CN1273390C - 一种连续降解含有机污染物废水的光催化反应装置及其处理方法 - Google Patents

一种连续降解含有机污染物废水的光催化反应装置及其处理方法 Download PDF

Info

Publication number
CN1273390C
CN1273390C CNB031127290A CN03112729A CN1273390C CN 1273390 C CN1273390 C CN 1273390C CN B031127290 A CNB031127290 A CN B031127290A CN 03112729 A CN03112729 A CN 03112729A CN 1273390 C CN1273390 C CN 1273390C
Authority
CN
China
Prior art keywords
photocatalytic reaction
photoresponse pipe
fluorescent tube
reaction device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031127290A
Other languages
English (en)
Other versions
CN1431155A (zh
Inventor
陆小华
杨祝红
冯新
郑仲
陈国钧
朱健
史月萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CNB031127290A priority Critical patent/CN1273390C/zh
Publication of CN1431155A publication Critical patent/CN1431155A/zh
Application granted granted Critical
Publication of CN1273390C publication Critical patent/CN1273390C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种高效光催化反应装置及其处理技术,其特点在于催化剂易于回收、反应器的效率高、光的有效利用率高、废水处理能力与降解深度可调控、能连续降解常规方法难以降解的有毒有机污染物废水。该装置主要由光反应器装置、过滤装置、泵、缓冲罐构成;光催化反应以较大尺寸的颗粒状或纤维状半导体材料作为催化剂,易于回收;废水在光反应管中以平推流的方式流动,具有高的反应器效率;光反应管均匀分布在灯管周围,具有高的光有效利用率;通过改变光反应管的联接方式,达到增加废水处理能力或提高降解深度的目的。

Description

一种连续降解含有机污染物废水的光催化反应装置及其处理方法
技术领域:
本发明涉及一种高效光催化反应装置及其处理技术,其特点在于催化剂易于回收、反应器的效率高、光的有效利用率高、废水处理能力与降解深度可调控、能连续降解常规方法难以降解的有毒有机污染物废水。
技术背景:
对于难降解的有毒有机污染物如有机卤代烃、多氯联苯、有机磷化合物、多环芳烃等,传统的废水处理技术如物理化学法、生物化学法等在技术上、经济上都有很大的困难,如何处理水质中这些难降解的、具有强烈致癌和致畸变作用的有机污染物,已成为当今环境保护和提高人民生活质量的急待解决的问题。
利用二氧化钛等易受光照激发产生光生电子和空穴的半导体特征,将其作为催化剂降解水质中的有机污染物是近20年发展起来的新兴研究领域[1]。例如TiO2在阳光或日光灯的紫外线照射下,吸收一定波长的光子能量,产生空穴和电子对,与吸附在表面的H2O和O2作用,产生活性很强的自由基,OH自由基具有很强的氧化、分解能力,可破坏有机物中C-C键、C-H键、C-N键、C-O键、O-H键、H-N键等,不仅可以氧化水质中可生物降解的物质,而且可以将水质中难以生物降解的有机污染物完全氧化为CO2和H2O,无二次污染。
目前已有的光催化反应器大致可以分为两类。其一是光源插入待处理废水中的圆柱型反应器,如CN 2410032[2]公开的光催化流态化反应器和CN 1301668[3]公开的可连续光催化净化含有机污染物废水的光反应器;其二是光源置于待处理废水之上的平板型反应器,如CN 2354931[4]公开的倾角连续可调的固定膜平板型光催化水处理装置和CN 2399374[5]公开的废水光催化处理器。
这两种反应器都存在待处理废水光照停留时间短、光有效利用率不高、反应器效率不高的问题。另外,如果催化剂使用纳米粉末,则存在催化剂难以分离回收的问题,若将催化剂固定于载体上,又将严重降低其光催化效率和活性。
发明内容:
本发明的目的是提供一种高效光催化反应装置,其特点在于催化剂易于回收、反应器的效率高、光的有效利用率高、废水处理能力与降解深度可调并能连续降解。
本发明另一目的是提供一种连续降解含有机污染物废水的处理技术。
本发明的目的可以通过以下措施来达到:
该装置主要由光反应器装置、过滤装置、泵、缓冲罐构成。
本发明的废水处理工艺流程为:待处理废水在缓冲罐2中与颗粒状或纤维状催化剂及助氧化剂O2或H2O2或O3充分混合后,通过泵1进入光反应器4,待处理废水经光照后流出光反应器4,经过滤装置过滤5,颗粒状或纤维状催化剂随部分处理完的废水流回缓冲罐2,含有机污染物废水降解后从过滤装置的另一侧排出。
光反应器4是该装置的核心部分,它由光源以及均匀分布在灯管周围的平行于灯管的一组光反应管构成。
本发明所使用的光源,为紫外光或近紫外光,灯管外型为圆柱型直管,长度为50~3000mm,优选为100~1500mm。
光反应管为中空的石英或硼硅酸盐玻璃管,其直径为10~100mm,优选为20~50mm,壁厚为1~10mm,优选为2~5mm,长度为50~3000mm,优选为100~1500mm。
本发明的光反应器装置中,灯管与光反应管之间的距离是一重要参数,它将极大影响降解效率,该参数为20~300mm,优选为50~150mm;一组光反应管的根数可以依据灯管与光反应管之间的距离以及光反应管的直径而定,例如,灯管与光反应管之间的距离为100mm,光反应管的直径为20mm,则选择光反应管的根数为6根。灯管与光反应管之间的距离为150mm,光反应管的直径为40mm,则选择光反应管的根数为12根。
废水在光反应管中以平推流方式流动,取代了传统的反应效率低下的全混流方式,因此具有较高的反应器效率。
通过改变光反应管的联接方式,如将等分的光反应管并联后串联,或串联后并联,或全部串联,达到增加生产能力或提高降解深度的目的。例如,选择光反应管的根数为6根,可以是将每3根并联后串联,或每2根并联后串联,与6根全部串联相比,生产能力理论上增加3倍、2倍,其光照停留时间分别是单管串联的1/3、1/2。
本发明使用的催化剂形貌为较大尺寸的颗粒或纤维,其直径或当量直径为0.5~1000μm,优选为2~100μm。
催化剂为半导体材料及改性半导体材料中的一种或一种以上组合。所指半导体材料为金属的氧化物和硫化物及其含氧酸盐,包括二氧化钛、氧化锌、三氧化钨、氧化锡、氧化镉、硫化镉、硒化镉、硫化锌、氧化铌、氧化钼、氧化钽、氧化铁、铌酸铁、钛酸钡、钛酸锶、钛酸钾。所指改性半导体材料为:在半导体材料表面沉积铂、钯、银、金、钌贵金属;或在半导体中掺杂不同价态的金属离子,掺杂方法可以采用含金属离子的溶液浸渍后高温焙烧、光辅助淀积等方法使半导体的催化性质发生改变,金属离子包括Fe3+、Fe2+、Mg2+、V3+、V4+、V5+、Al3+、Cr3+、Mn3+、Co3+、Ni2+、Zn2+、Ga3+、Zr4+、Nb5+、Mo5+、Ru3+、Rh3+、Sn4+、Sb5+、Ta5+、Re5+、Os3+
本发明催化剂的过滤装置是可以连续实行固液分离的工业分离设备。
本发明的处理对象为含有机污染物废水,如经过常规处理后仍含有难降解有毒有机污染物的工厂排放废水,印染废水,造纸废水、生活污水等,优选适用于无固体杂质颗粒,废水透明度较高的废水处理。
本发明的优点和积极效果:
本发明的优点在于催化剂易于回收、反应器的效率高、光的有效利用率高、废水处理能力与降解深度可调控、能连续降解常规方法难以降解的有毒有机污染物废水。
光催化反应以较大尺寸的颗粒状或纤维状半导体材料作为催化剂,取代纳米粉末,在工业化生产中易于回收。
本发明的废水在光反应管中以平推流方式流动,取代了传统的反应效率低下的全混流方式,因此具有较高的反应器效率。
本发明的核心装置光反应器由光源以及均匀分布在灯管周围的平行于灯管的一组光反应管构成使光的有效利用率较高。
本发明的光反应管串并联法为提高处理有机污染物废水的能力和降解深度提供了很大的弹性空间。当待处理废水中有机物含量较少时,将等分的光反应管串联后并联可成倍增加废水处理能力;当待处理废水中有机物含量较多或对处理后的水质要求较高时,将光反应管串联,可达到延长反应停留时间,达到深层次降解的目的。
附图说明:
图1是本发明光催化处理废水装置的工艺流程图。
图2是本发明光反应管串并联方式示意图。
图3是本发明光反应器与灯管位置俯视图。
具体实施方式:
下面结合附图和具体实例对本发明作进一步说明:
实施例1
将四钛酸钾晶须投入到100倍质量的水中,并不断加入硫酸,使钾离子与溶液中的氢离子发生交换,酸度计控制溶液的pH=1,充分反应后再用水洗至中性,500℃恒温烧结2h,制备纤维状TiO2催化剂。经XRD分析可知为锐钛矿型TiO2。其平均直径:0.5~3.0μm,长度:5~100μm。
光反应器采用6根光反应管平行且均匀分布在灯管3周围,灯管与光反应管之间的距离为150mm,光反应管的直径为25mm,灯管及光反应管的长度均为1000mm。
本发明的废水处理工艺流程如前所述。
关闭图2中阀门6、7、8、9、11、13,打开阀门10、12、14,使光反应管处于串联状态,用初始浓度为10mg/L的甲基橙溶液作为待处理废水,加入催化剂浓度为0.5g/L,助氧化剂H2O2浓度为3ml/L,泵流量为40L/h,光照后排出的废水中甲基橙的降解率为89%,20min处理水量10L。
比较例1
在反应器内加入实施例1中的催化剂0.5g和初始浓度为10mg/L的甲基橙溶液1.0L及助氧化剂H2O2浓度为3ml,搅拌条件下用具有相同光流密度的紫外灯照射,20min后废水中甲基橙的降解率为83%。
与比较例相比,在达到相同处理效果时,本发明采用连续平推流方式光催化,20min处理水量10L,处理能力是传统全混流方式的10倍。
实施例2
将实施例1中的催化剂5g加入到相当于催化剂量0.5wt%的氯铂酸溶液中,再加入50ml的2-丙醇,搅拌下用300W中压汞灯光照3h,过滤干燥,得到沉积0.5wt%铂的改性纤维状TiO2作为催化剂。关闭阀门6、7、8、9、11、13,打开阀门10、12、14,使光反应管处于串联状态,用初始浓度为1mmol/L氯仿溶液作为待处理废水,加入催化剂浓度为0.5g/L,通氧气鼓泡,泵流量为40L/h,光照后排出的废水中氯仿的降解率为98%。
比较例2
其它条件与实施例2均相同,但通氮气鼓泡代替溶液中的溶氧,泵流量为40L/h,光照后排出的废水中氯仿的降解率为22%。
与比较例相比,本发明中助氧化剂氧气能大幅度提高对废水中氯仿的降解率。
实施例3
将北京化工厂生产的商用TiO2在500℃恒温2h活化后进行光催化反应。关闭阀门7、10、11、14,打开阀门6、8、9、12、13,使光反应管处于2串联3并联状态,用初始浓度为5mg/L的甲基橙溶液作为待处理废水,加入助氧化剂H2O2浓度为3ml/L,泵流量为120L/h,光照后排出的废水中甲基橙的降解率为47%。
实施例4
将北京化工厂生产的商用TiO2,浸渍在相对于TiO2量1%的硝酸铁溶液中,加热搅拌,120℃烘干,500℃恒温2h活化制备掺铁二氧化钛催化剂。关闭阀门7、10、11、14,打开阀门6、8、9、12、13,使光反应管处于2串联3并联状态,用初始浓度为5mg/L的甲基橙溶液作为待处理废水,通氧气鼓泡,泵流量为120L/h,光照后排出的废水中甲基橙的降解率为65%。
从上述实施例可以看出,本发明使用的催化剂可以是半导体材料及改性半导体材料中的一种或一种以上组合,同时,光反应管串并联法为提高处理有机污染物废水的能力和降解深度提供了很大的弹性空间。
参考文献
1.Hoffmann MR,Martin ST,Choi Wetal.,Chem.Rev.,1995,95,69
2.徐南平,范益群,崔鹏,中国专利CN 2410032Y
3.李芳柏,黄志尧,万红富,王卫红,中国专利CN 1301668A
4.张彭义,余刚,蒋展鹏,李俊峰,中国专利CN 2354931Y
5.邓南圣,吴峰,罗凡,中国专利CN 2399374Y

Claims (5)

1、一种连续降解含有机污染物废水的光催化反应装置,包括光反应器装置、过滤装置、泵、缓冲罐,其中,缓冲罐下出口连接到泵进口,泵出口再连接到光反应器装置的光反应管进口,光反应管出口和过滤装置进口相连接,过滤装置中设有两个出口,其中一出口和缓冲罐进口连接,其特征在于核心装置光反应器由作为光源的灯管以及均匀呈环形分布在灯管周围的平行于灯管的一组光反应管构成,灯管与光反应管之间的距离为20~300mm。
2、根据权利要求1所述的光催化反应装置,其特征在于采用紫外光或近紫外光作为光源,灯管外型为圆柱型直管,长度为50~3000mm。
3、根据权利要求1所述的光催化反应装置,其特征在于光反应管采用中空的石英或硼硅酸盐玻璃管,其直径为10~100mm,壁厚为1~10mm,长度为50~3000mm。
4、根据权利要求1所述的光催化反应装置,其特征在于灯管与光反应管之间的距离为50~150mm。
5、根据权利要求1所述的光催化反应装置,其特征在于光反应管的联接方式是指将等分的光反应管并联后串联,或等分的光反应管串联后并联,或全部串联。
CNB031127290A 2003-01-23 2003-01-23 一种连续降解含有机污染物废水的光催化反应装置及其处理方法 Expired - Fee Related CN1273390C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031127290A CN1273390C (zh) 2003-01-23 2003-01-23 一种连续降解含有机污染物废水的光催化反应装置及其处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031127290A CN1273390C (zh) 2003-01-23 2003-01-23 一种连续降解含有机污染物废水的光催化反应装置及其处理方法

Publications (2)

Publication Number Publication Date
CN1431155A CN1431155A (zh) 2003-07-23
CN1273390C true CN1273390C (zh) 2006-09-06

Family

ID=4790269

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031127290A Expired - Fee Related CN1273390C (zh) 2003-01-23 2003-01-23 一种连续降解含有机污染物废水的光催化反应装置及其处理方法

Country Status (1)

Country Link
CN (1) CN1273390C (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100352777C (zh) * 2004-11-18 2007-12-05 广州市环境保护工程设计院有限公司 化妆品生产废水处理设备及其废水处理方法
CN103706316A (zh) * 2012-09-29 2014-04-09 天津市鹏翔科技有限公司 三管串联在线检测连续光反应装置
CN103613224A (zh) * 2013-12-05 2014-03-05 乐山市洁宇纳米应用技术研究所 一种印染废水的脱色处理方法
CN104370342A (zh) * 2014-11-19 2015-02-25 中国石油天然气股份有限公司 一种光催化剂回收装置、有机废水处理方法及装置
CN106007116A (zh) * 2016-05-24 2016-10-12 安徽普氏生态环境工程有限公司 一种基于钌催化剂可见光催化氧化降解污水中cod的方法
CN105967309A (zh) * 2016-05-25 2016-09-28 安徽普氏生态环境工程有限公司 一种Fenton氧化与UV氧化联用污水处理方法
CN105967409A (zh) * 2016-05-25 2016-09-28 安徽普氏生态环境工程有限公司 一种基于可见光催化空气氧化降解污水中cod的方法
CN108298634B (zh) * 2018-01-28 2021-08-17 绍兴上虞新龙家印染有限公司 一种纳米TiO2光催化剂降解染料废水的工艺
CN108298633B (zh) * 2018-01-28 2021-08-13 吴江市永前纺织印染有限公司 一种纳米TiO2光催化剂降解染料废水的工艺
EP3814003A1 (en) * 2018-06-27 2021-05-05 Nitto Denko Corporation Ultraviolet activated photocatalytic materials; their use in volatile compound decomposition
CN112439411A (zh) * 2020-12-29 2021-03-05 杭州智钛净化科技有限公司 一种光催化漂珠的制备方法
CN113620375A (zh) * 2021-09-14 2021-11-09 中国科学院山西煤炭化学研究所 一种用于废水处理的光催化反应装置及方法
CN113877518B (zh) * 2021-10-21 2023-04-25 南京工业大学 一种吸附剂及制备方法和应用
CN114516673A (zh) * 2022-01-12 2022-05-20 浙江万里学院 平面管式连续流动-光催化氧化降解水处理装置、系统及方法
CN114534760B (zh) * 2022-01-28 2023-06-13 江苏大学 一种N-CDs/FeNbO4复合光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN1431155A (zh) 2003-07-23

Similar Documents

Publication Publication Date Title
CN1273390C (zh) 一种连续降解含有机污染物废水的光催化反应装置及其处理方法
Zhang et al. Drawing on membrane photocatalysis for fouling mitigation
Liu et al. Enhanced visible light photoelectrocatalytic degradation of tetracycline hydrochloride by I and P co-doped TiO2 photoelectrode
Iglesias et al. Membrane-based photocatalytic systems for process intensification
Song et al. Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol
US6558553B1 (en) Photocatalyst
Xu et al. Vacancy-modified gC 3 N 4 and its photocatalytic applications
Ali et al. Solid-supported photocatalysts for wastewater treatment: Supports contribution in the photocatalysis process
CN1263686C (zh) 光电催化氧化处理水中有机物的装置
CN1876232A (zh) 一种活性炭载氧化铜催化剂及其制备方法
Suriyachai et al. Synergistic effects of co-doping on photocatalytic activity of titanium dioxide on glucose conversion to value-added chemicals
CN101670282A (zh) 负载型纳米二氧化钛催化剂的制备方法
Rabin et al. A procession on photocatalyst for solar fuel production and waste treatment
Mariappan et al. Interfacial oxygen vacancy modulated ZIF-8-derived ZnO/CuS for the photocatalytic degradation of antibiotic and organic pollutants: DFT calculation and degradation pathways
CN1806916A (zh) 氧化镍负载的钒酸铋复合光催化剂及其制备方法
CN109019761B (zh) 一种光电化学过滤器装置及其应用
CN110841672A (zh) 一种利用石墨炔改性磷酸银复合光催化剂处理抗生素废水的方法
US20210261443A1 (en) Photocatalysis and device implementing same
Qureshi et al. Wastewater Treatment: Synthesis of Effective Photocatalysts Through Novel Approaches
Ridha et al. Synthesis and characterization of CuO nanoparticles and TiO2/CuO nanocomposite and using them as photocatalysts
CN103638889B (zh) 一种光催化装置及其阀控应用
CN109174133B (zh) 一种钼氮共掺杂的二氧化钛复合纳米纤维片及其制备方法
CN106587458A (zh) 一种辉光放电电解二氧化钛溶液的污水净化方法
CN1209190C (zh) 负载型复配金属的纳米晶二氧化钛光催化剂及其制备
CN1533987A (zh) 光催化处理水的装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060906

Termination date: 20150123

EXPY Termination of patent right or utility model