CN1273604C - 提高植物细胞转基因效率的方法 - Google Patents

提高植物细胞转基因效率的方法 Download PDF

Info

Publication number
CN1273604C
CN1273604C CNB008138176A CN00813817A CN1273604C CN 1273604 C CN1273604 C CN 1273604C CN B008138176 A CNB008138176 A CN B008138176A CN 00813817 A CN00813817 A CN 00813817A CN 1273604 C CN1273604 C CN 1273604C
Authority
CN
China
Prior art keywords
plant
cell
agrobacterium
gene
described method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB008138176A
Other languages
English (en)
Other versions
CN1377421A (zh
Inventor
樋江井佑弘
笠冈启介
石田佑二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Publication of CN1377421A publication Critical patent/CN1377421A/zh
Application granted granted Critical
Publication of CN1273604C publication Critical patent/CN1273604C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8206Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

公开一种提高植物细胞转基因效率的方法,该方法比从前的农杆菌法容易进行转基因且效率高并对细胞组织没有伤害。在本发明方法中,通过农杆菌属细菌转基因的同时经过对植物细胞或植物组织的离心处理,可提高植物细胞转基因效率。

Description

提高植物细胞转基因效率的方法
                        技术领域
本发明涉及提高植物细胞转基因效率的方法。
                        技术背景
农杆菌转基因法所具有的优点是,转基因效率高,基因拷贝数少,而且不会使T-DNA特定区域片断化,由于它经过短时间的培养能获得变异小的转导体。故此,农杆菌转基因法被广泛应用于各种植物,它是植物转基因的最有效方法。
虽然农杆菌法是非常好的植物转基因方法,但是实际上这种转基因是否成功以及转导效率如何均依赖于植物的种类、基因型以及所使用的植物组织,由于这些要素的原因它们会产生很大的差异(Potrykus etal.1998(参考文献(36)))。也就是说,除了有的植物在转基因中没有成功外,还有很多植物仅有极少部分的品种可以转导。有的植物其可利用的组织非常有限不能大量地用作植物材料。通过基因重组培育更为实用的品种,在培育很多转基因植物之后,必需筛选能够进行转基因的系统。然而,容易得到转导体的作物其种类还是有限。因此,现在亟需开发能够解决上述问题的改进技术方案。
农杆菌介导的转基因法尽管由于植物种类不同所提供的实验材料和培养基的组成等有差异,但是在下面所述的操作中几乎完全一样,即将植物组织加入农杆菌悬浮液中,经共培养后,筛选转基因的细胞,培育转基因植物。对于植物组织来说,通常根据需要进行无菌处理,使农杆菌感染植物,除此之外不做特别处理(Rogers et al.1988(参考文献(37))、Visser1991(参考文献(41))、McCormick 1991(参考文献(31))),Lindsey et al.1991(参考文献(30)))。从而,以农杆菌的菌系、载体类型、培养基组成、选择性标记基因和启动类型以及组织材料的种类为中心开展了转基因系统的改良研究。
对此,基于这样一种考虑,在没有接种农杆菌之前使植物组织处于易进行转基因的生理状态,但是这项研究还没有人做。通过一种处理方式如果能改变其生理状态其利用价值是非常可观的,除了提高转基因效率外,还能够将以前很难实施的植物种类和基因类型经过转基因而获得显著的效果。关于对植物细胞进行预处理的研究,如粒子枪法(Bidney et al.,1992(参考文献(6)))及超声处理(Trick N.H.et al.,1997(参考文献(40)))。这种预处理的目的是为了通过物理性损伤植物组织使细菌进入组织细胞内,来增加植物细胞感染的数量。但是这种方法只不过比从前广泛使用的盘片法(Horsch et al.,1985(参考文献(19))向前发展了一步,它并不是改进的新方法。另外该方法的效果和推广性至今还不清楚,它不能作为一般的方法来使用。
                        发明内容
因此,基于上述的技术背景,本发明所要解决的技术问题是:提供一种提高植物细胞转基因效率的方法,该方法比从前的农杆菌法的转基因效率高并对组织没有伤害又很容易转导基因。
本发明人经过刻苦钻研终于完成了本发明任务,即在使用农杆菌属细菌转基因的方面,通过对用于转基因的植物细胞或植物组织进行热处理及离心处理,可以有效地提高转基因的效率。
也就是说,本发明提供一种通过热处理及离心处理植物细胞或植物组织来提高农杆菌属细菌介导的植物细胞转基因效率的方法。
本发明提供的提高植物细胞转基因效率的方法,要比从前农杆菌法的转基因效率高并对组织没有伤害又可简单转导基因。本发明方法既适用于单子叶植物又适用于双子叶植物。另外,如矮草植物,用从前的农杆菌法是不能进行转基因的,但是通过使用本发明方法却能够进行转基因。
                        附图说明
图1表示本发明方法中优选使用的超二元载体pTOK233的构建方法。
图2表示本发明方法中优选使用的超二元载体pNB131的基因图。
图3表示农杆菌属细菌中2种主要载体系统即中间载体系统和二元载体系统的构建过程的模式图。
图4表示来源于农杆菌强病原性菌系A281的2种二元载体系统的模式图。
另外,在上述各图中,其符号意义表示如下:
BL          农杆菌属细菌T-DNA的左侧基本序列
BR          农杆菌属细菌T-DNA的右侧基本序列
TC          抗四环素药性基因
SP          抗大观霉素药性基因
IG          内含子GUS基因
HPT         抗潮霉素药性基因
NPI         抗卡那霉素药性基因
K           限制酶Kpn I位点
H           限制酶Hind III位点
Ampr       抗氨苄青霉素药性基因
BAR         bar基因
COS,cos    λ噬菌体COS位点
ORI,ori    CoIE1复制起始点
P35S        CaMV 35S启动子
Tnos        胭脂碱合酶基因的终止子
virB       存在于根癌农杆菌A281上的Ti质粒pTiBo542致毒区中的virB基因
virC       存在于根癌农杆菌A281上的Ti质粒pTiBo542致毒区中的virC基因
virG       存在于根癌农杆菌A281上的Ti质粒pTiBo542致毒区中的virG基因
Vir        农杆菌属细菌Ti质粒的完整vir区域
S Vir      强病原性农杆菌属细菌Ti质粒pTiBo542的完整vir区域
s vir*    Ti质粒pTiBo542vir区域的部分片断
                 本发明的具体实施方式
本发明方法在使用农杆菌属细菌介导的同时还对转基因的植物细胞或植物组织进行热处理及离心处理。植物细胞或植物组织经加热及离心处理后,在常温及通常的重力下可与农杆菌属细菌接触,也可以边加热和/或离心处理边与农杆菌属细菌接触。当在与农杆菌属细菌接触之前进行加热及离心处理时,上述所说的处理可以同时进行也可以先进行一种处理然后在进行另一种处理。
根据植物种类的不同和热处理细胞或组织的数量,可适当地选择热处理条件,但通常选择的热处理温度为30℃-60℃,优选33℃-55℃,更优选37℃-52℃。热处理时间可根据热处理温度、植物种类以及热处理细胞或组织的种类等可适当地选择,但通常为5秒钟-24小时。热处理时间的选择应考虑,当热处理温度高时,所需时间极短,例如即使热处理温度在60℃的情况下,5秒钟也可以提高转基因的效率。当热处理温度在34℃的情况下,数十个小时热处理也能提高转基因的效率。在大多数情况下,特别优选热处理温度为37℃-52℃,时间为1分-24小时,对植物细胞或植物组织来说适宜的热处理条件可以根据常规的实验进行设计。另外,植物细胞或植物组织在超过55℃以上并长时间处理时,植物细胞受到损害有时会降低转基因效率,因此,热处理温度超过55℃以上时,要短时间地处理植物,例如,不超过3分钟,优选不超过1分钟,以使植物不受损伤。
根据植物种类的不同,选择不同离心条件,但通常离心速度的范围为100G-25万G,优选500G-20万G,更优选1000G-15万G。离心处理时间可根据离心速度及植物种类等适当地选择,但通常优选1秒钟以上。虽然没有离心的上限,但是通常以10分钟左右为宜。离心处理时间的选择应考虑,当加大离心速度时,所需时间极短,例如即使在1秒钟以下也可以提高转基因的效率。当减小离心速度时,通过延长离心时间也可以有效地提高转基因效率。在大多数情况下,特别优选离心条件为500G-20万G,更优选1000G-15万G,时间为1秒钟-2小时,对植物细胞或植物组织来说适宜的离心条件可以根据常规的实验进行设计。
本发明方法的特征为,使与农杆菌属细菌接触的植物细胞或植物组织作为热处理及离心处理的材料,或者边加热和/或离心处理边与农杆菌属细菌接触,通过使用常规方法可以介导农杆菌属细菌进行转基因或其原有转基因方法也是适用的。
在本领域通常广泛使用农杆菌属细菌介导植物的转基因或原有的转基因法。
自古以来,人们已知根癌农杆菌在很多双子叶植物中引起冠瘿病(crown gall disease),在七十年代,发现Ti质粒与病原性有关,发现Ti质粒中的一段致瘤基因T-DNA被整合至植物的染色体上。还得知在T-DNA上有诱发肿瘤所必需的与激素(细胞因子和植物生长激素)合成相关的基因,同时在植物中还发现了细菌基因。T-DNA的切除与对转导的植物都需要Ti质粒上致毒区域(vir区域)的基因群,由于T-DNA被切除而T-DNA两端上还需要基本序列。其它农杆菌属细菌发根植物单胞菌的Ri质粒上也有同样的系统(图3和图4)。
T-DNA通过农杆菌介导可以整合到植物染色体上,因此希望在T-DNA上插入所要的基因也能被整合到植物染色体上。但是Ti质粒是一个很大的分子,其分子量超过190kb以上,所以用标准的基因工程学技术很难将基因插入到质粒T-DNA上。由此,本发明人开发了一种将外源基因插入T-DNA上的方法。
首先,从肿瘤Ti质粒T-DNA中切除并制备激素合成基因的disarm型菌系LBA4404(Hoekema et al.,1983(参考文献(14)))、C58C1(pGV3850)(Zambryski et al.,1983(参考文献(44)))、GV3Ti11SE(Fraley etal.,1985(参考文献(10))等(图3)。在这个菌系里开发了2种转基因体系,它包括将所要的基因导入农杆菌Ti质粒T-DNA中,或者将具有所要基因的T-DNA导入农杆菌。其中一个基因操作方法很容易地把所要的基因插入目的对象中,用大肠杆菌将可以复制的中间载体通过三亲杂交法(triparental mating)(Ditta et al.,1980(参考文献(9)))的同源重组导入至农杆菌disarm型Ti质粒的T-DNA区域,把这中间载体称其为中间载体法(Fraley et al.,1985(参考文献(10));Fraley et al.,1983(参考文献(11));Zambryski et al.,1983(参考文献(44))、特开昭59-140885号(EP116718)))。另一个基因操作方法是基于被称为二元载体法(binaryvector)(图3),T-DNA整合至植物需要vir区域,但是由于它们的功能相同无须在同一质粒上(Hoekema et al.,1983(参考文献(14)))。在这个vir区域上有virA、virB、virC、virD、virE及virG(植物生物技术事典(エンタプライズ株式会社出版1989)),所说vir区域是指该区域包括全部的virA、virB、virC、virD、virE及virG。因此,二元载体把T-DNA整合至农杆菌和大肠杆菌里可复制的很小的质粒上,再把它导入农杆菌disarm型Ti质粒上。所述将二元载体导入至农杆菌可利用电穿孔法和三亲杂交法。二元载体包括:pBIN19(Bevan,1984(参考文献(5))),pBI121(Jefferson,1987(参考文献(21))),pGA482(An et al.,1988(参考文献(2)),特开昭60-70080号(EP120516))等,再以这些二元载体为基础构建了很多新的二元载体,并用于转基因植物。在Ri质粒系统中用同样的载体也构建了转导体系。
农杆菌A281(Watson et al.,1975(参考文献(42)))是超烈性病原性菌系(super-virulent),其宿主范围很广,转基因效率也高于其它菌系(Hood et al.,1987(参考文献(15));Komari,1989(参考文献(23)))。这种特性是由A281Ti质粒的pTiBo542表现出来的(Hood et al.,1984(参考文献(18);Jin et al.,1987(参考文献(22);Komari et al.,1986(参考文献(26)))。
迄今为止,用pTiBo542已开发了2个新系统。一个系统是使用具有pTiBo542这种disarm型Ti质粒的菌系EHA101(Hood et al.,1986(参考文献(17))及EHA105(Hood et al.,1993(参考文献(16)),把该菌系应用于上述二元载体系统,由此,可使转导能力强的体系进行各种植物的转基因。另一个体系是超二元载体(‘super-binary’vector)(Hiei et al.,1994(参考文献(13));Ishida et al.,1996(参考文献(20));Komariet al.,1999(参考文献(28));WO94/00977号、WO95/06722号)(图4)。该体系由两种质粒构成,其中选择一种作为超二元载体系统:两种质粒构成包括vir区域(virA、virB、virC、virD、virE及virG(以下分别将它们称作“片断区域”))disarm型Ti质粒及T-DNA质粒。其中不同的是使用了包含T-DNA的质粒,即在二元载体vir片断区域中,至少有一个vir片断区域被除掉,把含有被除掉得vir区域的片断(其中至少优选包含virB或virG的片断,更优选包含virB和virG的片断)整合至超二元载体(Komari.1990a(参考文献(22))上。它们可通过三亲杂交法的同源重组(Komari etal,.1996(参考文献(27))把已经整合上的所要基因T-DNA导入超二元载体农杆菌上。现已弄清这个超二元载体系统与上述的其他各种载体系统相比在很多植物种类中具有高效的转基因效率(Hiei et al.,1994(参考文献(13));Ishida et al.,1996(参考文献(20));Komari.1990b(参考文献(25));Li et al.,1996(参考文献(29));Saito et al.,1992(参考文献(38)))。
在本发明方法中虽然不对农杆菌属细菌的宿主作特殊的限定,但优选使用根癌农杆菌(如,上述的根癌农杆菌LBA4404(Hoekema et al.,1983(参考文献(14)))及EHA101(Hood et al.,1986参考文献(17)))。
根据本发明,如果是基于农杆菌属细菌病原性(vir)区域基因群表达的转基因体系,则可以获得明显的转基因效果。因此,对于上述任何载体系统中的中间载体、二元载体、超烈性病原性二元载体、超二元载体等均适用于本发明,并且能够达到本发明的效果。改变这些载体类型,使用不同的载体系统也会得到同样的效果(如,把农杆菌属细菌vir区域的一部分或全部切除,附加整合至质粒中,vir区域的部分或全部被切除后可以作为新的质粒被导入农杆菌里)。当然根据本发明可以提高野生型农杆菌属细菌中的野生型T-NDA区域的植物转基因效率,换句话说就是提高感染的效率。
将所要基因转移给植物,可以通过常规的方法整合至所述质粒T-DNA区域的限制酶位点上,或者在该质粒上,同时通过基于适当的选择性标记可以筛选出已经整合有抗卡那霉素、巴龙霉素等抗药性的基因等,所述药物为它用。大型的且具有很多限制位点的基因有时用常规的亚克隆方法未必能把所要的转基因至T-DNA质粒上。在这种情况下,通过三亲杂交法就可在农杆菌属细菌细胞内进行同源重组而达到导入DNA的目的。
把质粒导入根癌农杆菌等农杆菌属细菌可以依据已有的方法进行,其方法包括:所述的三亲杂交法和电穿孔法、电子注射法、PEG法等化学方法。
即将导入植物的基因与现有方法相同,基本上使基因处于T-DNA左右序列交接之间。但是由于质粒是环状的,所以交接序列数目可以为1个也可以为3个以上,当把多个基因排列在不同位置上时交接序列为3个以上。在农杆菌属细菌中可以把基因排列在Ti或Ri质粒上,也可以排列在其它的质粒上。同时也可以排列在多种质粒上。
利用农杆菌属细菌进行转基因的方法可以使植物细胞或植物组织单独与农杆菌属细菌接触。例如制备农杆菌属细菌悬浮液,其浓度为106-1011细胞/ml,把植物细胞或植物组织浸于该悬浮液中3-10分钟左右,然后,在固体培养基上共培养数日。
对供于转基因的细胞或组织不作任何限定,它们可以是叶、根、茎及其它的部位,也可以是如愈伤组织一样分化的或未分化的胚等。植物种类也不作限定但优选被子植物,而被子植物即可以是双子十植物也可以是单子叶植物。
如下面将要叙述的实施例所示,本发明的方法与从前的农杆菌法相比其转基因效率明显得到提高。现在不仅是按照农杆菌法进行转基因,而且本发明首次实现了由于从前的农杆菌法不能进行转基因的植物,转变为能够进行转基因植物。因此,本发明所说的[提高转基因效率]其含义包括使用从前的方法不能进行转基因而如今也能够进行转基因了(也就是说,将过去0%的转基因效率提高了)。
                           实施例
下面,根据实施例详细地说明本发明,但本发明却不能限定后面将要叙述的实施例。
实施例1
(1)试验组织及试验菌系
以日本水稻品种「晨之光」作为实验材料,并使用其未成熟胚。开花后1-2周内采集未成熟胚的种子并按照(Hiei,Y.et al.,1994(参考文献(13))的方法制备。也就是说,开花第7-12天后除去未成熟种子的颖,用70%乙醇固定30秒,用1%次氯酸钠溶液进行10分钟的无菌处理,然后取出未成熟的胚以供试验。来源于未成熟胚的愈伤组织是通过把未成熟胚接种在含有4g/l的Gelrite 2N6培养基(Hiei et al.(1994)(参考文献(13))、N6的无机盐以及维生素类(Chu C.C.1978(参考文献(8))、1g/l的酪蛋白氨基酸、2mg/l的2,4-D))上进行2周培养而获得。
LBA4404(pIG121Hm)(Hiei,Y.et al.,1994(参考文献(13)))、LBA4404(pNB131)(参照图2)、LBA4404(pTOK233)(Hiei,Y.et al.,1994(参考文献(13)))作为农杆菌的菌系及其质粒载体。
如下构建pNB131。把pSB31(Ishida Y,1996(参考文献(20)))导入大肠杆菌LE392细胞系,然后按照三亲杂交法(Ditta G,1980(参考文献(9)))再导入包含pNB1(Komari,T.et al.,1996(参考文献(27)))的农杆菌LBA4404细胞系。在农杆菌内进行pNB1和pSB31间的同源重组获得pNB131。
在pIG121Hm的T-DNA区域上的基因有,由胭脂碱合酶基因(nos)的启动子调控的抗卡那霉素药性基因(npt II)和由花椰菜花叶病毒(CaMV)的35s启动子调控的抗潮霉素药性(hpt)基因、由35s启动子调控并通过蓖麻过氧化氢酶基因内含子介导的GUS基因(Ohta S et al.,1990(参考文献(33))。
在pNB131的T-DNA区域上的基因有,由35s启动子调控的bar基因、由35s启动子调控并通过内含子介导的GUS基因(如上述)。
在pTOK233的T-DNA区域上的基因有,由nos启动子调控的npt II基因、由35s启动子调控的hpt基因、由35s启动子调控并通过内含子介导的GUS基因(如上述)。pTOK233是一种转基因能力很强的超二元载体(Komari,T.et al.,1999(参考文献(28)))。
(2)热处理
将5-200mg的供试组织浸于装有2ml无菌溶液离心管内。在设有各种温度的水槽里将离心管浸润热处理数秒至数小时,热处理之后,再用自来水冷却离心管。
(3)离心处理
将供试组织浸于装有无菌水的离心用离心管里,在25℃条件下,200,000G离心处理1分至60分。
(4)接种与共培养
热处理或离心处理,或者将两者结合起来处理,再除去离心管内的无菌水溶液,加入农杆菌悬浮液,用涡流搅拌机搅拌5-30秒。农杆菌悬浮液的制备按照Hiei Y.et al.(参考文献(13))描述的方法。也就是说,在AB培养基(Chilton,M-D et al.,1974(参考文献(7)))上培养农杆菌3-10天,用铂片记录农杆菌的菌落,并悬浮于AA调整培养基(AA主要无机盐类、AA氨基酸及AA维生素类(Toriyama K.et al.,1985((参考文献(39))、MS微量盐(Murashige,T et al.,1962(参考文献(32))、1.0g/l酪蛋白氨基酸、100μM乙酰丁香酮、0.2M蔗糖、0.2M葡萄糖)来制备农杆菌悬浮液。悬浮液中的细菌密度调整为约0.3-1×109cfu/ml。室温下静置约5分钟,在共培养的培养基上接种。所述共培养基使用了以8g/l琼脂糖作为固化剂的2N6-AS培养基(Hiei et al.(1994)(参考文献(13)))。25℃避光共培养3-7天,对于部分未成熟胚用X-Gluc处理来研究GUS的表达(Hiei et al.(1994)(参考文献(13))。即共培养处理后,把组织浸入含有0.1%的Triton X-100的0.1M磷酸缓冲液(pH6.8),在37℃下静置1小时。用磷酸缓冲液除去农杆菌后,加入1.0mM 5-溴-4氯-3-吲哚-β-D-葡糖醛酸(X-gluc)及含有20%甲醇的磷酸缓冲液。在37℃下静置24个小时。用显微镜观察被染成蓝色的细胞组织。
(5)转基因细胞的筛选(日本水稻)
经过共培养后,把未成熟胚的盘片用解剖刀切割4-7块,然后用不含选择性药物的2N6培养基(如上述)在30℃光照条件下培养数日。再转移至含有50-100mg/l潮霉素的2N6培养基里,在30℃光照条件下培养约2-3周。在含有选择性药物phosphinothricin(PPT)10mg/l的培养基里,又使用了CC培养基(Potrykus et al.1979(参考文献(34)))该培养基不含椰子水而含有2mg/l的2.4-D。把在培养基上形成的抗药性愈伤组织分别转移至含有相同浓度的选择性药物N6-7培养基(Hiei et al.(1994)(参考文献(13)))上,30℃光照7天,再筛选2次。每个培养基里各添加250mg/l头孢噻肟和250mg/l羧苄青霉素钠组合的选择性药物,或者单独添加250mg/l头孢噻肟。培养基固化剂使用Gelrite(4g/l)。培养基上得到增殖的抗药性愈伤组织用X-Gluc处理,按照上述方法分析GUS基因的表达。
(6)结果
通过将热处理和离心处理结合起来使用以及单独处理未成熟胚时与LBA4404(pIG121Hm)及LBA4404(pNB131)共培养并将共培养后的GUS基因瞬时表达于表1及表2所示。当比较未处理区进行热处理或离心处理时,盘片中的GUS表达区域明显扩大,以较高的频率进行转基因。另外通过热处理和离心处理使转基因的频率更高。
把未成熟水稻胚和农杆菌共培养之后,在含有选择性药物的培养基上培养得到转基因愈伤组织,对其愈伤组织的筛选结果如表-3、表4和表5所示。通过热处理或离心处理不管在哪一个试验里所得到的具有抗药性并同时又能表达GUS的转基因愈伤组织,其转导效率明显地提高。由于把热处理和离心处理结合起来使用使转基因的效率明显高于它们各自单独使用时的效率(表3、4、5)。如上所述,通过把热处理和离心处理结合起来用于未成熟水稻胚,使水稻胚转基因的效率明显高于它们各自单独使用时的转导效率。
另外,当由于品种的差异等单独进行离心处理而转基因效率很低时,通过合用热处理和离心处理而会使转基因效率明显提高,并确认其效果要比单独热处理区频率高。离心处理时离心机的温度设为40℃左右还可以同时进行离心处理和热处理,并确认这样处理与上述的组合处理效果是一样的。
Hiei et al.(1994(参考文献(13)))曾报道以水稻愈伤组织为材料可以进行较高效率的转基因技术。Aldimita RR et al.1996(参考文献(1))报导了未成熟水稻胚的转基因的例子。为了更有效稳定地实施这些转基因技术,上面阐述的组合处理法是非常有效的。尤其是未成熟胚易受栽培环境的影响不宜得到适于转基因的未成熟胚,通过上述组合处理可以维持稳定高效的转基因效率。Hiei et al.(1994(参考文献(13)))提供了转基因效率非常高的载体即超二元载体可以使水稻的转基因效率提高。根据Aldimita RR.et al.1996(参考文献(1))的报导,仅在试验阶段里使用超二元载体LBA4404(pTOK233)得到转导体。在本研究的组合处理法中,即使使用一般的二元载体它也可与超二元载体妣美,并达到高于报道的转基因效率。通过把超二元载体和组合处理法结合起来使用可以进一步提高转基因效率。我们预测通过这种组合处理法在迄今为止无法得到的转导体品系里也能够获得转导体。
表1经过热处理和离心处理在未成熟胚其盘片中的GUS基因瞬时表达(品种名:「晨之光」)
  处理温度(处理时间)   离心速度(处理时间)   未成熟胚数                                     未成熟胚数
                      在胚盘片表面上GUS所占的比率(%)
  0   0-1   1-10   10-20   20-50   50-80   80-100
  -   -   20   3   8   8   1   0   0   0
  46℃(5分)   -   20   1   6   7   4   2   0   0
- 20,00G(30分) 20 0 1 4 7 7 1 0
  46℃(5分)   20,00G(30分)   20   0   0   0   2   9   8   1
供试菌系:LBA4404(pIG121Hm),共培养时间:5天
表2经过热处理和离心处理在未成熟胚盘片中的GUS基因瞬时表达(品种名:「晨之光」)
  处理温度(处理时间)   离心速度(处理时间)   未成熟胚数                                     未成熟胚数
                         在盘片表面上的GUS表达区域的比率(%)
  0   0-1   1-10   10-20   20-50   50-80   80-100
  -   -   20   3   13   4   0   0   0   0
  46℃(5分)   -   20   0   0   10   7   3   0   0
  -   20,000G(30分)   20   0   0   3   9   8   0   0
  46℃(5分)   20,000G(30分)   20   0   0   0   3   14   3   0
供试菌系:LBA4404(pNB131),共培养时间:6天
表3对未成熟胚的热处理和离心处理以及筛选愈伤组织转基因的效率(品种名:「晨之光」)
  处理温度(处理时间)   离心速度(处理时间)   未成熟胚切片数(A)   抗Hm药性的GUS+愈伤组织数(B)   B/A(%)
  -   -   50   6   12.0
  46℃(5分)   -   51   15   29.4
  -   20,000G(30分)   51   29   56.9
  46℃(5分)   20,000G(30分)   46   29   63.0
供试菌系:LBA4404(pIG121Hm),共培养时间:5天,Hm:100mg/l潮霉素
表4对未成熟胚的热处理和离心处理以及筛选愈伤组织转基因的效率(品种名:「晨之光」)
  处理温度(处理时间)   离心速度(处理时间)   未成熟胚切片数(A)   抗Hm药性的GUS+愈伤组织数(B)   B/A(%)
  -46℃(5分)--46℃(5分)   --20,000G(1分)20,000G(60分)20,000G(1分)20,000G(60分)   606060606060   7948485151   11.715.080.080.085.085.0
供试菌系:LBA4404(pIG121Hm),共培养时间:6天,Hm:100mg/l潮霉素
表5未成熟胚的热·离心处理和形质转换愈伤组织的选择效率(品种:朝之光)
  处理温度(处理时间)   离心速度(处理时间)   未成熟胚切片数(A)   抗Hm药性的GUS+愈伤组织数(B)   B/A(%)
  -46℃(5分)-46℃(5分)   --20,000G(30分)20,000G(30分)   62646060   18323941   29.052.565.068.3
供试菌系:LBA4404(pNB131),共培养时间:6天,PPT:100mg/lphosphinothricin
实施例2
将大小为1.2mm的未成熟玉米胚(A188品种,采自农林水产省生物资源研究所)进行无菌消毒,解剖取出,装入含有2m1的LS-inf液体培养基离心管中。用同样液体培养基洗涤1次。然后加2.0ml新的相同培养基。把离心管浸润在46℃的水槽里加热3分钟。用冷却分离机以20KG,4℃下离心处置30分钟。热处理与离心处理是在上述热处理之后再实施上述离心处理。对照组为室温下,静置相同时间。各种处理之后,除去培养基,加入已在含有100μM乙酰丁香酮的LS-inf培养基里(浓度约为1×109cfu/ml)悬浮根癌农杆菌LBA4404(pSB131)(Ishida et al.1996(参考文献(18)))的悬浮液1ml,并用漩涡搅拌机搅拌30秒。室温下静置5分钟后,接种至含有10μM AgNO3的LS-AS培养基上使胚轴面接触培养基。在黑暗处25℃下共培养3天,然后,取部分未成熟胚,用X-gluc分析GUS基因瞬时表达。pSB133是超二元载体。
经共培养后在含有phosphinothricin(PPT)及10μMAgNO3的培养基上培养,进行转基因细胞的筛选。在选择培养基上把使之增殖的愈伤组织接种在含有PPT的再分化培养基上,进行转基因植物的再分化。切取已经再分化了的植物叶子一部分,与实施例2相同用X-Gluc来分析GUS基因的表达情况。所述培养基及培养法按照Ishida,Y et al.1996(参考文献(20))描述的方法实施。
GUS基因的瞬时表达结果如表6所示,其为经过各种处理后把LBA4404(pSB131)接种在未成胚上。包括未处理对照组在内所有用于供试的未成胚中均观察到了GUS基因的表达。但是,其表达部位与对照组相比,热处理及热处理和离心处理组合起来的处理均观察到很强的基因表达。尤其是在组合处理方法里未成熟胚的盘片表面在很大的范围内观察到GUS基因表达的区域最大。
把LBA4404(pSB131)接种在未成胚上进行转基因其结果如表7所示。在没有热处理的对照组未成熟胚里得到的转基因植物为10.7%。相反,以20KG,4℃离心处理30分钟的未成熟胚其转基因效率为13.3%,比未处理的要高。而经过热处理的未成熟胚其转基因效率达到20%,为未处理的2倍。经过组合热处理和离心处理时转基因效率约为未处理的3倍为29.6%。
从以上结果来看,在材料接种之前进行热处理或离心处理与传统的方法相比其转基因效率提高,通过把两种处理结合起来使用其转基因效率便会大大提高。由此,可预示在传统农杆菌法里无法进行转基因的除了A188外还有玉米品系(Ishida,Y et al.1996(参考文献(20))经过把热处理和离心处理的结合能够得到转基因植物。
表6各种处理对转基因效率的影响(接种LBA4404(pSB131))
  处理   未成   GUS
  熟胚   +++   ++   +   -
  未处理热处理离心处理热处理与离心处理   991217   0105   3739   6193   0000
共培养后在未成熟胚中GUS基因瞬时表达的结果
表7各处理对基因转换效率的影响(导入LBA4404(pSB131))
  处理   未成熟胚   抗PPT药性的愈伤组织(%)   抗PPT药性的植物(%)   GUS+植物(%)
  未处理热处理离心处理热与离心共处理   28303027   9(32.1)18(60.0)14(46.6)23(85.2)   9(32.1)15(50.0)9(30.0)20(74.6)   3(10.7)6(20.0)4(13.3)8(29.6)
愈伤组织和植物数中均不包括克隆数。
实施例3
对完全成熟的种子[Agrostis palustris cv.Pencross(雪印种苗株式会社)]经过灭菌消毒后,接种于含有MS无机盐、MS维生素、4mg/l的dicamba、0.5mg/l的6BA、0.7g/l的脯氨酸、0.5g/l的MES、20g/l的蔗糖、3g/l的gelrite(pH5.8)的培养基(TG2培养基)上,25℃黑暗下培养。被诱导的愈伤组织在同样组成的培养基上继代培养,使胚性基因的愈伤组织扩大。把得到的胚性基因愈伤组织转移至不含gelrite的TG2液体培养基(TG2L)上,25℃黑暗下振荡培养,得到悬浮培养细胞。继续培养后第3-4天把悬浮培养细胞移入含有TG2L培养基的2ml离心管内,用同样培养基洗涤1次,然后加入新的培养基2ml。把离心管放入46℃水槽里5分钟。除去培养基添加新的相同培养基,之后,5,000rpm、4℃离心10分钟。对照组是在室温下同一时间内静置。除去培养基,加入已在含有100μM乙酰丁香酮TG2-inf的培养基(从TG2培养基中除去脯氨酸、MES、gelrite,添加48.46g/l的蔗糖、36.04g/l的葡萄糖(pH5.2)里(浓度约为1×109cfu/ml)悬浮根癌农杆菌LBA4404(pTOK233)(如上述)的悬浮液1ml,并用漩涡搅拌机搅拌30秒。室温下静置5分钟后,接种至在TG2L培养基里添加有10g/l的葡萄糖、10μM乙酰丁香酮、4g/l的I型琼脂糖(pH5.8)培养基(TG2-AS培养基)上。在黑暗处25℃下共培养3天,然后,用含有250mg/l头孢噻肟及250mg/l羧苄青霉素的TG2L培养基洗涤细胞3次。并悬浮于同一培养基上,25℃避光70rpm振荡培养。1周后在含有相同培养基里加入50mg/l的潮霉素培养基上继代培养,再继续培养1周,取部分细胞用X-gluc分析GUS基因的表达。
表8所示接种LBA4404(pTOK233)的悬浮培养矮草细胞中的GUS基因表达。对照细胞仅仅显示了1个细胞块的GUS基因表达。而经过热处理和离心处理的组里约有70%的细胞块显示了GUS基因表达。还有,有关GUS基因表达的部位对照组细胞块的部位要比热处理和离心处理的细胞块小。
迄今为止,所报道的矮草转基因植物主要依据粒子枪法(Zhong etal.,1993(参考文献(45))、Hartman et al.1994(参考文献(12))、Xiao,L.et al.,1997(参考文献(43))和电穿孔法(Asano Y.,1994(参考文献(3))、Asano Y.,1998(参考文献(4)))直接转基因法而实施的,根据农杆菌法进行的转基因植物还没有发现。正如本实施例所看到的,用传统方法转基因其效率很低的原因如果是因为使用农杆菌很难进行矮草转基因的话,本发明高频率的转基因通过热处理和离心处理的结合可以得到转基因植物。
表8热处理和离心处理对悬浮培养的矮草转基因细胞的影响
  处理             细胞块数
  总数   GUS+   GUS+(%)
  热处理和离心处理对照   79101   231   29.11.0
共培养2周后分析GUS基因的表达情况
参考文献:
(1)Aldemita RR,Hodges TK(1996)Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varietLes.Planta 199:612-617
(2)An,G.,Evert,P.R.,Mitra,A.and Ha,S.B.(1988)Binary vectors.In Gelvin,S.B.and Schilperoort,R.A.(eds.),Plant Molecular Biology Manual A3.Kluwer Academic Press,Dordrecht,pp.1-19.
(3)Asano,Y.,Ugaki,M.(1994)Transgenic plants of Agrostis alba obtained by electroporation-mediated direct gene transfer into protoplasts.Plant Cell Reports 13:243-246.
(4)Asano,Y.,Ito,Y.,Fukami,M.,Sugiura,K.,Fujiie,A.(1998)Herbicide-resistant transgenic creeping bentgrass plants obtained by electroporation using an altered buffer.Plant Cell Reports 17:963-967.
(5)Bevan,M.(1984)Binary Agrobacterium vectors for plant transformation.Nucleic Acids Res.,12,8711-8721.
(6)Bidney,D.,Scelonge,C.,Martich,J.,Burrus,M.,Sims,L.,and Huffmanm G.(1992)Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens.Plant Mol.Biol.,18.301-313.
(7)Chilton,M-D.,Currier,TC.Farrand,SK.Bendich,AJ.Gordon,MP.&Nester EW.(1974)Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumers.Proc.Natl.Acad.Sci.USA,71:3672-3676
(8)Chu,C.C.,(1978)Proc.Symp.Plant Tissue Culture,Science Press Peking,pp.43-50
(9)Ditta,G.,Stanfield,S.,Corbin,D.and Helinski,D.R.(1980)Broadhost range DNA cloning system for Gram-negative bacteria:Constructionof gene bank of Rhizobium meliloti.Proc.Natl.Acad.Sci.USA,77,7347-7351.
(10)Fraley,R.T.,Rogers,S.G.,Horsch,R.B.,Eicholtz,D.A.and Flick,J.S.(1985)The SEV system:a new disarmed Ti plasmid vector for planttransformation.Bio/technology,3,629-635.
(11)Fraley,R.T.,Rogers,S.G.,Horsch,R.B.,Sanders,P.R.,Flick,J.S.Adams,S.P.,Bittner,M.L.,Brand,L.A.,Fink,C.L.,Fry,J.S.,Galluppi,G.R.,Goldberg,S.B.,Hoffmann,N.L.and Woo,S.C.(1983)Expressionof bacterial genes in plant cells.Proc Natl Acad Sci USA,80,4803-4807.
(12)Hartman,C.L.,Lee,L.,Day,P.R.,Tumer,N.E.(1994)Herbicide resistant turfgrass(Agrostis palustris Huds.)by biolistic transformation.Biotechnology 12:919-923.
(13)Hiei,Y.,Ohta,S.,Komari,T.and Kumashiro,T.(1994)Efficient transformation of rice(Oryza sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.The Plant Journal,6,271-282.
(14)Hoekema,A.,Hirsch,P.R.,Hooykaas,P.J.J.and Schilperoort,R.A.(1983)A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid.Nature,303,179-180.
(15)Hood,E.E.,Fraley,R.T.and Chilton,M.-D.(1987)Virulence of Agrobacterium tumefaciens strain A281 on legumes.Plant Physiol,83,529-534.
(16)Hood,E.E.,Gelvin,S.B.,Melchers,L.S.and Hoekema,A.(1993)NewAgrobacterium helper plasmids for gene transfer to plants.Transgenic Res.,2,208-218.
(17)Hood,E.E.,Helmer,G.L.,Fraley,R.T.and Chilton,M.-D.(1986)The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA.J.Bacteriol.,168,1291-1301.
(18)Hood,E.E.,Jen,G.,Kayes,L.,Kramer,J.,Fraley,R.T.and Chilton.M.-D.(1984)Restriction endonuclease map of pTiBo542,a potential Ti-plasmid vector for genetic engineering of plants.Bio/technology,2.702-709.
(19)Horsch,R.B.,Fry,J.E.,Hoffmann,N.L.,Eichholtz,D.,Rpgers,S.G.and Fraley,R.T.(1985)A simple and general method for transferring genes into plants.Science 227,1229-1231.
(20)Ishida,Y.,Saito,H.,Ohta,S.,Hiei,Y.,Komari,T.and Kumashiro,T.(1996)High efficiency transformation of maize(Zea mays L.)mediated by Agrobacterium tumefaciens.Nature Biotechnol,14,745-750.
(21)Jefferson,R.A.(1987)Assaying chimeric genes in plants:the GUS gene fusion system.Plant Mol.Biol.Rep.,5,387-405.
(22)Jin,S.,Komari,T.,Gordon,M.P.and Nester,E.W.(1987)Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281.J.Bacteriol.,169,4417-4425.
(23)Komari,T.(1989)Transformation of callus cultures of nine plant species mediated by Agrobacterium.Plant Sci.,60,223-229.
(24)Komari,T.(1990a)Genetic characterization of double-flowered tobacco plant obtained in a transformation experiment.Theor.Appl.Genet.,80.167-171.
(25)Komari,T.(1990b)Transformation of cultured cells of Chenopodiumquinoa by binary vectors that carry a fragment of DNA from the virulenceregion of pTiBo542.Plant Cell Reports,9,303-306.
(26)Komari,T.,Halperin,W.and Nester,E.W.(1986)Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo542.J.Bacteriol.,166,88-94.
(27)Komari,T.,Hiei,Y.,Saito,Y.,Murai,N.and Kumashiro,T.(1996)Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers.Plant J,10,165-174.
(28)Komari,T.and Kubo,T.(1999)Methods of Genetic Transformation:Agrobacterium tumefaciens.In Vasil,I.K.(ed.),Molecular improvement ofcereal crops.Kluwer Academic Publishers,Dordrecht,pp.43-82.
(29)Li,H.-Q.,Sautter,C.,Potrykus,I.and Puonti-Kaerlas,J.(1996)Genetic transformation of cassava(Manihot esculenta Crantz).Nature Biotechnol.,14,736-740.
(30)Lindsey,K.,Gallois,P.and Eady,C.(1991)Regeneration and transformation of sugarbeet by Agrobacterium tumefaciens.Plant Tissue Culture Manual B7:1-13.Kluwer Academic Publishers.
(31)McCormick,S.(1991)Transformation of tomato with Agrobacterium tumefaciens.Plant Tissue Culture Manual B6:1-9.Kluwer Academic Publishers.
(32)Murashige,T.and Skoog,F.(1962)Physiol.Plant 15:473-497.
(33)Ohta,S.,Mita,S.,Hattor i,T.,Namamura,K.(1990)Construction and expression in tobacco of aβ-glucuronidase(GUS)reporter gene containing an intron within the coding sequence.Plant Cell Physiol.31:805-813.
(34)Potrykus I.,Harms,C.T.and Lorz,H.(1979)Callus formation fromcell culture protoplasts of corn(Zea mays L.).Theor.Appl.Genet.54:209-214.
(36)Potrykus,I.,Bilang,R.,Futterer,J.,Sautter,C.and Schrott,M.(1998)Agricultural Biotecnology,NY:Mercel Dekker Inc.pp.119-159.
(37)Rogers,S.G.,Horsch,R.B.and Fraley,R.T.(1988)Gene transfer in plants:Production of transformed plants using Ti plasmid vectors.Method for Plant Molecular Biology,CA:Academic Press Inc.pp.423-436.
(38)Saito,Y.,Komari,T.,Masuta,C.,Hayashi,Y.,Kumashiro,T.and Takanami,Y.(1992)Cucumber mosaic virus-tolerant transgenic tomato plants expressing a satellite RNA.Theor.Appl.Genet.,83,679-683.
(39)Toriyama,K.and Hinata,K.(1985)Plant Sci.41:179-183
(40)Trick,H.N.and Finer,J.J.(1997)SAAT:sonication-assisted Agrobacteriuim-mediated transformation.Transgenic Research 6:329-336.
(41)Visser,R.G.F.(1991)Regeneration and transformation of potato byAgrobacterium tumefaciens.Plant Tissue Culture Manual B5:1-9.Kluwer Academic Publishers.
(42)Watson,B.,Currier,T.C.,Gordon,M.P.,Chilton,M.-D.and Nester,E.W.(1975)Plasmi drequired for virulence of Agrobacterium tumefaciens.J Bacteriol,123,255-264.
(43)Xiao,L.,Ha,S.-B.(1997)Efficient selection and regeneration ofcreeping bentgrass transformants following particle bombardment.Plant Cell reports 16:874-878.
(44)Zambryski,P.,Joos,H.,Genetello,C.,Leemans,J.,Van Montagu,M.and Schell,J.(1983)Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity.EMBO J,2,2143-2150.
(45)Zhong,H.,Bolyard,M.G.,Srinivasan,C.,Sticklen,M.B.(1993)Transgenic plants of turfgrass(Agrostis palustris Huds.)from microprojectile bombardment of embryogenic callus.Plant Cell Reports 13:1-6.

Claims (17)

1.一种通过农杆菌属细菌介导的植物细胞转基因的方法,其中通过对植物细胞或植物组织进行热处理和离心处理,可提高植物细胞转基因的效率,所述热处理是在37℃-52℃的温度范围内进行1分钟-24小时,离心处理是在1000G-15万G的离心速度范围内进行。
2.权利要求1所述的方法,其中植物细胞或植物组织经热处理及离心处理后,进行转基因。
3.权利要求1或2中任一项所述的方法,其中离心处理是在1秒至4小时的范围内进行。
4.权利要求1至3中任一项所述的方法,其中所培育的植物细胞或植物组织来自于被子植物。
5.权利要求4所述的方法,其中所培育的植物细胞或植物组织来自于单子叶植物。
6.权利要求5所述的方法,其中所培育的植物细胞或植物组织来自于禾本科植物。
7.权利要求6所述的方法,其中所培育的植物细胞或植物组织来自于水稻、玉米或矮草。
8.一种培育植物的方法,其特征在于使用权利要求1至7所述的方法。
9.通过权利要求1至8所述方法培育出的植物细胞或植物组织。
10.一种培育被子植物的方法,其特征在于使用权利要求4所述的方法。
11.通过权利要求4或10所述方法培育出的被子植物细胞或被子植物组织。
12.一种培育单子叶植物的方法,其特征在于,使用权利要求5所述的方法。
13.通过权利要求5或12所述方法培育出的单子叶植物细胞或单子叶植物组织。
14.一种培育禾本科植物的方法,其特征在于,使用权利要求6所述的方法。
15.通过权利要求6或14所述方法培育出的禾本科植物细胞或禾本科植物组织。
16.一种培育水稻或玉米的方法,其特征在于,使用权利要求7所述的方法。
17.通过权利要求7或16所述方法培育的水稻细胞、水稻组织、玉米细胞或玉米组织。
CNB008138176A 2000-08-03 2000-08-03 提高植物细胞转基因效率的方法 Expired - Lifetime CN1273604C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/005214 WO2002012521A1 (fr) 1999-06-04 2000-08-03 Procede permettant d'ameliorer l'efficacite du transfert de genes dans des cellules vegetales

Publications (2)

Publication Number Publication Date
CN1377421A CN1377421A (zh) 2002-10-30
CN1273604C true CN1273604C (zh) 2006-09-06

Family

ID=11736323

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008138176A Expired - Lifetime CN1273604C (zh) 2000-08-03 2000-08-03 提高植物细胞转基因效率的方法

Country Status (9)

Country Link
US (1) US7902426B1 (zh)
EP (1) EP1306441B1 (zh)
KR (1) KR100767867B1 (zh)
CN (1) CN1273604C (zh)
AT (1) ATE417933T1 (zh)
AU (1) AU785336B2 (zh)
CA (1) CA2386126C (zh)
DE (1) DE60041157D1 (zh)
WO (1) WO2002012521A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413388A (zh) * 2014-05-01 2017-02-15 孟山都技术公司 植物处理剂的辅助递送

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060057586A (ko) 2003-08-13 2006-05-26 니뽄 다바코 산교 가부시키가이샤 구리이온의 첨가에 의해 식물의 형질전환 효율을향상시키는 방법
KR20060061354A (ko) 2003-08-13 2006-06-07 니뽄 다바코 산교 가부시키가이샤 식물재료로의 유전자 도입을 행하는 방법
ES2299285B2 (es) * 2004-11-26 2009-12-07 Universidad De Vigo Procedimiento para transformar material vegetal procedente de arboles adultos.
US8058514B2 (en) 2007-02-28 2011-11-15 Japan Tobacco Inc. Agrobacterium-mediated method for producing transformed plant without selection step
US8101820B2 (en) 2007-02-28 2012-01-24 Japan Tobacco Inc. Method for increasing transformation efficiency in plants, comprising coculture step for culturing plant tissue with coculture medium containing 3,6-dichloro-o-anisic acid
JP2011120478A (ja) 2008-03-31 2011-06-23 Japan Tobacco Inc アグロバクテリウム菌による形質転換植物の作成方法
WO2011013764A1 (ja) 2009-07-29 2011-02-03 日本たばこ産業株式会社 アグロバクテリウム菌を用いた、コムギ属の植物へ遺伝子導入を行う方法、コムギ属の植物の形質転換植物の作成方法
JP2013212051A (ja) 2010-07-29 2013-10-17 Japan Tobacco Inc アグロバクテリウム菌を用いた、オオムギ属植物へ遺伝子導入を行う方法およびオオムギ属植物の形質転換植物の作成方法
ES2962273T3 (es) * 2017-06-02 2024-03-18 Fraunhofer Ges Forschung Procedimiento para la transformación automatizada de un paquete de células vegetales

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0116718B2 (en) * 1983-01-13 1996-05-08 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Process for the introduction of expressible genes into plant cell genomes and agrobacterium strains carrying hybrid Ti plasmid vectors useful for this process
NL8300698A (nl) 1983-02-24 1984-09-17 Univ Leiden Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; agrobacterium tumefaciens bacterien en werkwijze voor het produceren daarvan; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten.
NL8300699A (nl) 1983-02-24 1984-09-17 Univ Leiden Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; werkwijze voor het produceren van agrobacterium tumefaciens bacterien; stabiele cointegraat plasmiden; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten.
NL8401048A (nl) 1984-04-03 1985-11-01 Rijksuniversiteit Leiden En Pr Werkwijze voor het inbouwen van vreemd dna in het genoom van eenzaadlobbige planten.
US5231019A (en) * 1984-05-11 1993-07-27 Ciba-Geigy Corporation Transformation of hereditary material of plants
JPH04330234A (ja) 1991-03-20 1992-11-18 Japan Tobacco Inc キュウリモザイクウィルス抵抗性トマト及びその作出方法
DE69334225D1 (de) * 1992-07-07 2008-07-31 Japan Tobacco Inc Verfahren zur transformation einer monokotyledon pflanze
US5712112A (en) 1992-11-04 1998-01-27 National Science Council Of R.O.C. Gene expression system comprising the promoter region of the alpha-amylase genes
AU687863B2 (en) 1993-09-03 1998-03-05 Japan Tobacco Inc. Method of transforming monocotyledon by using scutellum of immature embryo
PT687730E (pt) 1993-12-08 2007-07-02 Japan Tobacco Inc Método de transformação de plantas e vector para esse fim
JPH10117776A (ja) 1996-10-22 1998-05-12 Japan Tobacco Inc インディカイネの形質転換方法
JP3312867B2 (ja) * 1996-11-08 2002-08-12 北興化学工業株式会社 植物の形質転換方法および形質転換植物の作出方法
MX257801B (en) 1997-06-02 2008-06-10 Syngenta Participations Ag Plant transformation methods
US6162965A (en) 1997-06-02 2000-12-19 Novartis Ag Plant transformation methods
AU8356898A (en) 1997-07-23 1999-02-16 Japan Tobacco Inc. Method for selecting transformed cells
CA2352488A1 (en) * 1998-12-23 2000-06-29 The Samuel Roberts Noble Foundation, Inc. Plant transformation process
JP2000342255A (ja) 1999-06-04 2000-12-12 Japan Tobacco Inc 植物細胞への遺伝子導入の効率を向上させる方法
JP3141084B2 (ja) 1999-07-21 2001-03-05 農林水産省農業生物資源研究所長 単子葉植物の超迅速形質転換法
EP1136560B1 (en) 1999-09-30 2008-11-19 Japan Tobacco Inc. Vectors for transforming plants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413388A (zh) * 2014-05-01 2017-02-15 孟山都技术公司 植物处理剂的辅助递送

Also Published As

Publication number Publication date
DE60041157D1 (de) 2009-01-29
AU6318000A (en) 2002-02-18
EP1306441A4 (en) 2004-09-08
EP1306441B1 (en) 2008-12-17
CA2386126A1 (en) 2002-02-14
US7902426B1 (en) 2011-03-08
AU785336B2 (en) 2007-01-18
CN1377421A (zh) 2002-10-30
WO2002012521A1 (fr) 2002-02-14
KR100767867B1 (ko) 2007-10-17
KR20020092916A (ko) 2002-12-12
EP1306441A1 (en) 2003-05-02
ATE417933T1 (de) 2009-01-15
CA2386126C (en) 2010-07-13

Similar Documents

Publication Publication Date Title
Mayavan et al. Agrobacterium-mediated in planta genetic transformation of sugarcane setts
Otani et al. Transgenic plant production from embryogenic callus of sweet potato (Ipomoea batatas (L.) Lam.) using Agrobacterium tumefaciens
Hiei et al. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens
US7960611B2 (en) Method for promoting efficiency of gene introduction into plant cells
US20120192318A1 (en) Transformation system for Camelina sativa
CN1347457A (zh) 植物转化方法
CN1273604C (zh) 提高植物细胞转基因效率的方法
JP4532413B2 (ja) 植物材料への遺伝子導入を行う方法
CN101668418B (zh) 包括用含3,6-二氯-2-甲氧基苯甲酸的共存培养基培养植物组织的共存步骤的提高植物转化效率的方法
JP4555229B2 (ja) 銅イオンの添加により植物の形質転換効率を向上させる方法
CN1133744C (zh) 新的高容量二元穿梭载体
Varghese et al. An efficient Agrobacterium-mediated transformation protocol for black pepper (Piper nigrum L.) using embryogenic mass as explant
JP4424784B2 (ja) 植物細胞への遺伝子導入の効率を向上させる方法
JP2000342255A (ja) 植物細胞への遺伝子導入の効率を向上させる方法
JP4428757B2 (ja) 植物細胞への遺伝子導入の効率を向上させる方法
KR100974000B1 (ko) 발아종자의 배축 분열조직을 이용한 콩의 형질전환방법
KR100736209B1 (ko) 목표유전자의 식물세포 내로의 도입을 증가시키는 방법
CN1473936A (zh) 使用生长素前体有效产生转基因植物
CN116731986A (zh) 一种水稻OsLOX10基因在调节水稻盐碱胁迫抗性中的应用
Parmar et al. Optimization and validation of Agrobacterium-mediated genetic transformation for commercial indian bread wheat (Triticum aestivum L.) Cultivars using mature embryo

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20060906