CN1270332C - 电流互感器和电流互感器系统 - Google Patents

电流互感器和电流互感器系统 Download PDF

Info

Publication number
CN1270332C
CN1270332C CNB031603920A CN03160392A CN1270332C CN 1270332 C CN1270332 C CN 1270332C CN B031603920 A CNB031603920 A CN B031603920A CN 03160392 A CN03160392 A CN 03160392A CN 1270332 C CN1270332 C CN 1270332C
Authority
CN
China
Prior art keywords
winding
mentioned
printed board
metal forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031603920A
Other languages
English (en)
Other versions
CN1497622A (zh
Inventor
斋藤实
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1497622A publication Critical patent/CN1497622A/zh
Application granted granted Critical
Publication of CN1270332C publication Critical patent/CN1270332C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/003Printed circuit coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本发明涉及提供一种电流互感器和电流互感器系统,在具有用印制板制作的罗果夫斯基线圈的电流互感器中,绕组所包围的面积与回路线所包围的面积相等,能抑制外部磁场引起的电压的产生,使电流测量误差变小。在多层印制板(7)的外侧的基板面(11a、11b)和基板内层(12a、12c)上形成延伸成放射状的金属箔(2a、2b)和(2a′、2b′),通过穿过基板将该金属箔(2a、2b)和(2a′、2b′)电连接来形成多重绕组,并且,在印制板(7)的内层(12b)上形成圆周状金属箔(3a、3a′),与多重绕组电气连接作为回路线,而且,将圆周状金属箔(3a、3a′)的半径决定为,使得绕组所包围的面积与回路线所包围的面积相等。

Description

电流互感器和电流互感器系统
技术领域
本发明涉及为了对在输变电设备等中通电的主电路交流电流量进行测量而使用的电流互感器和电流互感器系统,尤其涉及利用罗果夫斯基线圈实现电子化的电流互感器和电流互感器系统。
背景技术
一般,为了测量输变电设备通电的交流电流,大都使用贯通形电流互感器。过去的贯通形电流互感器是在圆环状卷心上卷绕次级线圈,使测量对象的初级电流通电的导体在卷心中央的开口部贯通的电流互感器。这种电流互感器中,作为上述卷心有的采用铁心,有的采用非磁性材料。其中,采用非磁性材料的称为空心电流互感器或罗果夫斯基线圈,它能获得不饱和的优良线性特性。
图14表示一般的罗果夫斯基线圈的结构。该图中所示的罗果夫斯基线圈1,其结构是:在非磁性材料的卷心6的整个周围上按一定间隔从P点到Q点卷绕绕组2,使其回路线3从Q点到P点在与绕组2的卷绕前进方向相反的方向上沿卷心返回。通常回路线3通过卷心6和绕组2之间返回。并且,通过主电路交流电流的导体5贯通卷心6的开口部6a内。
这时,在端子4、4之间产生与导体5上通电的初级电流的时间性变化的大小成正比的电压。所以,通过对该电压进行积分,并乘上由绕组形状决定的常数,即可测量出上述初级电流。若是理想的罗果夫斯线圈,则端子4、4之间的电压不受导体5和卷心6的中心位置的偏差和罗果夫斯基线圈外部磁场等的影响。
在此,所谓理想的罗果夫斯基线圈是指具有以下特性的线圈:(a)绕组2的绕距(绕线间隔)一定,(b)绕组2包围的面积和回路线3包围的面积相等,(c)卷心6的断面积在整个圆周上是一定的,而且,不受温度影响,(d)绕组2在卷心6的整个圆周上完全缠满,没有落下的部分。
但是,在制作图14所示的罗果夫斯基线圈的情况下,很难实现上述(a)条件,也就是说,很难在保持一定绕距的情况下将绕组2卷绕在卷心6上。为实现该条件,通过在卷心6上设置对绕组2的位置进行固定的沟槽或凸起,能保持一定的绕距。但为此需要特殊的卷心和绕线器,罗果夫斯基线圈的价格变得非常高。
为解决这一问题,过去采用图15所示的罗果夫斯基线圈结构,在该图中所示的罗果夫斯基线圈中,在中央有开口部9的印制板7的表面、和背面上均形成了金属箔2e,该金属箔2e与从开口部9的中心扩散成放射状的多条直线相一致。并且,印制板7的一个面的放射状金属箔和对面一侧的放射状金属箔之间,利用穿通印制板7的电镀的孔进行电连接,这样来形成绕组2和回路线3。
在图15所示的例中,回路线3也形成绕组,这样,与单位电流、单位频率对应的端子4、4之间的输出电压升高,罗果夫斯基线圈的灵敏度提高。而且,绕组2的卷绕前进方向为顺时针方向,回路线3则按反时针方向卷绕。(例如,参照专利文献1)。
根据这种现有技术,则采用一般的印制板制作技术,就能够价格低廉地制作绕组2和回路线3的绕距准确一定的罗果夫斯基线圈。因此,在很大程度上能实现上述(a)的条件。
再者,利用印制板上形成的金属箔来构成绕组的罗果夫斯基线圈,以下称为印制板形罗果夫斯基线圈。
专利文献1:特开平6-176947号公报(第3页,图1、图2)。
但是,在上述过去的罗果夫斯基线圈中,不能完全满足上述(b)条件,即绕组2所包围的面积和回路线3所包围的面积相等的条件。所以容易受外部磁场的影响,这是电流测量时的误差增大的原因。
图16是模式图,它表示在图14所示的一般罗果夫斯基线圈1的绕组2上,穿通卷心6的中央开口部6a的方向的外部磁场产生的磁通Φ进行交链的状态。此外,图17是模式图,它表示在图14所示的一般罗果夫斯基线圈1的回路线3上,相同的外部磁场产生的磁通Φ进行交链的状态。
在图14所示的罗果夫斯基线圈1的端子4、4之间产生的电压,由于绕组2的卷绕前进方向和回路线3的卷绕前进方向相反,所以,等于图16所示的点P-Q之间产生的电压和图17所示的点Q-R之间产生的电压之差。在此,例如若外部磁场所产生的磁通Φ在罗果夫斯基线圈1的整个面上是相同的,则在图16中的绕组2包围的面积A和图17中的回路线3包围的面积B不相等的情况下,在端子4、4之间出现由外部磁场引起的电压。该电压与本来应当测量的初级电流无关,所以成为测量误差的原因。
产生外部磁场的原因有以下情况。例如,如图18所示,在导体5有弯曲的情况下,或者在罗果夫斯基线圈1的外部存在通电中的导体8的情况下,或者,如图19所示,相对于罗果夫斯基线圈1来说导体5被布置成倾斜方向的情况等。在实际的输变电设备中使用罗果夫斯基线圈1的情况下,不可能完全消除上述原因。加之,通常现实的外部磁场所产生的磁通Φ不同,所以,其影响更加复杂。
通过使绕组2包围的面积A和回路线3包围的面积B相等,更好的办法是通过使绕组2的形状和回路线3的形状完全相同,能够减小误差。但在图14所示的一般罗果夫斯基线圈1中,尤其在制造时很难把回路线3包围的面积控制到一定值,所以,很难避免外部磁场的影响。
另一方面,在图15所示的罗果夫斯基线圈1中,能大大减小外部磁场的影响,但由于回路线3包围的面积比绕组2包围的面积小的结构上的原因,受到外部磁场的影响。
那么,前面说明了罗果夫斯基线圈受到的外部磁场的影响。但这里要说明另一个问题。
也就是说,通过采用图15所示的罗果夫斯基线圈,能大大减小外部磁场的影响,这一点前面已讲过。因此,问题是不能将图14所示的一般的罗果夫斯基线圈,简单地用图15所示的罗果夫斯基线圈来置换。
两者不能简单地进行置换的原因是:相对于初级电流的罗果夫斯基线圈1的次级输出电压的大小(相当于铁心形电流互感器中所述的地方的变流比),在图15所示的罗果夫斯基线圈中不能达到图14所示的一般罗果夫斯基线圈的电平的大小。
众所周知,罗果夫斯基线圈的次级输出电压与线圈匝数和1匝的截面积的积成正比。在图14所示的一般的罗果夫斯基线圈1中,通常,与额定初级电流相对的次级输出电压为数10V。在图14的罗果夫斯基线圈1中,(在安装空间的限制所允许的范围内)能任意决定1匝截面积,并且,线圈的匝数也可以调整成2重绕组、3重绕组,以便获得必要的次级输出电压,所以容易实现数10V的次级输出电压。
若能从罗果夫斯基线圈中获得数10V的次级输出电压,则从设置有罗果夫斯基线圈的现场的变电设备到设置有保护控制装置的总变电所之间,在不会大受噪声影响的情况下(也就是说,不会出现影响保护控制装置的信号的恶化),能传输模拟电压信号。
然而,在图15所示的罗果夫斯基线圈中,由利用在印制板上形成的金属箔来构成线圈的结构上的原因,绕组(线卷)匝数、1匝的截面积均在其大小方面有物理的极限。虽然绕组匝数随印制板大小和金属箔宽度而变化,但最大的极限是1000匝左右,并且,1匝的截面积受到的限制是基片厚度的制造极限充其量不过是5mm~6mm。
所以,图15所示的罗果夫斯基线圈的次级输出电压,最大极限为100mv/kA左右。即使串联连接10个罗果夫斯基线圈,也只能使次级输出电压达到1V/kA左右,从耐噪声的观点出发,很难把模拟电压信号传输到总变电所。
发明内容
本发明正是为解决上述现有技术的问题而提出的,其目的在于提供一种电流互感器和电流互感器系统,该电流互感器具有罗果夫斯基线圈,该罗果夫斯基线圈在存在穿通卷心中央开口部的外部磁场的情况下,能防止外部磁场影响电流测量,并能进行高精度的电流测量,且其价格低廉。
为达到上述目的,本发明的第一方案,其特征在于,具有多层结构的印制板和罗果夫斯基线圈,所述印制板在中央具有导体穿通的开口部,且具有基板表面、基板背面以及被这些基板表面和基板背面夹持的多个基板内层;所述罗果夫斯基线圈,在上述基板表面、基板背面和基板内层上,形成大致以上述开口部中心为中心扩散成放射状的多条直线形状的放射状金属箔;通过在厚度方向上贯通印制板的电镀的孔,将任意2层之间的放射状金属箔电连接形成一个绕组;通过在厚度方向上贯通印制板的电镀孔,将至少其他2层之间的放射状金属箔电连接形成上述绕组以外的别的绕组;并至少在一个层上形成大致以上述开口部中心为中心的圆周状金属箔,将上述多个绕组串联电连接,并且,将上述多个绕组和上述圆周状金属箔串联电连接,将上述圆周状金属箔作为回路线。
根据本发明,能用通过过去的一般印制板制作技术在印制板上形成的金属箔来构成绕组,并获得多重绕组结构的罗果夫斯基线圈,达到与过去的印制板形罗果夫斯基线圈同等的误差性能,并且,以和过去的印制板形罗果夫斯基线圈同等的印制板尺寸,能获得与多重绕组匝数相对应的倍数的次级输出电压,与过去的印制板形罗果夫斯基线圈相比能提高耐噪声性能。
第四方案,其特征在于:具有多层结构的印制板,该印制板在中央具有导体穿通的开口部,且距有基板表面、基板背面以及被这些基板表面和基板背面夹持的多个基板内层;在上述基板表面、基板背面和基板内层上,形成大致以上述开口部中心为中心扩散成放射状的多条直线形状的放射状金属箔;通过在厚度方向上贯通印制板的电镀的孔,将任意2层之间的放射状金属箔电连接形成一个绕组,具有(2×N)个这样形成的绕组;上述绕组中,N个绕组和其余的N个绕组以互相相反的方向卷绕,将上述(2×N)个绕组串联电连接。
根据本发明,能用通过过去的一般印制板制作技术在印制板上形成的金属箔来构成绕组,获得偶数个多重绕组结构的罗果夫斯基线圈,达到与过去的印制板形罗果夫斯基线圈同等的误差特性,并且,以和过去的印制板形罗果夫斯基线圈同等的基片尺寸,能获得与多重叠匝数相对应的倍数的次级输出电压,与过去的印制板形罗果夫斯基线圈相比能提高耐噪声性能。
第七方案,其特征在于,具有多层结构的印制板和罗果夫斯基线圈,所述印制板在中央具有导体穿通的开口部,且具有基板表面、基板背面以及被这些基板表面和基板背面夹持的多个基板内层;所述罗果夫斯基线圈,在上述基板表面、基板背面和基板内层上,具有金属箔由大致以上述开口部中心为中心分别布置成放射状的多条金属箔形成的层、和金属箔由以上述开口部的中心为中心的圆周状金属箔形成的层;通过在厚度方向上贯通印制板的电镀的孔,具有上述放射状的多个金属箔的层中任意2层之间的放射状金属箔电连接形成一个绕组,具有(2×N+1)个这样形成的绕组;在上述印制板上构成的上述绕组中,(N+1)个绕组和其余的N个绕组以互相相反的方向卷绕;将上述(2×N+1)个绕组和上述圆周状金属箔串联电连接;而且,使上述圆周状金属箔的卷绕方向和上述其余的N个绕组为同一方向,将其作为回路线。
根据本发明,能用通过过去的一般印制板制作技术在印制板上形成的金属箔来构成绕组,获得奇数个多重绕组结构的罗果夫斯基线圈,达到与过去的印制板形罗果夫斯基线圈同等的误差性能,并且,以和过去的印制板形罗果夫斯基线圈同等的印制板尺寸,能获得与多重匝数相对应的倍数的次级输出电压,与过去的印制板形罗果夫斯基线圈相比能提高耐噪声性能。
第九方案,其特征在于,具有多层结构的印制板和罗果夫斯基线圈,所述印制板在中央具有导体穿通的开口部,且具有基板表面、基板背面以及被这些基板表面和基板背面夹持的多个基板内层;所述罗果夫斯基线圈,在上述基板表面、基板背面和基板内层上,形成大致以上述开口部中心为中心扩散的多条金属箔;通过在厚度方向上贯通印制板的电镀的孔,将任意2层之间的金属箔电连接形成多个绕组;将上述多个绕组串联连接并检测出输变电设备的主电路交流电流,输出表示该交流电流量的模拟电压信号。第九方案的特征还在于还具有:将把上述模拟电压信号转换成数字电信号的模/数转变换器、将上述数字电信号转换成数字光信号的电/光转换器,还具有:布置在上述罗果夫斯基线圈附近的检测单元、和传输上述数字光信号的光传输装置。
根据本发明,罗果夫斯基线圈的输出电压为与流过导体的主电路交流电流量的微分值成正比的模拟电压信号,其输入到检测单元内。输入到检测单元20内的模拟电压信号由模/数转换器转换成数字电信号,再由电/光转换器转换成数字光信号,经过光传输装置被传输到保护控制装置等的上位系统中。
发明效果
如以上说明的那样,根据本发明,能利用一般的印制板的多层板制作技术,在多层印制板外侧的基板面和基板内层上形成金属箔,并通过贯通基板使该金属箔进行电连接,来形成多个绕组;并且,在基板内层上形成作为回路线的金属箔,并将该回路线和多个绕组串联电连接;而且,将绕组的半径决定为,使得绕组所包围的面积与回路线所包围的面积相等,因此,能获得不受穿过罗果夫斯基线圈的中央开口部的外部磁场的影响、耐噪声性能良好、且能进行高精度电流测量、价格低廉的电流互感器。
而且,通过将由印制板构成的多重绕组罗果夫斯基线圈、和在其附近布置的、将罗果夫斯基线圈的次级输出电压转换成数字光信号的检测单元组合,能获得不受穿过罗果夫斯基线圈的中央开口部的外部磁场的影响、耐噪声性能良好,能进行高精度电流测量、且价格低廉的电流互感器系统。
附图说明
图1是表示本发明第1实施方式的罗果夫斯基线圈的结构的斜视图。
图2是表示本发明第1实施方式的印制板的结构的正视图。
图3是表示沿III-III线切断图1,沿箭头方向观看的断面图。
图4是表示本发明第2实施方式的印制板的具体例的外形图。
图5是表示本发明第2实施方式的罗果夫斯基线圈的结构的斜视图。
图6是表示本发明第2实施方式的印制板的结构的正视图。
图7是表示沿VII-VII线切断图5,沿箭头方向观看的断面图。
图8是表示本发明第3实施方式的印制板的结构的断面图。
图9是表示本发明第4实施方式的印制板的结构的断面图。
图10是表示本发明第5实施方式的罗果夫斯基线圈的结构的斜视图。
图11是表示本发明第6实施方式的电流互感器系统的结构的方框图。
图12是表示本发明第7实施方式的电流互感器系统的结构的方框图。
图13是表示本发明第7实施方式的线路单位的多个交流电流量作为一个综合传输信号进行传输的情况下的系统结构例的方框图。
图14是表示过去的一般的罗果夫斯基线圈的结构的正视图。
图15是表示过去的另一个的罗果夫斯基线圈的结构的正视图。
图16是对图14所示的罗果夫斯基线圈中在绕组上交链着内外部磁场的状态进行说明的模式图。
图17是对图14所示的罗果夫斯基线圈中在回路线上交链着内外部磁场的状态进行说明的模式图。
图18是对外部磁场产生的原因的一例进行说明的斜视图。
图19是对外部磁场产生的原因的另一例进行说明的斜视图。
具体实施方式
以下参照附图,详细说明本发明的电流互感器的实施方式。图1、图2、图3表示本发明的第1实施方式的电流互感器的罗果夫斯基线圈的结构。在本实施方式中,说明在5层结构的印制板上作为绕组形成了双绕组的情况。
在图1中,印制板7是5层结构的印制板,其中包括:基板表面11a、基板背面11b、以及被夹持在该基板表面11a和基板背面11b中间的三层基板内层12a、12b、12c。印制板7在中央具有圆形的开口部9,通过主电路交流电流的导体穿过该开口部9。
图2是从开口部9的中心轴方向来观看图1所示的印制板7的外形图。
图3是沿III-III线切断图1所示的印制板7,从箭头方向观看的示意断面图。
按照本实施方式的电流互感器的罗果夫斯基线圈1,在印制板7的基板表面11a(第1层)上形成大致以开口部9的中心为中心扩散成放射状的多个直线状的放射状金属箔2a,在基板背面11b(第5层)上形成同样的放射状金属箔2b,利用在厚度方向上穿通印制板的电镀穿通孔2c,来对基板表面11a(第1层)的放射状金属箔2a和基板背面11b(第5层)的放射状金属箔2b之间进行电气连接。
利用这些放射状金属箔2a、放射状金属箔2b和穿通孔2c在印制板7上形成一个绕组2。
并且,在图1和图2中未示出,但如图3所示,在印制板7的基板内层12a(第2层)上,形成大致以开口部9的中心为中心扩散成放射状的形成为多条直线形状的放射状金属箔2a′;在基板内层12c(第4层)上形成同样的放射状金属箔2b′,利用在厚度方向上贯通印制板的电镀的穿通孔2c′,将基板内层12a(第2层)的放射状金属箔2a′和基板内层12c(第4层)的放射状金属箔2b′之间电连接。
利用在该基板内层上形成的放射状金属箔2a′、放射状金属箔2b′、和穿通孔2c′,在印制板7上形成上述绕组2以外的另一个绕组2′,由在印制板7上形成的绕组2和绕组2′来形成双绕组。
并且,在印制板7的厚度方向的大致中央处的基板内层12b(第3层)上,形成有大致以开口部9的中心为中心的圆周状金属箔3a和圆周状金属箔3a′。并且,该圆周状金属箔3a和圆周状金属箔3a′电连接,成为对绕组2和绕组2′的回路线,在Q点上绕组2、绕组2′、圆周状金属箔3a、圆周状金属箔3a′被串联电连接。
在图2中,用实线表示基板表面11a(第1层)的放射状金属箔2a;用虚线表示基板背面11b(第5层)的放射状金属箔2b。(图中未示出第2层和第4层的放射状金属箔2a′和2b′)此外,用2点划线表示圆周状金属箔3a和圆周状金属箔3a′。
此外,印制板7的基板内层12b(第3层)中圆周状金属箔3a的半径被定为,使得由基板表面11a(第1层)的放射状金属箔2a和基板背面11b(第5层)的放射状金属箔2b构成的绕组2所包围的面积等于作为回路线的圆周状金属箔3a所包围的面积。并且,印制板7的基板内层12b(第3层)中圆周状金属箔3a′的半径被定为,使得由基板内层12a(第2层)的放射状金属箔2a′和基板内层11c(第4层)的放射状金属箔2b′构成的绕组2′所包围的面积等于作为回路线的圆周状金属箔3a′所包围的面积。
在这些印制板上,利用过去一般的印制板制作技术,就可将绕组2、绕组2′、圆周状金属箔3a和圆周状金属箔3a′制作在十分准确的位置上。
图4是印制板形罗果夫斯基线圈的印制板7的具体外形图的一例,印制板7的外形由正8角形来构成,在正8角形的各顶点部分设置了安装用的钻孔10。
根据具有上述结构的本发明的第1实施方式的电流互感器,能获得以下作用和效果。
也就是说,在利用印制板上形成的金属箔构成绕组的印制板形罗果夫斯基线圈中,能提供多重绕组结构的罗果夫斯基线圈,因此,能达到和过去的印制板形罗果夫斯基线圈同等的误差性能,因此,利用和过去的印制板形罗果夫斯基线圈同等的基板尺寸,能获得与多重卷绕数相对应的倍数的次级输出电压。所以,与过去的印制板形罗果夫斯基线圈相比,具有优良的耐噪声性能。
并且,如图18或图19所示,在导体上存在有弯曲的情况或在罗果夫斯基线圈的外部存在有导体的情况,或者导体布置在相对于罗果夫斯基线圈倾斜的方向上的情况等,有由于罗果夫斯基线圈布置的原因而存在穿过印制板7的中央开口部9的方向的外部磁场的情况。即使在这些情况下,也能通过将圆周状金属箔3a、3a′的半径决定为,使得多个绕组所包围的面积的总计和多个回路线所包围的面积的总计相等的大小,由此,仍能减少外部磁场的影响。
所以,即使在存在有穿过印制板7的中央开口部9的方向的外部磁场的情况下,多个绕组所包围的面积的总计和多个回路线所包围的面积的总计相等,因此,由于外部磁场所产生的磁通交链而在多个绕组上产生的电压的总计和在多个回路线上产生的电压的总计,其大小大致相同,并其极性相反,大致互相抵消。
所以,能防止因外部磁场而电流测量受影响,能实现高精度的电流测量。
并且,在印制板形罗果夫斯基线圈中,利用一般的印制板制作技术,就可将多重绕组和回路线制作在准确的位置上,所以,能以低成本制作出高精度的罗果夫斯基线圈。
尤其像双绕组、三重绕组结构那样,复绕组的匝数比较少的情况下,作为回路的圆周状金属箔也少,只有2个或3个,所以,若把多个圆周状金属箔全部布置在同一基板内层上,则能减少印制板层数,能制作出更廉价的印制板。
此外,通过使印制板7的外形为正8角形,能将印制板7外形以加工费低的直线形状来加工,同时与正方形等形状相比能减小罗果夫斯基线圈的安装空间。尤其与将外形制成印制板加工费高的圆形的情况相比较,正8角形的情况下的安装空间大致相同。
而且,在本实施方式中,以在5层结构的印制板上形成双绕组作为线圈的情况为例进行了说明,但在7层结构的印制板上形成三重绕组的情况下,也能构成5重绕组、6重绕组……等更多重绕组,在此情况下也能获得与第1实施方式相同的作用效果。
在上述第1实施方式中,将作为回路线的圆周状金属箔3a、3a′均形成在基板内层12b(第3层)上。与此相对地,也可以把印制板7作成6层结构,把圆周状金属箔3a形成在第3层上;把圆周状金属箔3a′形成的第4层上。在此情况下,在第1实施方式中形成在第4层、第5层上的放射状金属箔,分别形成在第5层、第6层上。
而且,在此以第1实施方式的变形为例,在更多重绕组结构的情况下,例如三重绕组结构的情况下,圆周状金属箔为3个,也可以将其分别单独形成在3层的基板内层上。并且,也可以把2个形成在同一内层上,另一个形成在别的内层上。在更多重绕组结构的情况下也同样。
在这样的变形例中,也能获得与第1实施方式相同的作用效果,并且具有这样的优点,即,在多重绕线的匝数比较多的情况下,通过将作为回路线的圆周状金属箔分开形成在多个内层上,来容易调节回路线所包围的面积。但是不言而喻,从降低成本的观点出发最好尽量减少构成回路线的内层的数量。
以下参照附图,详细说明本发明的第2实施方式。图5、图6、图7是表示本发明的第2实施方式的电流互感器的罗果夫斯基线圈的结构的图。在本实施方式中,对在8层结构的印制板上形成4重绕组作为线圈的情况进行说明。
在图5中,印制板7是8层结构的印制板,其中包括:基板表面11a、基板背面11b、以及被夹持在上述基板表面11a和基板背面11b之间的6个基板内层12a、12b、12c、12d、12e、12f。印制板7在中央处具有圆形的开口部9,其中穿过主电路交流电流通过的导体。
图6是从开口部9的中心轴方向观看图5所示的印制板7的外形图。
图7是将图5所示的印制板7沿VII-VII线切断,并从箭头方向观看的示意断面图。
根据本实施方式的电流互感器的罗果夫斯基线圈1,在印制板7的基板表面11a(第1层)上,形成大致以开口部9的中心为中心扩散成放射状的形成为多个直线状的放射状金属箔2a-1,在其板内层12a(第2层)上形成相同的放射状金属箔2b-1,利用在厚度方向上贯通印制板的电镀穿通孔2c-1,将基板表面11a(第1层)的放射状金属箔2a-1和基板内层12a(第4层)的放射状金属箔2b-1之间电连接。
由放射状金属箔2a-1、放射状金属箔2b-1和穿通孔2c-1在印制板7上形成一个绕组2-1。
并且,在图5和图6中未示出,但如图7所示,在印制板7的基板内层12b(第3层)上,形成大致上以开口部9的中心为中心扩散成放射状的形成为多条直线形状的放射状金属箔2a-2;在基板内层12a(第4层)上形成同样的放射状金属箔2b-2,通过在厚度方向上穿通印制板的电镀穿通孔2c-2,基板内层12b(第3层)的放射状金属箔2a-2和基板内层12c(第4层)的放射状金属箔2b-2之间被电连接。
由在这些基板内层上形成的放射状金属箔2a-2、放射状金属箔2b-2、和穿通孔2c-2,在印制板7上形成与上述第1绕组2-1不同的其他第2绕组2-2。
同样,在印制板7上形成与上述第1绕组2-1、第2绕组2-2相同结构的第3绕组2-3、第4绕组2-4;在印制板7上形成4重绕组。
在图6中,基板表面11a(第1层)的放射状金属箔2a-1用实线表示;基板内层12a(第2层)的放射状金属箔2b-1用虚线表示(从第3层到第8层的放射状金属箔2a-2到2b-4在图中未示出)。
在此,绕组2-1和绕组2-3在图6中以开口部9的中心轴为中心,沿图示的顺时针方向卷绕形成绕组。另一方面,绕组2-2和绕组2-4在图6中以开口部9的中心轴为中心,沿图4的反时针方向卷绕形成绕组。绕组2-1、绕组2-2、绕组2-3、绕组2-4串联电连接。
此外将各绕组的形状决定为,使得绕组2-1、绕组2-3所包围的面积的总计与绕组2-2和绕组2-4所包围的面积的总计相等。
根据具有上述结构的本发明的第1实施方式的电流互感器,则能获得以下作用和效果。
也就是说,利用印制板上形成的金属箔构成的印制板型罗果夫斯基线圈,能提供多重结构的罗果夫斯基线圈,因此,能达到和过去的印制板形罗果夫斯基线圈同等的误差性能,此外,还能够以和过去的印制板形罗果夫斯基线圈同等的基板尺寸,获得与多重绕组匝数对应的倍数的次级输出电压。所以,与过去的印制板型罗果夫斯基线圈相比,具有耐噪声性能优良的特性。
并且,在本实施方式的电流互感器的罗果夫斯基线圈中,在印制板7上形成的一个方向(顺时针旋转)上卷绕的绕组2-1、2-3,相当于图14所示的过去的罗果夫斯基线圈的绕组2;在其相反方向(反时针方向)上卷绕的绕组2-2、2-4,相当于过去的回路线3。为了减小外部磁场的影响,设计成在一个方向上卷绕的多个绕组所包围的面积的总计与在其相反方向上卷绕的多个绕组所包围的面积的总计相等即可,这可利用一般的印制板制造技术容易制作出精确的绕组。
所以,即使在存在有穿过印制板7的中央开口部9的外部磁场的情况下,因外部磁场而交链的磁通Φ在互相相反方向上卷绕的多个绕组中也大致相同的。所以,因磁通Φ在互相相反方向上卷绕的多个绕组中分别产生的电压互相抵消,因此,能防止因外部磁场而电流测量受影响,并能够实现高精度的电流测量。
而且,在本实施方式中,以在8层结构的印制板上形成4重绕组作为线圈的情况为例进行了说明。但也可以构成6重绕组、8重绕组……等多重绕组(但只能是偶数),在此情况下也能获得与第2实施方式相同的作用效果。
并且,在本实施方式中,4重绕组交替地形成了顺时针方向卷绕的绕组和反时针方向卷绕的绕组,但在将第1和第2绕组按顺时针方向卷绕,并将第3和第4绕组按反时针方向卷绕而构成的情况下,也能获得同样的作用效果。
再者,在(2×N)个绕组中,只要将N个绕组按顺时针方向卷绕,将其余的N个绕组按反时针方向卷绕,那么将其按任意顺序层叠,均能获得同样的作用效果。
以下参照附图,详细说明本发明的第3实施方式。图8表示本发明的第3实施方式的电流互感器的罗果夫斯基线圈的结构。
在本实施方式中,对在8层结构的印制板上形成4重绕组的情况进行说明。
在图8中,印制板7是8层结构的印制板,其包括:基板表面11a、基板背面11b、以及被夹持在该基板表面11a和基板背面11b中间的6个基板内层12a、12b、12c、12d、12e、12f。印制板7在中央具有圆形的开口部9,通过主电路交流电流的导体穿过该开口部9。
如图所示,在印制板7的基板表面11a(第1层)上,形成大致以开口部9的中心为中心扩散成放射状的形成为多个直线状的放射状金属箔2a-1,在基板内层12c(第4层)上形成同样的放射状金属箔2b-1,通过在厚度方向上穿通印制板的电镀穿通孔2c-1,基板表面11a(第1层)的放射状金属箔2a-1和基板内层12c(第4层)的放射状金属箔2b-1之间电连接。
由这些放射状金属箔2a-1、放射状金属箔2b-1和穿通孔2c-1,在印制板7上形成顺时针方向卷绕的第1绕组2-1。
同样,在印制板7的基板内层12a(第2层)上,形成大致上以开口部9的中心为中心扩散成放射状的形成为多个直线形状的放射状金属箔2a-2;在基板内层12b(第3层)上形成同样的放射状金属箔2b-2,通过在厚度方向上穿通印制板的电镀穿通孔2c-2,基板内层12a(第2层)的放射状金属箔2a-2和基板内层12b(第3层)的放射状金属箔2b-2之间电连接。由在这些基板内层上形成的放射状金属箔2a-2、放射状金属箔2b-2以及穿通孔2c-2,在印制板7上形成在反时针方向上卷绕的第2绕组2-2。
按顺时针方向卷绕的绕组2-1和绕组2-2串联电连接,形成1组双绕组2×-1。
以同样的结构,在印制板7上形成按反时针方向卷绕的第3绕组2-3和第4绕组2-4,绕组2-3和绕组2-4串联电连接,形成另一组双绕组2×-2。
在此,第1组的双绕组2×-1和另一组的双绕组2×-2,以互为镜像对象的关系来构成绕组。
互相成镜像关系的2个双绕组2×-1和2×-2被串联电连接。
根据具有上述结构的本发明的第3实施方式的电流互感器,除了第2实施方式的电流互感器的作用效果外,还能获得以下效果。
即,在印制板7上形成的一个方向(顺时针方向)上卷绕的1组多重绕组2×-1,相当于图14所示的过去的罗果夫斯基线圈的绕组2,在其相反方向(反时针方向)上卷绕的另一组多重绕组2×-2,相当于过去的回路线3。在本发明中,在一个方向(顺时针方向)上卷绕的1组多重绕组2×-1、和在其相反方向(反时针方向)上卷绕的另一组多重绕组2×-2,形成相互镜像关系,所以,2个多重绕组2×-1、2×-2所包围的面积能够非常准确地相等。因此,即使在存在有穿过印制板7的中央开口部9的这种外部磁场的情况下,因外部磁场而使2个多重绕组交链的磁通Φ也是相同的,所以,因磁通Φ在2个绕组中分别产生的电压互相抵消。因此,能防止因外部磁场而电流测量受影响,实现高精度的电流测量。
而且,在本实施方式中,以在8层结构的印制板上作为线圈形成4重绕组的情况为例进行了说明。但也可以构成6重绕组、8重绕组……等多重绕组(但只能是偶数),在此情况下也能获得相同的作用效果。
以下参照附图,详细说明本发明的第4实施方式。第4实施方式是将第2实施方式的罗果夫斯基线圈1的结构进行变形的实施例。用图9所示的印制板的示意断面图来进行说明。
在本实施方式中,对在7层结构的印制板上作为绕组形成三重绕组的情况进行说明。
在图9中,印制板7是7层结构的印制板,其包括:基板表面11a、基板背面11b、以及被夹持在该基板表面11a和基板背面11b中间的五个基板内层12a、12b、12c、12d、12e。印制板7在中央具有圆形的开口部9,通过主电路交流电流的导体穿过该开口部9。
如图所示,罗果夫斯基线圈1,在印制板7的表面基板11a(第1层)上形成大致以开口部9的中心为中心扩散成放射状的形成为多个直线状的放射状金属箔2a-1,在基板内层12a(第2层)上形成同样的放射状金属箔2b-1,通过在厚度方向上穿通印制板的电镀穿通孔2c-1,表面基板11a(第1层)的放射状金属箔2a-1和基板内层12a(第2层)的放射状金属箔2b-1之间电连接。
由这些放射状金属箔2a-1、放射状金属箔2b-1和穿通孔2c-1,在印制板7上形成第1绕组2-1。
同样,在印制板7的基板内层12b(第3层)和基板内层12c(第4层)之间形成第2绕组2-2;在基板内层12e(第6层)和背面基板11b(第7层)之间形成第3绕组2-3。
这样,在印制板7上由绕组2-1、绕组2-2和绕组2-3形成三重绕组。
并且,在印制板7的厚度方向的大致中央处的基板内层12d上,形成有大致以开口部9的中心为中心的圆周状金属箔3a。
在此,绕组2-1在印制板7上按图示的顺时针方向卷绕,绕组2-3沿图示的反时针方向卷绕。
绕组2-3形成为可起到作为对绕组2-1的回路线的作用。也就是说,将该绕组形成为使得绕组2-1所包围的面积与绕组2-3所包围的面积相等。
另一方面,圆周状金属箔3a形成为使其成为对绕组2-2的回路线。也就是说,将印制板7的基板内层12d中的圆周状金属箔3a的半径决定为,使得绕组2-2所包围的面积与作为回路线的圆周状金属箔3a所包围的面积相等。
这样形成的绕组2-1、绕组2-2、圆周状金属箔3a、绕组2-3串联电连接。
在具有以上结构的第4实施方式的电流互感器中,除具有第2实施方式的电流互感器的作用效果外,还能获得以下效果。
也就是说,本发明的第2实施方式,其适用对象限于多重绕组的数量为偶数个的情况,但本实施方式能适用于多重绕组的数量为奇数的情况。多重绕组的数量为奇数,即(2×N+1)的情况下,关于在互相反方向上卷绕的2×N个绕组2-1、2-3,可适用第2实施方式的观点,来减小外部磁场所造成的误差。关于其余的一个绕组2-2,则可适用第1实施方式的观点,通过调节作为回路线的圆周状金属箔3a所包围的面积,来减小外部磁场所造成的误差。
所以,即使在存在有穿过印制板7的中央的开口部9的外部磁场的情况下,也能防止因外部磁场而在电流测量中受影响,能实现高精度的电流测量。
而且,在本实施方式中,以在7层结构的印制板上作为绕组形成三重绕组的情况为例进行了说明。但在构成9层重叠绕组、11层重叠绕组……等更多重绕组(但仅限于奇数)的情况下,也能获得同样效果。
以下参照附图,详细说明本发明的第5实施方式。第5实施方式是将第1~第4实施方式的罗果夫斯基线圈1的结构进行变形的实施例。所以,使用的印制板7的结构与第1~第4实施方式中的任一印制板结构均相同,所以其说明从略。
在图10中,罗果夫斯基线圈1上设置了多个上述第1~第4实施方式中任一个实施方式中的印制板7,这些都紧密结合而被固定,以使各印制板7的中央开口部9的中心轴一致。并且,各印制板7构成为串联电连接。
具有这种结构的第5实施方式的电流互感器,除具有第1~第4实施方式的电流互感器的作用效果外,还能获得以下效果。
也就是说,作为罗果夫斯基线圈1的输出电压,各印制板7的输出被相加,相当于每单位电流、单位频率的输出电压按照印制板7的块数倍增。
所以,根据本实施方式,在保持绕组所包围的面积与回路线所包围的面积相等的关系的状态下,能调节相当于每个单位电流、单位频率的输出电压,即罗果夫斯基线圈1的灵敏度。因此,能防止因外部磁场而在电流测量中受影响,而且容易获得适合后述的检测单元中的处理的电平的输出电压。
以下参照附图,详细说明本发明的第6实施方式。图11是本发明的电流互感器的系统结构图。在该图中,电流互感器有以下构成部分:导体5穿通安装的罗果夫斯基线圈1、布置在罗果夫斯基线圈1附近的检测单元(SU)20、以及光传输装置30。
罗果夫斯基线圈1和检测单元20之间由双绞电线31进行连接。
罗果夫斯基线圈1的结构与使用上述第1~第5实施方式的任一种印制板7的结构的罗果夫斯基线圈相同,所以在此其说明从略。
检测单元20具有以下构成部分:积分电路21,对从罗果夫斯基线圈1通过双绞电线31输入的模拟电压信号进行模拟信号处理;低通滤波器(LPF)22,为了在进行模/数变换的前级降低反演误差而滤掉谐波;模/数转换器23,把模拟电压信号转换成数字电信号(以简称为A/D转换器);进行与数字电信号有关的处理的PLD(可编程逻辑装置)24;CPU(中央处理机)25;把数字电信号转换成数字光信号并进行输出的电/光转换器26(以下简称为E/O转换器)、以及电源电路27。
电源电路27将从未图示的变电所共用电源等供给的DC110V(也可以是DC48V或DC220V等,一般配合变电所的标准电压)变换成DC±5V、DC±3V、3V等,检测单元20工作所需的电压。并且,图中未示出,但检测单元20也可以具有电池等备用电源。
而且,在该图中与检测单元20相连接的罗果夫斯基线圈是1个通道,但输入不一定是1个通道,例如在三相共箱式GIS的情况下,也可以是将U相、V相、W相3相的罗果夫斯基线圈的输出输入到一个检测单元内的方式。在此情况下的检测单元20的结构是:由积分器和LPF22构成的模拟输入电路构成输入通道部分的电路,A/D变换器23是一个,用模拟多路调转换器来切换多通道的输入,并进行模/数变换。
PLD24以下的结构与一个通道输入时相同。而且,各罗果夫斯基线圈1和检测单元20的各输入端子之间,分别以1对1用双绞电线31进行连接。
光传输装置30把从检测单元20来的数字光信号,传输到保护控制装置等上位系统内。虽然未图示,但光传输线路30也可以是一对一的通信线路,也可以是由LAN连接的结构。
根据具有以上结构的本发明的第6实施方式的电流互感器系统,除了第1~第5实施方式的电流互感器的作用效果外,还能获得以下作用效果。
罗果夫斯基线圈1的输出电压是与流过导体5的主电路交流电流的微分值成正比的模拟电压信号,它通过双绞电线31而输入到检测单元20内。输入到检测单元20内的模拟电压信号被积分电路21进行积分,变成与主电路交流电流量成正比的模拟电压信号。然后,在低通滤波器21成为反演误差的谐波成分被除去,由模/数变换器23转换成数字电信号。与数字电信号有关的处理由PLD24和CPU25来进行。PLD24进行A/D转换器的定时信号(同步信号)的生成、控制信号的生成、以及与CPU25的数据传输等处理。CPU25将数字电信号转换成例如曼彻底斯特代码等传输格式。这时,传输格式中可附加CRC代码(Cyclic Redundaney Chech循环冗余检验码)或反转双重代码,来提高传输可靠性。由PLD24和CPU25处理后的数字电信号被E/O变换器26变换成数字光信号,经过光传输装置30传输到保护控制装置等上位系统内。
在第1~第5实施方式中说明的本发明的电流互感器的罗果夫斯基线圈1由印制板构成,所以虽然采用多重绕组结构,其次级输出电压的上限也是在数V/kA左右,长距离传输次级输出电压,在耐噪声方面有问题。但是,在本实施方式中,将把罗果夫斯基线圈1的次级输出电压变换成数字光信号的检测单元20,布置在罗果夫斯基线圈1(印制板7)附近,所以,作为模拟电压信号进行传输的距离只有1m以下,能避免因外部噪声影响而信号质量下降的问题。尤其在罗果夫斯基线圈1和检测单元20之间由双绞线31连接,所以,能使罗果夫斯基线圈1的微弱模拟电压输出在罗果夫斯基线圈1和检测单元20之间传输时受到的、因外部磁场引起的电磁感应的影响变小。
因为检测单元20和总变电所的保护控制装置之间用数字光信号进行传输,所以,即使长距离传输也不会使信号受噪声影响而降低质量,能向保护控制装置供给高质量的交流电流量。
并且,本发明的印制板型罗果夫斯基线圈采用多重绕组结构,所以,与使用过去的印制板型罗果夫斯基线圈时相比,能向检测单元输入大数倍的罗果夫斯基线圈次级输出电压。所以容易提高检测单元的S/N,能向保护控制装置供给质量比过去高的交流电流量。
而且,利用CPU25也可以对表示主电路交流电流量的数字电信号进行数字滤波,也可以构成软件来对罗果夫斯基线圈1的误差和积分电路、低通滤波器电路等模拟电路的误差进行校正(灵敏度校正和相位校正)。并且,也可以进行过去用BCU(Bay Control Unit)等上位系统进行的主电路电流有效值运算,传送到上位系统内。
并且,虽未图示但也可在检测单元20内设置温度检测器,由CPU25进行温度补偿计算。
在本发明的结构中,检测单元20布置在罗果夫斯基线圈1附近,所以,由检测单元20测量的温度可以看作是大致等于罗果夫斯基线圈1的周围温度,能进行精细的温度补偿。
再者,作为本发明的附带效果可获得如下效果。即,过去在保护控制装置中安装的与变电设备主体之间的输入输出电路可以删除,而且,输入输出全部经由通信,不存在处理大电压、大电流的电路,因此,作为保护控制装置的硬件结构,能够由用于处理保护控制功能的数字运算处理部和进行通信处理的通信部构成,能大量减少硬件。
再者,本发明的电流互感器具有CPU的运算功能,所以,能代替过去用保护控制装置进行的运算的一部分,能减轻保护控制装置的运算负担。并且,由于电流互感器分担了过去由保护控制装置进行的运算的一部分,所以利用保护控制装置的CPU的空闲时间,能使保护控制装置增加更高水平的保护控制运算和监视功能。因此,能提高作为保护控制系统整体的性能。
以下参照附图,详细说明本发明的第7实施方式。图12是本发明的第7实施方式的电流互感器的系统结构图。在该图中,电流互感器有以下构成部分:导体5穿通安装的罗果夫斯基线圈1、布置在罗果夫斯基线圈1附近的检测单元(SU)20、光传输装置30、以及对从多个检测单元20传输的数字光信号进行综合的综合单元(MU)40。
在该图中,罗果夫斯基线圈1的结构也可以使用上述第1~第5实施方式的罗果夫斯基线圈中的任一种,所以在此,其说明从略。此外,检测单元20的结构与第6实施方式中说明的图11的结构相同,因此,其说明从略。
用图12来说明综合系统(MU)40的构成例。检测单元20和综合系统40由光传输装置32被连接。
综合系统40的构成部分有:用来输入从各检测单元20来的数字光信号并将其转换成第2数字电信号的光/电转换器41(以下简称为O/E转换器)、用于综合第2数字电信号并生成电综合传输信号的综合装置42、与上位系统的通信接口46、把电综合传输信号转换成第2数字光信号的第2电/光转换器47(以下简称为第2E/O转换器),以及电源电路49等。
综合单元42由PLD43、CPU44、同步装置45等构成。与上位系统相连接的O/E转换器48,把从上位系统中作为光信号发送传输的同步信号转换成电同步信号。
电源电路49把从变电所共用电源50等供给的DC110(也可以是DC48V或DC220V等,一般按照变电所的标准电压)转换成DV±5V、DV±3V、3V等综合单元40工作所需的电压。并且,图中未示出,但综合系统40也可以具有电池等备用电源。
数字光信号包括从与综合系统40相连接的检测单元20来的交流电流量信息,该信号在可能有以下各种变化,例如用相单位综合成为综合传输信号,用回线单位综合成为综合传输信号,用保护控制单位综合成为综合传输信号,在保护控制单位中综合成为2个以上的综合传输信号等等。综合单元中的信号的综合并非仅限于综合成为某规定形式的综合传输信号,也可以根据变电所的配线或保护控制装置的系统结构等综合成为最佳形式的综合传输信号。
根据具有如上结构的本发明的第7实施方式的电流互感器系统,则可获得以下作用效果。
罗果夫斯基线圈1和检测单元20的作用效果与第1~第6实施方式中说明的作用效果相同,所以其说明从略。
综合单元40利用O/E变换器41来接收从各检测单元20来的数字光信号,并将其转换成第2数字电信号。综合装置42综合各第2数字电信号并生成电综合传输信号。利用通信接口46和O/E转换器47,将电综合传输信号转换成第2数字光信号,并向保护控制装置等上位系统传输。
以下详细说明综合装置42的作用。由O/E转换器41进行转换后的第2数字电信号,通过PLD43与CPU44进行数据传递。这时,PLD43对附加在第2数字电信号上的CRC码或反转2重码进行检查,检测出传输错误。
同步装置45接收从上位系统送来的变电所共用的时刻同步用标准信号和标准时刻数据,抽出并生成取样同步信号和计时标记用的时刻数据。
CPU44在从各检测单元20接收的第2数字电信号中,取出交流电流量的数字值,根据取样同步信号对各检测单元之间的取样同步误差进行同步校正运算,在同步校正运算后的交流电流数字值上附加计时标记和CRC码等必要信息,生成综合传输信号。并且,CPU44进行检测单元20的异常监视和综合单元40的自我异常监视,在发生异常时,向上位系统发出报警。而且,检测单元20的异常监视,例如是检测单元20的电源异常监视和A/D变换器的精度监视、模拟电路监视等。
图13是将作为保护控制单位的部分的回线单位内的多个交流电流量作为一个综合传输信号进行发送时的系统结构例。该图是单母线结构105的单相式开关装置的线路回线101的例子,用3相接线图来表示。罗果夫斯基线圈1在断路器102的两侧使导体5穿过进行安装,检测单元20安装在各罗果夫斯基线圈1附近。各个检测单元20a1~20a3、20b1~20b3和综合单元40,用光传输装置32进行连接。综合单元40和保护控制装置等上位系统104,用第2光传输装置103进行连接。综合单元40把从安装在断路器两侧的线路回路101的全部检测单元20a~20a3、20b1~20b3传送来的交流电流量的数字值(数字光信号),综合成为综合传输信号,传送到上位系统104内。
这样,能利用布置在现场变电设备主机附近的综合单元40,由保护控制单位传输交流电流量信息,所以能高效率地利用传输装置。因为在综合单元40和总变电所的保护控制装置之间由数字光信号进行传输,所以,即使长距离传输也不会因噪声的影响而信号劣化,能向保护控制装置供给高质量的交流电流量。
并且,因为能大量削减对现场变电设备和总变电所的保护控制装置之间进行连接的电缆,所以能减少设备安装施工时间和费用。
再者,作为本发明的附带效果可获得如下效果。也就是说,过去在保护控制装置中安装的与变电设备主体之间的输入输出电路可以省略,而且,输入输出全部经由通信,不存在处理大电压、大电流的电路,作为保护控制装置的硬件结构,只需为处理保护控制功能用的数字运算处理部和进行通信处理的通信部即可,能大量减少硬件。
再者,本发明的电流互感器具有CPU的运算功能,所以,能代替进行过去用保护控制装置进行的运算的一部分,能减轻保护控制装置的运算负担。并且,由于电流互感器分担了过去由保护控制装置进行的运算的一部分,所以利用保护控制装置的CPU的空闲时间,能使保护控制装置具有更高水平的保护控制运算和监视功能。因此,能提高保护控制系统整体的性能。
而且,交流电流量的数字值综合为综合传输信号,并不限于如上述综合为1个综合传输信号。以下说明综合为2个综合传输信号的情况。
在图13中,安装在断路器102的母线105侧的罗果夫斯基线圈1a的交流电流量,用于未图示的线路保护继电器的保护运算中。另一方面,安装在断路器102的未图示的输电线侧的罗果夫斯基线圈1b的交流电流量,用于未图示的母线保护继电器的保护运算中。对线路保护继电器,将从检测单元20a1~20a3传送来的交流电流量综合成第1综合传输信号后,向线路保护继电器传送,以便也可以不在保护继电器侧判断传送来的电流量的种类。另外,对母线保护继电器,把从检测单元20a1~20a3传送来的交流电流量综合成第2综合传输信号后,传送给母线保护继电器。
用这种形式生成综合传输信号的方式,尤其对于将在综合单元40和上位系统104的各装置(线路保护继电器、母线保护继电器、BCU等)之间,用1对1的传输线路进行连接的结构是有效的。
以下说明本发明的实施方式的变形例。在第6实施方式的说明中,说明了检测单元20的CPU25的各种运算功能。但其中,除了与检测单元20和综合单元40之间的数据传输有关的运算外,其他各种运算功能(灵敏度校正、相位校正等),其一部分或全部运算也可以由综合单元40的CPU44来进行。
显然,在这种变形例中能获得与第7实施方式相同的作用效果。在此情况下,只要具有以下功能即可:检测单元20把作为罗果夫斯基线圈1的输出的模拟电压信号转换成数字光信号,并经过光传输装置30把数据传送到综合单元40,所以能省略检测单元20的CPU25。因此,检测单元20的结构为极为简单的硬件结构。
而且,不需要检测单元20的CPU25,是指不需要相当于高精度的CPU的控制LSI,只需要安装为实现模/数转换所需的控制和光传输装置所需的最低限度的控制装置。对此,例如可用PLD24来控制或者为了实现它而把通用逻辑IC加以组合来进行这种控制。
再者,说明本实施方式的另一变形例,在第7实施方式中,由检测单元20进行的模拟电压信号的模/数转换的取样定时在各检测单元20之间为非同步,并用综合单元40的CPU44,根据从上位系统传送来的取样同步信号,进行同步校正运算。与此相对应,可以把取样同步信号从综合单元40传送到检测单元20内,在检测单元20内根据该取样同步信号来进行模/数转换的取样。即,检测单元20中的取样定时能与变电所共用的时刻同步标准信号相同步。
在此情况下,从综合单元40向检测单元20传送的取样同步信号通过光传输进行。虽未图示,但对检测单元20和综合单元40,作为硬件分别增加取样同步信号传输用的光传输装置。在此情况下,很明显,检测单元20既可采用有CPU25的结构,也可采用没有CPU25的结构,无论那种情况,附加记时标记用综合单元40的CPU44来实现是高效的。
在这种变形例中,除具有与第7实施方式相同的作用效果外也还具有以下作用效果。根据本实施方式,通常布置多个的各检测单元20之间的模拟电压信号的取样定时,按照变电所共用的时刻同步标准信号来进行同步,所以,综合单元40的CPU44不需要进行取样同步校正运算,能减轻CPU44的负荷,同时减轻软件的开发负担。
而且,在本实施方式中,其结构是,变电所共用的时刻同步标准信号经过综合单元40向检测单元20传送,但在把变电所共用的时刻同步标准信号直接传送到检测单元20的情况下,很明显也可获得同样效果。
本发明并非仅限于上述实施方式,例如包括方案12的电流互感器,也可以包括这样的实施方式,即综合单元和上位系统的各装置(线路保护继电器、母线保护继电器、BCU等)之间用1对1的传输线路来连接。根据这种实施方式,则能简化本发明的电流互感器和上位系统之间的传输信息,所以能简化整个系统。这时的综合单元内生成的综合传送信号,根据线路保护继电器、母线保护继电器等传送目的地而生成多个,这种结构多半效率高。
再者,作为包含第14方案的电流互感器,也可以包括这样的实施方式,即综合单元和上位系统的各装置(线路保护继电器、母线保护继电器、BCU等)之间用LAN(局域网)来连接。根据这种实施方式,则在本发明的电流互感器和上位系统之间的传输信息如在一个LAN上进行传输,所以,在各处能共用一个信息,也能谋求连接部的结构标准化。
并且,为了提高本发明的电流互感器系统整体的可靠性,可对罗果夫斯基线圈、检测单元、综合单元采用双重结构。关于冗余结构,有各种形式,例如对全部构件完全双重化,使其互相运用,或者各构件完全独立地进行双重化;或者部分进行双重化,等等。这些结构方式根据使用本发明电流互感器的系统要求的可靠程度以及成本平衡来决定,并非仅限于某一种冗余结构。
再者,本发明涉及电子化的电流互感器,本发明的一部分可以和电子化的仪器用变压器组合使用。即,采用的仪器用变压器为电子化的仪器用变压器,而且,在有数字化输出的情况下,或者电子化仪器用变压器的输出为模拟信号的情况下,或者采用老式仪器变压器的情况下,在追加可将其模拟输出进行A/D变换的单元时,用第7实施方式中说明的综合单元来合并处理仪器用变压器的数字输出信号。即,综合单元可以对由电流互感器和仪器用变压器检测出的主电路交流电流量(电流和电压信息)进行综合,由保护控制单位向一上级系统内传送。在此情况下,不言而喻,能有效地利用传输装置,同时,能进一步大量削减对现场变电设备和总变电所的保护控制装置之间进行连接的电缆,能进一步减少设备安装施工时间和费用。

Claims (13)

1、一种电流互感器,其特征在于,
具有:
多层结构的印制板,在中央具有导体穿通的开口部,且具有基板表面、基板背面以及被这些基板表面和基板背面夹持的多个基板内层;
罗果夫斯基线圈,在上述基板表面、基板背面和基板内层上,形成大致以上述开口部中心为中心扩散成放射状的多条直线形状的放射状金属箔;通过在厚度方向上贯通印制板的电镀的孔,将任意2层之间的放射状金属箔电连接形成一个绕组;通过在厚度方向上贯通印制板的电镀孔,将至少其他2层之间的放射状金属箔电连接,形成上述绕组以外的别的绕组;并至少在一个层上形成大致以上述开口部的中心为中心的圆周状金属箔,将上述多个绕组和上述圆周状金属箔串联电连接,将上述圆周状金属箔作为回路线。
2、如权利要求1所述的电流互感器,其特征在于,上述绕组和上述圆周状金属箔形成相同的数量,多个圆周状金属箔全部形成在印制板的同一层上。
3、如权利要求1所述的电流互感器,其特征在于,上述绕组和上述圆周状金属箔形成相同的数量,多个圆周状金属箔形成在印制板的不同的层上。
4、一种电流互感器,其特征在于,具有多层结构的印制板,该印制板在中央具有导体穿通的开口部,且具有基板表面、基板背面以及被这些基板表面和基板背面夹持的多个基板内层;在上述基板表面、基板背面和基板内层上,形成大致以上述开口部的中心为中心扩散成放射状的多条直线形状的放射状金属箔;通过在厚度方向上贯通印制板的电镀的孔,将任意2层之间的放射状金属箔电连接,形成一个绕组,具有2×N个这样形成的绕组,上述绕组中,N个绕组和其余的N个绕组被以互相相反的方向卷绕,将上述2×N个绕组串联电连接,其中N为正整数。
5、如权利要求4所述的电流互感器,其特征在于:按一个方向卷绕的绕组和按与其相反方向卷绕的绕组交替层叠,将交替层叠的、按互相相反方向卷绕的绕组串联电连接。
6、如权利要求4所述的电流互感器,其特征在于:将按一个方向卷绕的绕组串联连接形成一组多重绕组,将按与其相反方向卷绕的绕组串联连接构成另一组多重绕组,并将按相互相反方向卷绕的2组多重绕组串联电连接,以使其在印制板上具有相互镜像的关系。
7、一种电流互感器,其特征在于,
具有:
多层结构的印制板,在中央具有导体穿通的开口部,且具有基板表面、基板背面以及被这些基板表面和基板背面夹持的多个基板内层;
罗果夫斯基线圈,在上述基板表面、基板背面和基板内层上,具有金属箔由大致以上述开口部的中心为中心分别布置成放射状的多条金属箔形成的层、和上述金属箔由以上述开口部中心为中心的圆周状金属箔形成的层;通过在厚度方向上贯通印制板的电镀的孔,具有上述放射状的多个金属箔的层中任意2层之间的放射状金属箔电连接形成一个绕组,具有2×N+1个这样形成的绕组;在上述印制板上构成的上述绕组中,N+1个绕组和其余的N个绕组以互相相反的方向卷绕;将上述2×N+1个绕组和上述圆周状金属箔串联电连接;而且,使上述圆周状金属箔的卷绕方向和上述其余的N个绕组为同一方向,将其作为回路线,其中N为正整数。
8、如权利要求7所述的电流互感器,其特征在于:按一个方向卷绕的绕组和按与其相反方向卷绕的绕组以及圆周状金属箔交替层叠,将交替层叠的、按相互相反方向卷绕的上述绕组和圆周状金属箔串联电连接。
9、一种电流互感器系统,其特征在于,
具有:
多层结构的印制板,在中央具有导体穿通的开口部,且具有基板表面、基板背面以及被这些基板表面和基板背面夹持的多个基板内层;
罗果夫斯基线圈,在上述基板表面、基板背面和基板内层上,形成大致以上述开口部的中心为中心扩散的多条金属箔;通过在厚度方向上贯通印制板的电镀的孔,将任意2层之间的金属箔电连接,形成多个绕组;将上述多个绕组串联电连接,并检测出输变电设备的主电路交流电流,输出表示该交流电流量的模拟电压信号,
将上述模拟电压信号转换成数字电信号的模/数转换器;
将上述数字电信号转换成数字光信号的电/光转换器;
布置在上述罗果夫斯基线圈附近的检测单元;
传输上述数字光信号的光传输装置。
10、如权利要求9所述的电流互感器系统,其特征在于:具有综合单元,该综合单元对从上述多个罗果夫斯基线圈经过上述多个检测单元被多个光传输装置传输的上述数字光信号进行综合,并至少生成一个综合传输信号,将该综合传输信号向上位系统传输。
11、如权利要求10所述的电流互感器系统,其特征在于:综合系统包括:将上述各数字光信号分别转换成第2数字电信号的光/电转换器、综合第2数字电信号并生成电综合传输信号的综合装置、将电综合传输信号转换成第2数字光信号的第2电/光转换器。
12、如权利要求10所述的电流互感器系统,其特征在于:综合单元和上述上位系统以1对1的传输线路连接。
13、如权利要求10所述的电流互感器系统,其特征在于:综合单元和上述上位系统用LAN进行连接。
CNB031603920A 2002-09-30 2003-09-29 电流互感器和电流互感器系统 Expired - Fee Related CN1270332C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP284856/2002 2002-09-30
JP2002284856A JP2004119926A (ja) 2002-09-30 2002-09-30 変流器及び変流器システム

Publications (2)

Publication Number Publication Date
CN1497622A CN1497622A (zh) 2004-05-19
CN1270332C true CN1270332C (zh) 2006-08-16

Family

ID=31987130

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031603920A Expired - Fee Related CN1270332C (zh) 2002-09-30 2003-09-29 电流互感器和电流互感器系统

Country Status (4)

Country Link
US (1) US7106162B2 (zh)
JP (1) JP2004119926A (zh)
CN (1) CN1270332C (zh)
FR (1) FR2845197B1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258694A (zh) * 2011-12-20 2013-08-21 西门子公司 开关,尤其是低压断路器
US9304149B2 (en) 2012-05-31 2016-04-05 Pulse Electronics, Inc. Current sensing devices and methods
US9312059B2 (en) 2012-11-07 2016-04-12 Pulse Electronic, Inc. Integrated connector modules for extending transformer bandwidth with mixed-mode coupling using a substrate inductive device
US9823274B2 (en) 2009-07-31 2017-11-21 Pulse Electronics, Inc. Current sensing inductive devices
CN108231318A (zh) * 2016-12-21 2018-06-29 日本碍子株式会社 电流检测用的耐热性元件

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406910A (en) * 2003-10-08 2005-04-13 Weston Aerospace Probe for detecting movement and speed or torque of magnetic objects
FR2870040B1 (fr) * 2004-05-10 2006-06-09 Areva T & D Sa Transformateur de courant a bobinages de type rogowski comportant des circuits partiels associes pour former un circuit complet
GB0412129D0 (en) * 2004-05-29 2004-06-30 Lem Heme Ltd Improvements in and relating to current measuring apparatus
US7265533B2 (en) * 2004-06-15 2007-09-04 Power Measurement Ltd. Non-intrusive power monitor
US7227441B2 (en) 2005-02-04 2007-06-05 Schweitzer Engineering Laboratories, Inc. Precision Rogowski coil and method for manufacturing same
US7227442B2 (en) * 2005-04-01 2007-06-05 Schweitzer Engineering Laboratories, Inc. Precision printed circuit board based rogowski coil and method for manufacturing same
JP5017827B2 (ja) * 2005-09-20 2012-09-05 株式会社日立製作所 電磁波発生源探査方法及びそれに用いる電流プローブ
JP4674533B2 (ja) * 2005-12-02 2011-04-20 パナソニック電工株式会社 交流電流検出用コイル
JP4916807B2 (ja) * 2006-01-30 2012-04-18 株式会社ダイヘン 電圧検出用プリント基板及びそれを用いた電圧検出器
JP4916821B2 (ja) 2006-03-31 2012-04-18 株式会社ダイヘン 電圧検出用プリント基板及びそれを用いた電圧検出器
JP4917183B2 (ja) * 2006-03-31 2012-04-18 株式会社ダイヘン 電流・電圧検出用プリント基板及びそれを用いた電流・電圧検出器
US8300372B2 (en) * 2006-04-04 2012-10-30 Cerus Industrial Corporation Apparatus, system, and/or method for protection and control of an electrical device
US8861156B1 (en) 2006-04-04 2014-10-14 Kent Jeffrey Holce Status providing starter apparatus, system, and/or method
DE102006025194A1 (de) * 2006-05-29 2007-12-06 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Induktiver Leitfähigkeitssensor
US7545138B2 (en) * 2006-07-06 2009-06-09 Schweitzer Engineering Laboratories, Inc. Precision, temperature-compensated, shielded current measurement device
US7532000B2 (en) * 2006-08-03 2009-05-12 The Boeing Company Method and system for measurement of current flows in fastener arrays
US7579824B2 (en) * 2006-09-29 2009-08-25 Gm Global Technology Operations, Inc. High-precision Rogowski current transformer
ES2387098T3 (es) * 2006-11-16 2012-09-13 Cirprotec, S.L. Transductor activo lineal de corriente
JP4960069B2 (ja) * 2006-11-27 2012-06-27 パナソニック株式会社 分電盤
JP4830813B2 (ja) * 2006-11-27 2011-12-07 パナソニック電工株式会社 分電盤
WO2008065904A1 (fr) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Tableau de distribution
JP2008134118A (ja) * 2006-11-28 2008-06-12 Daihen Corp 電流検出用プリント基板
US7598724B2 (en) * 2007-01-19 2009-10-06 Admmicro Properties, Llc Flexible current transformer assembly
US7613578B2 (en) * 2007-05-01 2009-11-03 Hagmann Mark J Method for noninvasive determination of a distribution of electrical current and apparatus for the same
JP4898592B2 (ja) * 2007-07-31 2012-03-14 株式会社ダイヘン 電流・電圧検出器
JP5069978B2 (ja) 2007-08-31 2012-11-07 株式会社ダイヘン 電流・電圧検出用プリント基板および電流・電圧検出器
CN101650383A (zh) * 2008-08-12 2010-02-17 西门子公司 大电流传感器
US8560255B2 (en) * 2008-12-12 2013-10-15 Schneider Electric USA, Inc. Power metering and merging unit capabilities in a single IED
JP2010232392A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 零相変流器及び漏電検出装置
WO2010109308A2 (ja) * 2009-03-26 2010-09-30 パナソニック電工株式会社 零相変流器及び漏電検出装置
US9664711B2 (en) 2009-07-31 2017-05-30 Pulse Electronics, Inc. Current sensing devices and methods
KR101099663B1 (ko) * 2009-09-03 2011-12-29 주식회사 플라즈마트 전기적 특성을 측정하기 위한 센서
JP5450006B2 (ja) 2009-11-30 2014-03-26 株式会社東芝 電流入力変換器
US8264215B1 (en) * 2009-12-10 2012-09-11 The Boeing Company Onboard electrical current sensing system
US8693353B2 (en) * 2009-12-28 2014-04-08 Schneider Electric USA, Inc. Intelligent ethernet gateway system and method for optimizing serial communication networks
CN102714351B (zh) * 2010-01-19 2015-12-09 株式会社村田制作所 高耦合度变压器、电子电路及电子设备
EP2402769A1 (en) * 2010-06-30 2012-01-04 ABB Technology AG Combined detection device for electrical variables
CN102446614B (zh) * 2010-10-14 2013-03-13 弘邺科技有限公司 电感元件的结构
CA2818912A1 (en) * 2010-11-26 2012-05-31 The National Microelectronics Applications Centre Limited An ac current or voltage sensor
US8872611B2 (en) * 2011-08-18 2014-10-28 General Electric Company Rogowski coil assemblies and methods for providing the same
US9429595B2 (en) 2011-09-09 2016-08-30 Aclara Meters Llc Sensor devices and methods for use in sensing current through a conductor
US8912807B2 (en) 2011-09-09 2014-12-16 General Electric Company Sensor devices and methods for use in sensing current through a conductor
US9081040B2 (en) 2011-09-09 2015-07-14 General Electric Company Sensor devices and methods for use in sensing current through a conductor
US9075091B2 (en) 2011-09-09 2015-07-07 General Electric Company Sensor devices and methods for use in sensing current through a conductor
US8829888B2 (en) 2011-09-09 2014-09-09 General Electric Company Sensor devices and methods for use in sensing current through a conductor
US8928337B2 (en) 2012-01-27 2015-01-06 Schweitzer Engineering Laboratories, Inc. Device for measuring electrical current and method of manufacturing the same
FR2987897A1 (fr) * 2012-03-06 2013-09-13 Julien Bergoz Dispositif de mesure d'un courant electrique circulant dans un milieu
WO2013173572A1 (en) * 2012-05-16 2013-11-21 Seal Lowell G Sensor device and method of manufacture and use
US20130342188A1 (en) * 2012-06-21 2013-12-26 Grid Sentry LLC Disassociated Split Sensor Coil for Power Distribution Line Monitoring
US9291649B2 (en) * 2012-08-16 2016-03-22 Mks Instruments, Inc. On the enhancements of planar based RF sensor technology
US9863983B2 (en) 2012-12-17 2018-01-09 Covidien Lp System and method for voltage and current sensing
US9921243B2 (en) * 2012-12-17 2018-03-20 Covidien Lp System and method for voltage and current sensing
US9116179B2 (en) * 2012-12-17 2015-08-25 Covidien Lp System and method for voltage and current sensing
KR101336689B1 (ko) * 2012-12-27 2013-12-16 주식회사 비츠로시스 배전선로에 사용되는 전압, 무효전력 안정화용 전력품질 측정장치
US9337638B2 (en) 2013-01-29 2016-05-10 Grid Sentry LLC Clamp mechanism for power distribution line sensors
WO2014125317A1 (en) * 2013-02-15 2014-08-21 Freescale Semiconductor, Inc. Integrated circuit with integrated current sensor
US9190204B1 (en) * 2013-05-12 2015-11-17 Marion Harlan Cates, Jr. Multilayer printed circuit board having circuit trace windings
CN105531897B (zh) 2013-09-26 2018-09-18 施耐德电气美国股份有限公司 具有光波导片的负荷中心监控器
EP3055701B1 (en) * 2013-10-09 2023-05-17 Schneider Electric USA, Inc. Self-contained branch circuit monitor
WO2015080693A1 (en) 2013-11-26 2015-06-04 Schneider Electric USA, Inc. Wireless batteryless data processing unit
WO2015084387A1 (en) 2013-12-06 2015-06-11 Schneider Electric USA, Inc. Temperature sensor for bolted connections
US9217762B2 (en) 2014-02-07 2015-12-22 Smart Wires Inc. Detection of geomagnetically-induced currents with power line-mounted devices
JP6455811B2 (ja) * 2014-02-21 2019-01-23 パナソニックIpマネジメント株式会社 電流検出用コイル
US10123436B2 (en) 2014-03-31 2018-11-06 Schneider Electric USA, Inc. Live load indicator with door interlock
EP3134956A4 (en) * 2014-04-16 2018-01-24 Witricity Corporation Wireless energy transfer for mobile device applications
US9696349B2 (en) 2014-06-26 2017-07-04 General Electric Company Current sensing system
CN104064342A (zh) * 2014-07-04 2014-09-24 北京瑞奇恩互感器设备有限公司 电子式电流互感器
US9671434B2 (en) 2014-08-08 2017-06-06 Aclara Meters Llc Sensor devices and methods for use in sensing current through a conductor
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
FR3033647B1 (fr) 2015-03-10 2019-07-26 Socomec Capteur de courant pour mesurer un courant alternatif
US9439290B1 (en) * 2015-08-04 2016-09-06 Kinsus Interconnect Technology Corp. Carrier board structure
US9847165B2 (en) * 2015-10-08 2017-12-19 Kinsus Interconnect Technology Corp. Winged coil structure and method of manufacturing the same
FR3044096B1 (fr) * 2015-11-23 2017-12-01 Schneider Electric Ind Sas Capteur de courant et dispositif pour la mesure d'un courant electrique
EP3187886B1 (de) * 2015-12-30 2022-03-30 Wöhner GmbH & Co. KG Elektrotechnische Systeme Messmodul für ein stromsammelschienensystem
US10908187B2 (en) 2016-05-02 2021-02-02 Covidien Lp Current sensor with reduced voltage coupling
US10859605B2 (en) 2016-06-10 2020-12-08 Analog Devices International Unlimited Company Current sensor and a method of manufacturing a current sensor
US10416195B2 (en) * 2016-06-10 2019-09-17 Analog Devices Global Current sensor and a method of manufacturing a current sensor
PL3555895T3 (pl) * 2016-12-16 2022-01-31 Eaton Intelligent Power Limited Połączenie elementu przewodzącego prąd, jak izolator przepustowy i kabel połączeniowy
US20180286556A1 (en) * 2017-04-01 2018-10-04 Intel Corporation Integrated circuit implemented inductors and methods of manufacture
CN106920628B (zh) * 2017-04-20 2019-05-14 马焰琳 一种液态金属滤波线圈的制作工艺
CN107393691A (zh) * 2017-05-31 2017-11-24 柯良节 环绕式硅胶石墨烯滤波扼流圈及其制作方法
CN108565100A (zh) * 2017-05-31 2018-09-21 洪豪立 环绕式石墨烯滤波扼流圈及其制作方法
KR101937209B1 (ko) * 2017-06-09 2019-01-10 엘에스산전 주식회사 전류 감지 장치
WO2019102573A1 (ja) * 2017-11-24 2019-05-31 新電元工業株式会社 半導体装置、半導体部品及び半導体装置の製造方法
US11280812B2 (en) 2017-11-24 2022-03-22 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and semiconductor component
JPWO2019102569A1 (ja) 2017-11-24 2020-11-19 新電元工業株式会社 半導体部品、組合体及び半導体部品の製造方法
GB2569563A (en) * 2017-12-20 2019-06-26 Eaton Ind Netherlands Bv Rogowski coil
US11328859B2 (en) 2017-12-28 2022-05-10 Realtek Semiconductor Corp. High isolation integrated inductor and method therof
FR3080685B1 (fr) * 2018-04-27 2020-11-27 Schneider Electric Ind Sas Transformateur de courant testable et appareil electrique comportant des moyens de test d'un tel transformateur de courant
EP3819651A4 (en) * 2018-07-04 2022-03-16 Shindengen Electric Manufacturing Co., Ltd. ELECTRONIC MODULE
FR3086793B1 (fr) * 2018-09-27 2020-09-11 Schneider Electric Ind Sas Transformateur de courant electrique et appareil de mesure de courant
CN109856444B (zh) * 2019-01-25 2020-07-07 同济大学 一种基于电流开关谐波的变流器直流电压检测系统及方法
JP7370164B2 (ja) * 2019-04-23 2023-10-27 富士電機メーター株式会社 電流センサ及び電力量計
US11268987B2 (en) * 2019-09-23 2022-03-08 Eaton Intelligent Power Limited Circuit interrupter and method of estimating a temperature of a busbar in a circuit interrupter
US11617269B2 (en) 2021-07-20 2023-03-28 Schweitzer Engineering Laboratories, Inc. Current measuring device for an electric power protection system
CN113655261B (zh) * 2021-09-22 2023-12-22 南通大学 一种嵌套式微电流互感器及其使用方法
US11959942B2 (en) * 2022-03-15 2024-04-16 Analog Devices International Unlimited Company Current sensor
US11927607B2 (en) 2022-03-15 2024-03-12 Analog Devices International Unlimited Company Current sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US90356A (en) * 1869-05-25 Improvement in lamp-posts
US3668587A (en) * 1970-05-13 1972-06-06 Inductosyn Corp Multi-layer polyphase winding member and transformer
US4803425A (en) * 1987-10-05 1989-02-07 Xerox Corporation Multi-phase printed circuit board tachometer
US5055816A (en) * 1989-06-26 1991-10-08 Motorola, Inc. Method for fabricating an electronic device
FR2692074B1 (fr) * 1992-06-05 1994-07-22 Alsthom Gec Bobine de rogowski.
FR2712423B1 (fr) * 1993-11-08 1996-02-09 Gec Alsthom T & D Sa Bobine de Rogowski utilisable dans une installation électrique avec enveloppe métallique à la terre et procédé de fabrication d'une telle bobine.
GB9821164D0 (en) * 1998-09-30 1998-11-25 Ward David Measuring device
JP2000228323A (ja) 1999-02-05 2000-08-15 Toshiba Corp ロゴスキーコイル
DE20101454U1 (de) * 2001-01-27 2001-05-23 Phoenix Contact Gmbh & Co Stromsensor auf Leiterplattenbasis
JP2003130894A (ja) 2001-10-29 2003-05-08 Toshiba Corp 変流器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823274B2 (en) 2009-07-31 2017-11-21 Pulse Electronics, Inc. Current sensing inductive devices
CN103258694A (zh) * 2011-12-20 2013-08-21 西门子公司 开关,尤其是低压断路器
US9304149B2 (en) 2012-05-31 2016-04-05 Pulse Electronics, Inc. Current sensing devices and methods
US10048293B2 (en) 2012-05-31 2018-08-14 Pulse Electronics, Inc. Current sensing devices with integrated bus bars
US9312059B2 (en) 2012-11-07 2016-04-12 Pulse Electronic, Inc. Integrated connector modules for extending transformer bandwidth with mixed-mode coupling using a substrate inductive device
CN108231318A (zh) * 2016-12-21 2018-06-29 日本碍子株式会社 电流检测用的耐热性元件
CN108231318B (zh) * 2016-12-21 2022-04-05 日本碍子株式会社 电流检测用的耐热性元件

Also Published As

Publication number Publication date
FR2845197A1 (fr) 2004-04-02
US7106162B2 (en) 2006-09-12
US20040178875A1 (en) 2004-09-16
JP2004119926A (ja) 2004-04-15
FR2845197B1 (fr) 2006-04-07
CN1497622A (zh) 2004-05-19

Similar Documents

Publication Publication Date Title
CN1270332C (zh) 电流互感器和电流互感器系统
CN1250975C (zh) 变流器
Chen et al. Overview of power electronic converter topologies enabling large-scale hydrogen production via water electrolysis
CN1230722C (zh) 操纵一个驱动系统的方法和实施该方法的设备
CN106998142B (zh) 多路并联的谐振变换器、电感集成磁性元件和变压器集成磁性元件
EP2695281B1 (en) Power distribution systems using distributed current sensing
CN109787484A (zh) 同步整流模块
Carreno et al. Configurations, power topologies and applications of hybrid distribution transformers
US20180019053A1 (en) Inductor module and electric power transmission system
Mollik et al. The advancement of solid-state transformer technology and its operation and control with power grids: A review
JP2011159851A (ja) リアクトル
Lee et al. Analysis and design of three-phase buck rectifier employing ups to supply high reliable DC power
JP4012205B2 (ja) 電源装置
CN1682419A (zh) 电力网保护系统
JP2009004801A (ja) 変流器
CN109655662A (zh) 一种由变压器铁芯截面积计算功率的k系数计算方法
JP2010093174A (ja) 多層基板トランス
Popławski et al. Nonlinear Loads in Lighting Installations—Problems and Threats
JP2013062998A (ja) スイッチング電源装置
JP2010213480A (ja) 燃料電池の電力変換装置
JP2008187855A (ja) 分散電源用発電装置の出力回路
CN110118904A (zh) 一种k系数变压器等效负载换算方法
JP2015164146A (ja) インダクタ部品
CN110118905A (zh) 一种应用于谐波条件下的隔离变压器等效负载测试方法
JP5945002B2 (ja) 変圧器および変換器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060816

Termination date: 20180929

CF01 Termination of patent right due to non-payment of annual fee