备的石墨基板。与此同时,在模具的后部并在固化的硅的表面上方通过7.5米3/小时的气流,这个气流由按体积计67%的氧和按体积计33%的氩组成。借助于补偿加热法使最终的硅膜初始保持在约1130℃下1小时,然后,通过适当地降低热量以大约-50℃/小时的速率将其温度降低到约990℃,最后通过切断热量在约2小时内冷却到室温。
FTIR光谱测量揭示出:在硅膜中的填隙式的氧含量为1.4×1017原子/cm3。对于用类似的方法制造的但在20秒内冷却到500℃并且在1个小时内冷却到室温的硅膜,如果不经以上所述的热处理,则对应的填隙式的氧含量为2.6×1018原子/cm3
实施例2
方法如例1所述,只是使用了300克来源于半导体工业的并具有对应于1欧姆厘米的磷掺杂的二次硅原材料。
FTIR光谱测量揭示出:在硅膜中的填隙式的氧含量为4.0×1017原子/cm3。对于用类似的方法制造的但在20秒内冷却到500℃并且在1个小时内冷却到室温的硅膜,如果不经以上所述的热处理,则对应的填隙式的氧含量为2.2×1018原子/cm3
下面的内容描述分别从p和n导电起始材料产生np太阳能电池和pn太阳能电池,以此作为使用本发明的硅材料生产太阳能电池的说明性实施例。
实施例3
从按照本发明的硅制造的n+p型太阳能电池已经多次制造,其尺寸为2×2cm2,这是实验室用的样品。P-型导电起始材料的硼掺杂为1016原子/cm3,其厚度为350微米,并且,按照本发明,这种起始材料的氧含量为3.2×1018原子/cm3和平均位错密度约为5×105cm-2。按传统方式利用磷扩散步骤在氧化环境中并在温度为825℃下扩散发射极1个小时。后表面触点是通过蒸汽淀积以下的各层的组合施加的:0.2微米Al、0.2微米Ti、0.02微米Pd、2微米Ag。然后,使按这种方式预处理过的硅片在氮-氢气氛中并在625℃温度下经受热处理30分钟,以便产生良好的欧姆接触。前表面触点栅极是通过蒸汽淀积以下的各层的组合产生的:0.2微米Ti、0.02微米Pd、2微米Ag。没有抗反射涂层。处理之后,电池的基极材料中的位错转化为沉积物丝,丝的直径的数量级为10nm,这是由透射式电子显微镜显示出来的。对于具有这个缺陷密度的材料,太阳能电池的18.55毫安/cm2的短路电流是意外地高,可以说明的不存在任何问题的事实是因为在沉积物丝的周围有创造性地形成了反向的导电沟道(n导电沟道)。使用相同方法处理的由切克劳斯基法单晶硅(一种用于光电转换的极高级别的材料)制造的硅片的短路电流只有18.2155毫安/cm2
实施例4
从n导电硅可以获得pn-n型太阳能电池。n导电起始材料的磷掺杂为1016原子/cm3,并且,按照本发明,氧含量为3.2×1018原子/cm3,平均位错密度约为5×105cm-2。通过用铝扩散产生p掺杂的发射极,并且通过磷扩散在后表面产生后表面场(BSM)。后表面触点例如由层系统构成,这个层系统包括0.2微米Ti、0.02微米Pd、2微米Ag,前表面栅极是通过施加Al层产生的。富氧程度极大的起始材料按照本发明的使用产生了在基极中被钝化的晶体缺陷,所以这些缺陷对于材料的扩散长度的短路没有贡献,或者说几乎没有贡献。
作为一种替换,发射极例如还可以通过用硼扩散产生。

Claims (15)

1.一种硅,其特征在于,它的总氧含量为8×1017原子/cm3到1×1019原子/cm3,位错密度为1×105cm-2到5×107cm-2
2.权利要求1的硅,其特征在于,其中包含的至少25%的氧呈硅/氧沉积物形式。
3.权利要求1-2中至少之一所述的硅,其特征在于,硅/氧沉积物集中在颗粒边界和位错区。
4.权利要求1-3中至少之一所述的硅,其特征在于,硅是p-掺杂的。
5.权利要求1-3中至少之一所述的硅,其特征在于,硅是n-掺杂的。
6.一种生产硅的方法,所说的硅的总氧含量为8×1017原子/cm3到1×1019原子/cm3,位错密度为1×105cm-2到5×107cm-2,其特征在于,与硅的单氧化物和/或硅的二氧化物接触的熔化的硅可以变为基本上氧饱和,和/或在结晶之前或在结晶期间用含氧气体处理熔化的硅,其特征还在于,借助于硅的冷却速率设定位错密度。
7.一种生产硅的方法,所说的硅的总氧含量为8×1017原子/cm3到1×1019原子/cm3,位错密度为1×105cm-2到5×107cm-2,其中包含的至少25%的氧呈硅/氧沉积物形式,硅/氧沉积物集中在颗粒边界和位错区,其特征在于,与硅的单氧化物和/或硅的二氧化物接触的熔化的硅可以变为基本上氧饱和,和/或在结晶之前或在结晶期间用含氧气体处理熔化的硅,其特征还在于,借助于硅的冷却速率设定位错密度,其特征还在于,通过硅的热处理实现由硅/氧沉积物构成的总氧含量比例和其在颗粒边界及位错处的浓度。
8.权利要求7的方法,其特征在于,在温度为500℃-1250℃下,加热硅1分钟到10个小时,在所示的这个范围内,温度可以保持不变,或者温度可以变化,但这个温度必须超过950℃至少1分钟。
9.权利要求7或8的方法,其特征在于,在温度为800℃到1150℃下,加热硅1分钟到10个小时,在所示的这个范围内,温度可以保持不变,或者温度可以变化,但这个温度必须超过950℃至少1分钟。
10.权利要求7-9中至少之一所述的硅,其特征在于,硅是使用拉膜方法或铸膜方法产生的。
11.权利要求7-10中至少之一所述的硅,其特征在于,硅是使用RGS方法产生的。
12.按照权利要求1-5之一所述的硅在光电转换中的应用。
13.包含权利要求1-5之一所述的硅的太阳能电池。
14.一种np型太阳能电池,其特征在于,它们包含按权利要求4所述的p掺杂硅。
15.一种pn型太阳能电池,其特征在于,它们包含按权利要求5所述的n掺杂硅。
CN00118627A 1999-06-17 2000-06-16 具有结构氧掺杂的硅及其生产方法和用途 Pending CN1278565A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19927604.8 1999-06-17
DE19927604A DE19927604A1 (de) 1999-06-17 1999-06-17 Silicium mit strukturierter Sauerstoffdotierung, dessen Herstellung und Verwendung

Publications (1)

Publication Number Publication Date
CN1278565A true CN1278565A (zh) 2001-01-03

Family

ID=7911521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00118627A Pending CN1278565A (zh) 1999-06-17 2000-06-16 具有结构氧掺杂的硅及其生产方法和用途

Country Status (11)

Country Link
US (1) US6294726B1 (zh)
EP (1) EP1061160A1 (zh)
JP (1) JP2001048518A (zh)
KR (1) KR20010066850A (zh)
CN (1) CN1278565A (zh)
AU (1) AU3937500A (zh)
CA (1) CA2311618A1 (zh)
DE (1) DE19927604A1 (zh)
IL (1) IL136758A0 (zh)
NO (1) NO20003125L (zh)
NZ (1) NZ505167A (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057351A (ja) 2000-08-15 2002-02-22 Shin Etsu Handotai Co Ltd 太陽電池セルの製造方法および太陽電池セル
US6632413B2 (en) 2000-08-21 2003-10-14 Astropower, Inc. Method for purifying silicon
JP3855082B2 (ja) 2002-10-07 2006-12-06 国立大学法人東京農工大学 多結晶シリコンの作製方法、多結晶シリコン、及び太陽電池
NO322246B1 (no) * 2004-12-27 2006-09-04 Elkem Solar As Fremgangsmate for fremstilling av rettet storknede silisiumingots
WO2006093099A1 (ja) * 2005-02-28 2006-09-08 Kyocera Corporation 多結晶シリコン基板、多結晶シリコンインゴット及びそれらの製造方法、光電変換素子、並びに光電変換モジュール
WO2006101200A1 (ja) * 2005-03-24 2006-09-28 Kyocera Corporation 光電変換素子とその製造方法、及びこれを用いた光電変換モジュール
US7771623B2 (en) * 2005-06-07 2010-08-10 E.I. du Pont de Nemours and Company Dupont (UK) Limited Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
US7824579B2 (en) 2005-06-07 2010-11-02 E. I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
US7718092B2 (en) * 2005-10-11 2010-05-18 E.I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
TW200818327A (en) * 2006-09-29 2008-04-16 Sumco Techxiv Corp Silicon wafer heat treatment method
US7880204B2 (en) * 2006-10-02 2011-02-01 Massachusetts Institute Of Technology System and method for providing a high frequency response silicon photodetector
US8968467B2 (en) 2007-06-27 2015-03-03 Silicor Materials Inc. Method and system for controlling resistivity in ingots made of compensated feedstock silicon
AT505168B1 (de) * 2007-06-29 2008-11-15 Span Gerhard Dipl Ing Dr Thermoelektrisches element
US8153456B2 (en) * 2010-01-20 2012-04-10 Varian Semiconductor Equipment Associates, Inc. Bifacial solar cell using ion implantation
DE102010001094A1 (de) * 2010-01-21 2011-07-28 Evonik Degussa GmbH, 45128 Verfahren zur Entkohlung einer Siliciumschmelze
WO2015167826A1 (en) * 2014-04-30 2015-11-05 1366 Technologies, Inc. Methods and apparati for making thin semi-conductor wafers with locally controlled regions that are relatively thicker than other regions and such wafers
JP5938113B1 (ja) * 2015-01-05 2016-06-22 信越化学工業株式会社 太陽電池用基板の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8102102A (nl) * 1981-04-29 1982-11-16 Philips Nv Werkwijze voor het optrekken van een siliciumstaaf en halfgeleiderinrichting vervaardigd uit de siliciumstaaf.
DE3419137A1 (de) 1984-05-23 1985-11-28 Bayer Ag, 5090 Leverkusen Verfahren und vorrichtung zur herstellung von halbleiterfolien
US5156978A (en) 1988-11-15 1992-10-20 Mobil Solar Energy Corporation Method of fabricating solar cells
US5106763A (en) * 1988-11-15 1992-04-21 Mobil Solar Energy Corporation Method of fabricating solar cells
DE4102484A1 (de) 1991-01-29 1992-07-30 Bayer Ag Verfahren zur herstellung von metallscheiben sowie die verwendung von siliciumscheiben
DE4105910A1 (de) 1991-02-26 1992-08-27 Bayer Ag Verfahren zur herstellung von metallfolien sowie deren verwendung
DE4323793A1 (de) * 1993-07-15 1995-01-19 Wacker Chemitronic Verfahren zur Herstellung von Stäben oder Blöcken aus beim Erstarren sich ausdehnendem Halbleitermaterial durch Kristallisieren einer aus Granulat erzeugten Schmelze sowie Vorrichtung zu seiner Durchführung

Also Published As

Publication number Publication date
NZ505167A (en) 2001-10-26
NO20003125D0 (no) 2000-06-16
DE19927604A1 (de) 2000-12-21
EP1061160A1 (de) 2000-12-20
KR20010066850A (ko) 2001-07-11
IL136758A0 (en) 2001-06-14
NO20003125L (no) 2000-12-18
CA2311618A1 (en) 2000-12-17
US6294726B1 (en) 2001-09-25
AU3937500A (en) 2000-12-21
JP2001048518A (ja) 2001-02-20

Similar Documents

Publication Publication Date Title
CN1278565A (zh) 具有结构氧掺杂的硅及其生产方法和用途
CN1260830C (zh) 一种与半导体形成欧姆接触的方法
US6429035B2 (en) Method of growing silicon crystal in liquid phase and method of producing solar cell
EP1403931A2 (en) Method for growing a silicon film, method for manufacturing a solar cell, semiconductor substrate, and solar cell
US6387780B1 (en) Fabrication process of solar cell
US20060252235A1 (en) Fabrication method for crystalline semiconductor films on foreign substrates
US6830740B2 (en) Method for producing solar cell and solar cell
US20060194417A1 (en) Polycrystalline sillicon substrate
Li et al. Research of annealing and boron doping on SiO x/p+-Poly-Si hole-selective passivated contact
JP2004296598A (ja) 太陽電池
US4709466A (en) Process for fabricating thin film photovoltaic solar cells
US7175706B2 (en) Process of producing multicrystalline silicon substrate and solar cell
Lachiq et al. Simultaneous dopant diffusion and surface passivation in a single rapid thermal cycle
Li et al. Initiatively embedding silver colloids in glass used in silver paste to improve metallization ohmic contact on silicon wafers
Ulyashin et al. Ge composition dependence of the minority carrier lifetime in monocrystalline alloys of Si1− xGex
Sivoththaman et al. Rapid thermal processing of conventionally and electromagnetically cast 100 cm/sup 2/multicrystalline silicon
JP2794092B2 (ja) シリコン基体の製造方法
d'Aragona et al. Effect of impurity gettering on the efficiency of metallurgical-grade silicon solar cells
Wang et al. Liquid phase epitaxy for thin‐layer silicon PV devices
JP2002299669A (ja) 多結晶太陽電池及び多結晶太陽電池の製造方法
Stocks et al. Processing dependence of minority carrier lifetimes in multicrystalline silicon
Silva et al. SPRAYED PHOSPHORIC ACID AS DOPANT SOURCE FOR N-TYPE SILICON RIBBONS
Dhamrin et al. Fabrication and evaluation of gallium-doped multicrystalline silicon wafers and solar cells-a promising material for future photovoltaics
Wohlgemuth et al. Improved material quality via impurity and defect analysis for enhanced device performance. Collaborative work between Solarex and NREL
Hide et al. Influence of oxygen on polycrystalline silicon crystal for solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication