CN1272175A - 传感器及其使用的电阻元件的制造方法 - Google Patents

传感器及其使用的电阻元件的制造方法 Download PDF

Info

Publication number
CN1272175A
CN1272175A CN99800797.8A CN99800797A CN1272175A CN 1272175 A CN1272175 A CN 1272175A CN 99800797 A CN99800797 A CN 99800797A CN 1272175 A CN1272175 A CN 1272175A
Authority
CN
China
Prior art keywords
electrode
resistive element
sensor
resistance value
electrically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99800797.8A
Other languages
English (en)
Other versions
CN1189723C (zh
Inventor
梅田真司
野村幸治
井端昭彦
藤井浩
增谷武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1272175A publication Critical patent/CN1272175A/zh
Application granted granted Critical
Publication of CN1189723C publication Critical patent/CN1189723C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thermistors And Varistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

一种传感器,在具有上表面电极和下表面电极的电阻元件2之上,电连接背面有栅极电极6的场效应晶体管元件3,并使栅极电极6与所述电阻元件2的上表面电极的一部分连在一起,并进行电连接使基片上的接地电极12与电阻元件2的下表面电极连在一起。

Description

传感器及其使用的电阻元件的制造方法
技术领域
本发明涉及体温计及人体检测传感器等使用的红外线传感器、加速度传感器等所使用的压电器件等电子元器件的结构及其制造方法,尤其涉及对使用场效应晶体管元件等必须进行阻抗变换的电路构成的全体电子元器件有用的传感器及其使用的电阻元件的制造方法。
背景技术
在对各种传感器等产生的微小电信号加以放大并将其取出到外部时,多使用场效应晶体管元件等必须进行阻抗变换的电子元器件。图5示出了使用传感器元件51和场效应晶体管元件53的阻抗变换电路。
在图5的阻抗变换电路中,传感器元件51与电阻52并联连接,传感器元件51的输出端与场效应晶体管53的栅极连接。电阻52还取决于传感器种类,但在产生微小电信号的传感器中,往往使用数十MΩ至数TΩ这样相当高的电阻值。
图6示出在管座上构成图5的电路时的安装图。安装的元器件有传感器元件61、电阻元件62、场效应晶体管元件63及安装板64等4样。安装的基板即管座65的表面被接地(GND)电极66的金属所覆盖。这是为了防止受到来自外部等的噪声。场效应晶体管元件63在硅基片上形成,在芯片背面形成有作为栅极端子(G)的电极,芯片上表面形成有源(S)电极和漏(D)电极。
从电路构成上来说,在管座65上不能直接配置场效应晶体管元件63。因此,通过导电性树脂67先将其暂且连接在上表面有连接用电极的安装板64上。场效应晶体管63之外的元件粘接虽不必用导电性树脂,但从安装工序的方便性考虑,一般使用相同的导电性树脂67。各元件电极及基片电极间的连接通过引线键合法用Al或Au的金属细线68连接并连接到外部端子69上。
如上所述,传统的管壳封装安装的元件是4个,用引线键合法进行连接也必需6根。元件数多,导致不仅材料费高,且安装工序的工时也多,成本提高。此外,管座上还必须有空间,故必需更大的管座,传感器体积较大。
本发明的目的在于,解决这些问题,实现传感器的低成本化,且做成小型的封装。
发明的公开
为了解决这些问题,本发明是一种传感器的制造方法,该种传感器包括:具有上表面电极和下表面电极的电阻元件,检测来自外部的能量并产生电信号的传感器元件,在芯片背面形成有栅极电极的场效应晶体管元件,以及,其上表面有第1电极、第2电极和第3电极的基片,该制造方法包括:使所述电阻元件的所述下表面电极与所述基片的所述第1电极电连接的工序;使所述场效应晶体管元件在所述电阻元件之上电连接、以使所述栅极电极与所述电阻元件的所述上表面电极的一部分连在一起的工序;使所述传感器元件的一个电极与所述电阻元件的所述上表面电极的一部分电连接的工序;使所述场效应晶体管元件的源极和漏极分别与基片上的所述第2电极和所述第3电极电连接的工序;并使所述传感器元件的另一电极与所述基片上的所述第1电极电连接。根据本发明,不需要传统例子的安装板,引线数也从6根减少至4根,故能实现低成本。此外,因为电阻元件位于原来安装板所在的位置部分,故不需要电阻元件配置的空间,成为更小型的封装。
此外,本发明是将所述传感器的电阻元件用陶瓷材料、玻璃材料或铁氧体材料形成的传感器,根据本发明,能方便地形成具有数十MΩ至数TΩ这样较高电阻值的电阻体。
此外,本发明是一种所述传感器的电阻元件的制造方法,该方法预先在大面积的平板状电阻体的整个上表面和下表面形成电极,测定其电阻值之后,切成任意大小,从而形成规定电阻值的电阻元件。若采用本发明,因为电阻值与其电极面积成反比,所以,通过预先测定大面积时的电阻值,就能以切断的大小来改变电阻值,能形成具有切断后欲获得的正确电阻值的电阻元件。此外,若改变切断面积,就能从同一电阻体形成具有好几种电阻值的电阻元件。此外,若采用切割(dicing)等的切断方法,则从切断到安装可形成连贯的安装工序,是非常适合于批量生产的制造方法。又,本发明是一种将所述电阻元件所使用的电阻体用吸水率1%以下的烧结温度形成的电阻元件的制造方法。若采用本发明,即使电阻元件所使用的电阻体采用切割等边喷水边进行切割的工艺,也不会因电阻体吸水或吸潮而引起电阻值的变化。此外,可制成即使在高温高湿的环境下电阻值也不会变化的高可靠性的电阻元件。
此外,本发明是一种所述传感器的制造方法,其电阻元件是仅在电阻体的上表面和下表面形成有电极的电阻元件,基片上的第一电极与所述电阻元件的下表面电极通过导电性物质电连接,控制所述导电性物质的量,并控制堆在电阻体侧面上的树脂的量,从而获得规定的电阻值。若采用本发明,即使制成的批与批之间电阻值多少有差异,只要控制涂敷树脂的量,就能修正电阻值。
此外,本发明是一种所述传感器的电阻元件的制造方法,该方法在电阻元件形成上表面和下表面的电极之后,在真空中或还原性气体氛围中或惰性气体氛围中进行热处理,从而控制电阻值,形成规定电阻值的电阻元件。若采用本发明,可大幅度改变用相同制造方法制成的电阻元件的电阻值,所以,可以用相同的制造方法制成的电阻元件来构成具有多种电阻值的电阻体。此外,安装后也可以改变电阻体的电阻值。
此外,本发明是一种电阻元件的制造方法,是在所述电阻元件的制造方法中,在真空中或还原性气体氛围中或惰性气体氛围中进行热处理之后,再在大气中或氧气氛围中进行热处理而形成电阻元件。若采用本发明,如上所述制成的电阻元件在安装时或安装后进行热处理时,不会发生电阻值变化,能制成稳定的高可靠性的电阻元件。
还有,本发明是一种使形成在电阻元件的上表面和下表面的电极是含有铬、锡、铟之中任一种金属的、电阻元件的结构。若采用本发明,即使陶瓷材料、玻璃材料或铁氧体材料形成的电阻体具有近似于绝缘体的电阻值,通过将含有铬、锡、铟之中的任一种金属作为电阻体的电极,从而使如上所述制成的电阻元件能进一步大幅度扩大可变的电阻值的范围。
附图的简单说明
图1为本发明第1实施形态的传感器的剖视图;
图2A-2C所示为本发明第2实施形态的电阻元件制造方法的工序图;
图3所示为本发明第3实施形态中的、表示电阻值与导电性树脂量关系的特性图;
图4所示为本发明第4实施形态中的、表示电阻值与热处理温度关系的特性图;
图5所示为传感器的阻抗变换电路的电路图;
图6所示为传统传感器的剖视图。
实施发明的最佳形态
第1实施形态
以下参照附图,对本发明第1实施形态进行说明。
图1所示为本实施形态即传感器的剖视图。在图1中,传感器元件1是检测红外线传感器、压力传感器及冲击传感器等来自外部的能量或刺激而产生电信号的传感器元件。传感器元件1一般有多个输出端子。电阻元件2具有上表面电极4和下表面电极5。产生微小电信号的传感器等必须是较高电阻值的器件。场效应晶体管元件3在背面形成有栅极电极6,在上表面形成有源极和漏极。作为安装基片的管座8的构成与图6的传统例子所示的管座65一样,其表面由接地(GND)电极12的金属所覆盖。传感器元件1用芯片粘合用树脂11等固定在管座8上。该芯片粘合用树脂11一般含有绝缘性或导电性的填充剂。
接着,将电阻元件2用导电性物质9固定在管座8上的接地电极上,以使电阻元件2的下表面电极5与接地电极12电连接。然后,将场效应晶体管元件3用导电性物质10固定在电阻元件2之上。此时,形成的结构使电阻元件2的上表面电极4的一部分与栅极电极6能相互电气导通。导电性物质9和导电性物质10例如是含有导电性填充剂的芯片粘合用树脂等。此外,芯片粘合用树脂11和导电性物质9及导电性物质10也可以是同样的材料。
然后,形成使传感器元件1的一个电极与电阻元件2的上表面电极4的一部分电连接、且使传感器元件1的另一电极与接地电极12电连接的结构。场效应晶体管元件3上的源极与漏极分别与管座8上的第二电极7、第三电极13电连接。一般情况下,这些连接与图6所示的传统例子的相同,采用将电极之间用金属细线14连接的引线键合法。
若采用该传感器的构成,就不需要传统安装的安装板,引线数也从6根减少至4根,故能实现低成本。另外,因为电阻元件位于原来安装板所在的部分,所以,不需要电阻元件所占的空间,可做成更小型的封装。
对于必须取出微小电信号的传感器,电阻元件2的电阻值是数百MΩ至数TΩ这样非常高的值。要构成这样高电阻值时,使用比普通碳系电阻体的电阻值高的陶瓷材料、玻璃材料及铁氧体材料那样的烧结体就能方便地构成。
第2实施形态
本发明第2实施形态的电阻元件的制造方法在图2A-2C中示出。尤其是示出了第1实施形态所示的电阻元件的制造方法。图2A所示为在平板状电阻体21的上表面和下表面形成电极22的工序。电极的形成有几种形成方法。例如有真空蒸镀及溅射法等形成较薄的薄膜的方法、电镀等形成较厚的薄膜的方法。此外,在电阻体烧结前预先印刷好电极的形成方法也很适合于批量生产。电极所使用的金属必须在后道工序用导电性树脂或引线键合法等进行电连接,所以,比较有效的是在最外层表面形成不产生氧化膜的Au。
图2B是使接触电极23与上表面电极和下表面电极接触来测定电阻值的工序。因为电阻值与电极面积成反比,所以,通过测定切断前的大面积电极时的电阻值,就能预先正确预测切断后的电阻元件的电阻值。即,即使电阻体的电阻值有某种程度的误差,通过调整切断的大小,就能形成具有正确电阻值的电阻元件。
切断往往使用图2C所示的切割法。首先,在分割环25上张贴有粘接性的切割带24,再在其上张贴被切断物即电阻体。然后,使高速旋转的切割刀26在电阻体上移动进行切断。此时,为了减少切割刀与电阻体的摩擦,边向切割刀26喷水边进行切割。另外,切断之后该切割环本身被装在安装机上,在保持整齐排列的状态下流动至安装工序。
若采用该电阻元件的制造方法,通过预先测定好大面积时的电阻值,就能预测切断的大小与切断后电阻元件的电阻值的关系。因此,能形成具有切断后欲获得的正确电阻值的电阻元件。此外,通过改变切断的面积,从相同电阻体能形成具有好多种电阻值的电阻元件。还有,若采用切割法等的切断方法,则因为能形成从切断至安装的连贯的安装工序,故是一种非常适合于批量生产的电阻元件的制造方法。
切断时使用切割等方法,电阻元件会经过浸水工序。在电阻元件是会吸水或吸潮的多孔元件的情况下,一旦吸水,电阻值会变得极低,不能显示正常的电阻值。例如,吸水率4%的,吸水后电阻值约减少1位。相反,如果吸水率在1%以下,则电阻值几乎无变化。因此,将烧结电阻元件的温度设定得较高,使吸水率在1%以下。这对高湿度环境下的电阻值的稳定性是有效的。
第3实施形态
使用图3对本发明第3实施形态的电阻元件的制造方法进行说明。图3示出将用第2实施形态所示工序形成的、仅在电阻体的上表面和下表面形成有电极的电阻元件用导电性树脂固定在基片上时,电阻值对该导电性树脂的量有怎样的关系。如图3所示,导电性树脂的量越多,堆积在电阻元件侧面的树脂量也越多。而堆积在侧面的导电性树脂的量越多,电阻元件的电阻值就越少。这是因为,电阻元件是在设于上表面与下表面的电极间形成电阻的,该导电性树脂起着电极那样的作用,故导电性树脂附着在侧面上的量,相当于电极面积扩大或上下电极间隔缩小,减小了电阻。树脂的涂敷装置因为是使用涂布器或转印工具进行涂敷的,故能较好地控制涂敷树脂量。
因此,本发明在将电阻元件安装在基片上时,将电阻元件的结构做成仅在电阻体的上表面和下表面形成有电极的结构,通过控制涂敷的导电性树脂的量,来控制堆积在电阻元件侧面的树脂的量,从而获得规定的电阻值。若采用本实施形态,即使形成的电阻值在批与批之间多少有些误差,控制涂敷的树脂的量,就能修正电阻值。
另外,导电性树脂如用焊锡等的低熔点金属,也能获得相同的效果。
第4实施形态
使用图4对本发明第4实施形态的传感器所用电阻元件的制造方法进行说明。图4所示为用金属氧化物构成的陶瓷材料、玻璃材料或铁氧体材料的电阻体构成电阻元件时,对热处理效果进行研究的结果。如图4所示,在不含有氧气的真空中进行热处理时,电阻值与热处理温度的高低有很大的关系。这是由于电极所含金属扩散到薄膜中使电阻值下降,同时电阻体所含的氧因热处理而脱离,从而电阻体中的组成发生变化而引起的。另一方面,如果如图4所示在大气中进行热处理,电阻值就不会有这样大的变化。这是因为受大气所含氧气吸引金属的扩散难于进行,以及电阻体中的氧难于脱离的缘故。因此,本发明在真空中或还原性气体氛围中或惰性气体氛围中进行热处理,控制电阻值,形成规定电阻值的电阻元件。
若采用本发明,可以使以相同制造方法制成的电阻元件的电阻值发生大幅度变化,因此,即使是用相同的制造方法制成的电阻元件并且相同大小的电阻元件,也能构成具有多种电阻值的电阻体。因此,在安装电阻元件的空间受限制的情况下,可以用任意的大小制成具有规定电阻值的电阻元件。此外,即使在安装之后,也可以使电阻体的电阻值改变。
但是,如果用上述方法使电阻值非常小,则只要放置在大气中,有时电阻值就会渐渐上升。这是因为大气中的氧气再次进入电阻体中的缘故。该变化虽然不那么大,但电阻值的变化总是不希望的。因此,一旦在真空中或还原性气体氛围中或惰性气体氛围中进行热处理,使电阻值下降之后,再在大气中或氧气氛围中进行热处理。此时的温度最好是后道工序施加的温度,或者是比传感器的最高使用温度还高的温度。尤其是,在该传感器安装时要受到较高的温度,故必须注意。用该方法能制成稳定的可靠性高的电阻元件。另外,对于随着电阻值的下降电阻值误差增大的情况,该方法还具有使所述增大的电阻值误差减小的效果。
作为上述电阻元件使用的电极材料,如果使用含有铬、锡、铟中的任一种金属,则真空中热处理引起的电阻变化量也增大。这是因为,这些金属是易于扩散到氧化物中的金属。尤其是当使多种金属层叠而构成电极时,使这些金属作为最接近电阻体的薄膜,则更容易获得扩散的效果。尤其是,锡、铟即使被氧化也有导电性,故电阻变化量变得更大。然而,氧化物的陶瓷材料、玻璃材料及铁氧体材料随着温度的上升其电阻值急剧减小。如果该温度引起的电阻值的减小程度太大,则因传感器的用途及使用温度范围而会出现问题,但通过使这些金属扩散到电阻体中,能减缓因该温度引起的电阻值的减小程度。
若采用以上第2-第4实施形态所述的方法,能正确设定传感器使用的电阻元件的电阻值,能提高传感器的精度,同时能提高电阻元件的合格率,降低成本。
产业上利用的可能性
如上所述若采用本发明,与传统的传感器结构相比,引线数从6根减少至4根,故能实现低成本。此外,因为电阻元件位于原来安装板所在位置的部分,故电阻元件原来所在的空间空出来了,可获得能做成更小型封装这样有利的效果。还有,因为能正确控制电阻元件的电阻值,故能获得更高精度的传感器。

Claims (9)

1.一种传感器,包括:具有上表面电极和下表面电极的电阻元件,检测来自外部的能量并产生电信号的传感器元件,在芯片背面形成有栅极电极的场效应晶体管元件,以及,其上表面有第1电极、第2电极和第3电极的基片,使所述电阻元件的所述下表面电极与所述基片的所述第1电极电连接,使所述场效应晶体管元件在所述电阻元件之上电连接、以使所述栅极电极与所述电阻元件的所述上表面电极的一部分连在一起,使所述传感器元件的一个电极与所述电阻元件的所述上表面电极的一部分电连接,使所述场效应晶体管元件的源极和漏极分别与基片上的所述第2电极和所述第3电极电连接,并使所述传感器元件的另一电极与所述基片上的所述第1电极电连接。
2.根据权利要求1所述的传感器,其特征在于,所述电阻元件由陶瓷材料、玻璃材料或铁氧体材料形成。
3.根据权利要求1所述的传感器,其特征在于,所述电阻元件的上表面电极和下表面电极含有铬、锡、铟之中的任一种。
4.一种传感器的制造方法,该种传感器包括:具有上表面电极和下表面电极的电阻元件,检测来自外部的能量并产生电信号的传感器元件,在芯片背面形成有栅极电极的场效应晶体管元件,以及其上表面有第1电极、第2电极和第3电极的基片,该制造方法包括:使所述电阻元件的所述下表面电极与所述基片的所述第1电极电连接的工序;使所述场效应晶体管元件在所述电阻元件之上电连接、以使所述栅电极与所述电阻元件的所述上表面电极的一部分连在一起的工序;使所述传感器元件的一个电极与所述电阻元件的所述上表面电极的一部分电连接的工序;使所述场效应晶体管元件的源极和漏极分别与基片上的所述第2电极和所述第3电极电连接的工序;使所述传感器元件的另一电极与所述基片上的所述第1电极电连接的工序。
5.根据权利要求4所述的电阻元件的制造方法,其特征在于,包括:所述电阻元件预先在大面积平板状电阻体的整个上表面和下表面形成电极的工序;测定其电阻值的工序;根据测定的电阻值确定尺寸进行切断、从而获得规定的电阻值的工序。
6.根据权利要求5所述的电阻元件的制造方法,其特征在于,包括所述电阻体以使其吸水率在1%以下的烧结温度来形成的工序。
7.根据权利要求4所述的传感器的制造方法,其特征在于,在使所述电阻元件的所述下表面电极与所述基片的所述第1电极电连接的工序中,通过导电性物质使所述电阻元件的所述下表面电极与所述基片的所述第1电极电连接,并控制所述导电性物质的量,控制堆积在所述电阻元件侧面的树脂的量,从而获得规定的电阻值。
8.根据权利要求4所述的传感器的制造方法,其特征在于,还包括下述工序,即在形成所述电阻元件的所述上表面电极和所述下表面电极之后,进行真空中热处理、还原性气体氛围中的热处理或惰性气体氛围中的热处理之中的至少一种热处理,来控制电阻值,形成规定电阻值的电阻元件。
9.根据权利要求8所述的传感器的制造方法,其特征在于,还包括在进行真空中或还原性气体氛围中或惰性气体氛围中的热处理之后,在大气中或氧气氛围中进行热处理的工序。
CNB998007978A 1998-05-22 1999-05-20 传感器及其使用的电阻元件的制造方法 Expired - Fee Related CN1189723C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP140892/1998 1998-05-22
JP14089298 1998-05-22
JP140892/98 1998-05-22

Publications (2)

Publication Number Publication Date
CN1272175A true CN1272175A (zh) 2000-11-01
CN1189723C CN1189723C (zh) 2005-02-16

Family

ID=15279223

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998007978A Expired - Fee Related CN1189723C (zh) 1998-05-22 1999-05-20 传感器及其使用的电阻元件的制造方法

Country Status (6)

Country Link
US (1) US6395575B1 (zh)
EP (1) EP0999431B1 (zh)
KR (1) KR20010022088A (zh)
CN (1) CN1189723C (zh)
DE (1) DE69938531T2 (zh)
WO (1) WO1999061870A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723200B2 (en) * 2007-03-27 2010-05-25 International Business Machines Corporation Electrically tunable resistor and related methods
US8555216B2 (en) * 2007-03-27 2013-10-08 International Business Machines Corporation Structure for electrically tunable resistor
KR101505551B1 (ko) * 2007-11-30 2015-03-25 페어차일드코리아반도체 주식회사 온도 감지소자가 장착된 반도체 파워 모듈 패키지 및 그제조방법
JP6662469B2 (ja) 2016-11-14 2020-03-11 株式会社村田製作所 赤外線検出回路及び赤外線センサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987311A (en) * 1975-04-25 1976-10-19 Xerox Corporation Shift register utilizing amorphous semiconductor threshold switches
DE3202819C2 (de) * 1982-01-29 1984-12-20 Preh, Elektrofeinmechanische Werke Jakob Preh Nachf. Gmbh & Co, 8740 Bad Neustadt Infrarotdetektor und Verfahren zum Herstellen
US5306648A (en) * 1986-01-24 1994-04-26 Canon Kabushiki Kaisha Method of making photoelectric conversion device
JPH04344430A (ja) 1991-05-21 1992-12-01 Murata Mfg Co Ltd 焦電型赤外線センサ
JP2558967B2 (ja) 1991-06-04 1996-11-27 浜松ホトニクス株式会社 赤外線検出装置
JPH051947A (ja) 1991-06-26 1993-01-08 Murata Mfg Co Ltd 焦電型赤外線センサの製造方法
US5576222A (en) * 1992-01-27 1996-11-19 Tdk Corp. Method of making a semiconductor image sensor device
US5352895A (en) * 1992-02-19 1994-10-04 Nohmi Bosai Ltd. Pyroelectric device
JP2753920B2 (ja) 1992-02-19 1998-05-20 能美防災株式会社 焦電素子
DE19641777C2 (de) * 1996-10-10 2001-09-27 Micronas Gmbh Verfahren zum Herstellen eines Sensors mit einer Metallelektrode in einer MOS-Anordnung

Also Published As

Publication number Publication date
US6395575B1 (en) 2002-05-28
CN1189723C (zh) 2005-02-16
WO1999061870A1 (fr) 1999-12-02
EP0999431B1 (en) 2008-04-16
EP0999431A4 (en) 2005-04-13
EP0999431A1 (en) 2000-05-10
DE69938531T2 (de) 2009-06-10
KR20010022088A (ko) 2001-03-15
DE69938531D1 (de) 2008-05-29

Similar Documents

Publication Publication Date Title
US6628501B2 (en) Capacitive moisture sensor
JP5284564B2 (ja) 垂直方向に配列されたナノロッドおよびその配列への電気接点をつくるためのシステムおよび方法
US8394673B2 (en) Semiconductor device
JP2007535662A (ja) 統合電子センサ
US20080308886A1 (en) Semiconductor Sensor
EP0762096A1 (en) Vertically integrated sensor structure and method for making same
EP1792320A2 (en) Resistive elements using carbon nanotubes
ATE295539T1 (de) Injektionssensoren mit molekularem draht
CN101078663A (zh) 制造使用soi晶片的压力传感器的方法
EP2093811A3 (en) Package structure of compound semiconductor device and fabricating method thereof
US11435310B2 (en) Humidity sensor
CN1215316C (zh) 面压分布传感器及其制造方法
CN1189723C (zh) 传感器及其使用的电阻元件的制造方法
CN110018202B (zh) 气体传感器封装件和包括其的感测设备
US4515653A (en) Method for production of a moisture sensor
CN1708850A (zh) 芯片级肖特基器件
US5491425A (en) Apparatus for evaluating characteristics of semiconductor device and method of evaluating characteristics of semiconductor device using the same
CN88102294A (zh) 结露传感器
CN106680333A (zh) 一种湿敏电容及其制造方法
EP1113498A3 (en) Voltage variable capacitor with improved c-v linearity
CN1234158C (zh) 封装基板制造方法及其结构
US2908851A (en) Voltage sensitive semiconductor capacitor
JP3218514B2 (ja) 回路装置とその製造方法
CN1685515A (zh) 半导体集成装置及其制造方法
CN1147719C (zh) 半导体压力传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee